1
|
Bhavsar J, Kasture K, Salvi BV, Shende P. Strategies for transportation of peptides across the skin for treatment of multiple diseases. Ther Deliv 2025; 16:63-86. [PMID: 39411995 DOI: 10.1080/20415990.2024.2411943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/30/2024] [Indexed: 01/02/2025] Open
Abstract
An established view in genetic engineering dictates an increase in the discovery of therapeutic peptides to enable the treatment of multiple diseases. The use of hypodermic needle for delivery of proteins and peptides occurs due to the hydrophilic nature, sensitivity toward proteolytic enzymes and high molecular weight. The non-invasive nature of the transdermal delivery technique offers multiple advantages over the invasive route to release drugs directly into the systemic circulation to enhance bioavailability, better patient compliance, reduced toxicity and local irritability. The transdermal route seems highly desirable from the pharmaco-therapeutic and patient compliance point of view, however, the lipophilic barrier of skin restricts the application. The use of several techniques like electrical methods (iontophoresis, sonophoresis etc.), chemical penetration enhancers (e.g. protease inhibitors, penetration enhancers, etc.) and nanocarriers (dendrimers, lipid nanocapsules, etc.) are utilized to improve the passage of drug molecules across the biomembranes. Additionally, such clinical interventions facilitate the physicochemical characteristics of peptides, to enable effective preservation, conveyance and release of therapeutic agents. Moreover, strategies ensure the attainment of the intended targets and enhance treatment outcomes for multiple diseases. This review article focuses on the techniques of peptide transportation across the skin to advance the delivery approaches and therapeutic efficiency.
Collapse
Affiliation(s)
- Janhavi Bhavsar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Kaustubh Kasture
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bhagyashree V Salvi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
2
|
Al Yabhouni SA, Mozumder MS, Hassan N, Mourad AHI, Issa Md TMA. Nanocarrier-Based, ocular drug delivery: Challenges, prospects, and the therapeutic landscape in the United Arab Emirates. Int J Pharm 2024; 667:124899. [PMID: 39521159 DOI: 10.1016/j.ijpharm.2024.124899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/20/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Human eyes have the most complex and advanced physiological defense barriers. Due to these barriers, efficient delivery of ocular drugs is a major challenge in the treatment of eye diseases and disorders. Posterior eye diseases such as retinopathy are the leading causes of impaired vision and blindness globally. The topical and systemic administration of drugs such as eye drops, ointments, intravitreal injections, intraocular implants, contact lenses, and emulsions are the perennial approaches employed to treat ocular diseases. However, these modalities are inefficient due to the low bioavailability of the active drug and the potential for drug-related cytotoxicity to the ocular tissue. In this review, the conventional approaches in ocular drug delivery systems (DDSs) are explored and the limitations associated with each technique are elucidated. A comparison between the different DDSs is presented, showing the most effective treatment techniques available to date. In addition, this review presents recent advances in the field of nanocarriers and microcarriers used in ocular drug delivery systems such as nanoparticles, nano-suspensions, nanofibers, nanogels, nano-liposomes, nano micelles, dendrimers, contact lens, microneedle, and implants. Further, this review identifies the utility of nano-carriers in enabling the development of new-generation ocular DDSs with low toxicity, high efficiency, and high stability of targeted drug delivery systems to overcome the limitations observed with conventional ocular DDSs. In addition, this manuscript sheds light on the incidence and unique landscape of ocular diseases in the United Arab Emirates (UAE), and the potential for employing novel ocular DDSs for targeted treatment of conditions such as diabetic retinopathy in the UAE. It also discusses the putative role genetic variants of the VEGF gene may play in predisposing the local population in the UAE to developing posterior eye segment diseases such as retinopathy.
Collapse
Affiliation(s)
- Salama A Al Yabhouni
- Chemical & Petroleum Engineering Department, College of Engineering, UAE University, Al Ain 15551, United Arab Emirates; General Requirement Department Biology, Fatima College of Health Science, 24162 Al Ain, United Arab Emirates
| | - Mohammad Sayem Mozumder
- Chemical & Petroleum Engineering Department, College of Engineering, UAE University, Al Ain 15551, United Arab Emirates.
| | - Nurudeen Hassan
- General Requirement Department Biology, Fatima College of Health Science, 24162 Al Ain, United Arab Emirates
| | - Abdel-Hamid I Mourad
- Mechanical & Aerospace Engineering Department, College of Engineering, UAE University, Al Ain 15551, United Arab Emirates.
| | - Tareq M A Issa Md
- Consultant Ophthalmologist, Ultra Medical Center, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Kulchar RJ, Singh R, Ding S, Alexander E, Leong KW, Daniell H. Delivery of biologics: Topical administration. Biomaterials 2023; 302:122312. [PMID: 37690380 PMCID: PMC10840840 DOI: 10.1016/j.biomaterials.2023.122312] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/27/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Biologics are unaffordable to a large majority of the global population because of prohibitively expensive fermentation systems, purification and the requirement for cold chain for storage and transportation. Limitations of current production and delivery systems of biologics were evident during the recent pandemic when <2.5% of vaccines produced were available to low-income countries and ∼19 million doses were discarded in Africa due to lack of cold-chain infrastructure. Among FDA-approved biologics since 2015, >90% are delivered using invasive methods. While oral or topical drugs are highly preferred by patients because of their affordability and convenience, only two oral drugs have been approved by FDA since 2015. A newly launched oral biologic costs only ∼3% of the average cost of injectable biologics because of the simplified regulatory approval process by elimination of prohibitively expensive fermentation, purification, cold storage/transportation. In addition, the cost of developing a new biologic injectable product (∼$2.5 billion) has been dramatically reduced through oral or topical delivery. Topical delivery has the unique advantage of targeted delivery of high concentration protein drugs, without getting diluted in circulating blood. However, only very few topical drugs have been approved by the FDA. Therefore, this review highlights recent advances in oral or topical delivery of proteins at early or advanced stages of human clinical trials using chewing gums, patches or sprays, or nucleic acid drugs directly, or in combination with, nanoparticles and offers future directions.
Collapse
Affiliation(s)
- Rachel J. Kulchar
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Rahul Singh
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Suwan Ding
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York City NY 10032, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia PA 19104, USA
| |
Collapse
|
4
|
Gadhave D, Khot S, Tupe S, Shinde M, Tagalpallewar A, Gorain B, Kokare C. Nose-to-brain delivery of octreotide acetate in situ gel for pituitary adenoma: Pharmacological and in vitro cytotoxicity studies. Int J Pharm 2022; 629:122372. [DOI: 10.1016/j.ijpharm.2022.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
|
5
|
Chu T, Li Q, Dai C, Li X, Kong X, Fan Y, Yin H, Ge J. A novel Nanocellulose-Gelatin-AS-IV external stent resists EndMT by activating autophagy to prevent restenosis of grafts. Bioact Mater 2022; 22:466-481. [PMID: 36330163 PMCID: PMC9615139 DOI: 10.1016/j.bioactmat.2022.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Vein grafts are widely used for coronary artery bypass grafting and hemodialysis access, but restenosis remains the "Achilles' heel" of these treatments. An extravascular stent is one wrapped around the vein graft and provides mechanical strength; it can buffer high arterial pressure and secondary vascular dilation of the vein to prevent restenosis. In this study, we developed a novel Nanocellulose-gelatin hydrogel, loaded with the drug Astragaloside IV (AS-IV) as an extravascular scaffold to investigate its ability to reduce restenosis. We found that the excellent physical and chemical properties of the drug AS-IV loaded Nanocellulose-gelatin hydrogel external stent limit graft vein expansion and make the stent biocompatible. We also found it can prevent restenosis by resisting endothelial-to-mesenchymal transition (EndMT) in vitro. It does so by activating autophagy, and AS-IV can enhance this effect both in vivo and in vitro. This study has added to existing research on the mechanism of extravascular stents in preventing restenosis of grafted veins. Furthermore, we have developed a novel extravascular stent for the prevention and treatment of restenosis. This will help optimize the clinical treatment plan of external stents and improve the prognosis in patients with vein grafts. The NC-Gelatin extravascular stent has suitable physicochemical properties to prevent restenosis of the grafted veins. The NC-Gelatin extravascular stent has excellent biocompatibility, which is critical for grafting veins. The NC-Gelatin extravascular stent prevents restenosis by activating autophagy against EndMT. AS-IV can enhance the effect of the stent to activate autophagy against EndMT.
Collapse
Affiliation(s)
- Tianshu Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Qingye Li
- College of Food Science, Sichuan Agricultural University, No.46, Xin Kang Road, Yaan, Sichuan Province, 625014, PR China
| | - Chun Dai
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiang Kong
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Yangming Fan
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China
| | - Hongyan Yin
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China,Anhui Provincial Engineering Research Center for Cardiopulmonary and Vascular Materials, Hefei, Anhui, 230001, China,Corresponding author. The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
6
|
Semisolid Wet Sol–Gel Silica/Hydroxypropyl Methyl Cellulose Formulation for Slow Release of Serpin B3 Promotes Wound Healing In Vivo. Pharmaceutics 2022; 14:pharmaceutics14091944. [PMID: 36145692 PMCID: PMC9503603 DOI: 10.3390/pharmaceutics14091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Foot ulcerations are a disabling complication of diabetes and no treatment is currently available based on disease mechanisms. The protein serpin B3 (SB3) was identified as a positive biomarker of successful diabetic wound healing; therefore, its exogenous administration may promote healing. The topical administration of SB3 is challenging due to its protein nature. Physical entrapment in wet sol–gel silica can stabilize the protein’s conformation and permit its sustained delivery. However, irreversible syneresis and poor viscoelastic properties hamper wet sol–gel silica application as a semisolid vehicle. To overcome these limits, a sol–gel silica/hydroxypropylmethylcellulose (HPMC) hydrogel blend was developed. SB3 entrapped in 8% SiO2 wet sol–gel silica preserved its structure, was stabilized against denaturation, and was slowly released for at least three days. Blending a silica gel with an HPMC–glycerol (metolose-G) hydrogel permitted spreadability without affecting the protein’s release kinetics. When administered in vivo, SB3 in silica/metolose-G—but not in solution or in metolose-G alone—accelerated wound healing in SB3 knockout and diabetic mouse models. The results confirmed that SB3 is a new pharmacological option for the treatment of chronic ulcers, especially when formulated in a slow-releasing vehicle. Silica–metolose-G represents a novel type of semisolid dosage form which could also be applied for the formulation of other bioactive proteins.
Collapse
|
7
|
Dourado LFN, Silva CND, Gonçalves RS, Inoue TT, de Lima ME, Cunha-Júnior ADS. Improvement of PnPP-19 peptide bioavailability for glaucoma therapy: Design and application of nanowafers based on PVA. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Parchebafi A, Tamanaee F, Ehteram H, Ahmad E, Nikzad H, Haddad Kashani H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb Cell Fact 2022; 21:118. [PMID: 35717207 PMCID: PMC9206340 DOI: 10.1186/s12934-022-01848-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/08/2022] [Indexed: 12/20/2022] Open
Abstract
Microbial infection and cancer are two leading causes of global mortality. Discovering and developing new therapeutics with better specificity having minimal side-effects and no drug resistance are of an immense need. In this regard, cationic antimicrobial peptides (AMP) with dual antimicrobial and anticancer activities are the ultimate choice. For better efficacy and improved stability, the AMPs available for treatment still required to be modified. There are several strategies in which AMPs can be enhanced through, for instance, nano-carrier application with high selectivity and specificity enables researchers to estimate the rate of drug delivery to a particular tissue. In this review we present the biology and modes of action of AMPs for both anticancer and antimicrobial activities as well as some modification strategies to improve the efficacy and selectivity of these AMPs.
Collapse
Affiliation(s)
- Atefeh Parchebafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Tamanaee
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Ehteram
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ejaz Ahmad
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
9
|
Chu T, Dai C, Li X, Gao L, Yin H, Ge J. Extravascular rapamycin film inhibits the endothelial-to-mesenchymal transition through the autophagy pathway to prevent vein graft restenosis. BIOMATERIALS ADVANCES 2022; 137:212836. [PMID: 35929241 DOI: 10.1016/j.bioadv.2022.212836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/17/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Following vein grafting, the vein must adapt to arterial hemodynamics, which can lead to intimal hyperplasia (IH) and restenosis. Moreover, endothelial-to-mesenchymal transition (EndMT) components are highly associated with IH. Therefore, in this study, we aimed to design an extravascular film loaded with rapamycin (extravascular rapamycin film [ERF]) to limit vein graft stenosis. The film exhibited stable physicochemical properties as well as in vivo and in vitro biocompatibility. In vivo, the film inhibited the EndMT by activating the autophagy pathway. Moreover, rapamycin enhanced this biological effect. Collectively, these findings highlighted the applicability of ERF as a new therapeutic target for preventing vein graft restenosis.
Collapse
Affiliation(s)
- Tianshu Chu
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chun Dai
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiang Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lei Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Hongyan Yin
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Jianjun Ge
- Department of Cardiac Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
10
|
Munir M, Kett VL, Dunne NJ, McCarthy HO. Development of a Spray-Dried Formulation of Peptide-DNA Nanoparticles into a Dry Powder for Pulmonary Delivery Using Factorial Design. Pharm Res 2022; 39:1215-1232. [PMID: 35441318 PMCID: PMC9197895 DOI: 10.1007/s11095-022-03256-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gene therapy via pulmonary delivery holds the potential to treat various lung pathologies. To date, spray drying has been the most promising method to produce inhalable powders. The present study determined the parameters required to spray dry nanoparticles (NPs) that contain the delivery peptide, termed RALA (N-WEARLARALARALARHLARALARALRACEA-C), complexed with plasmid DNA into a dry powder form designed for inhalation. METHODS The spray drying process was optimised using full factorial design with 19 randomly ordered experiments based on the combination of four parameters and three centre points per block. Specifically, mannitol concentration, inlet temperature, spray rate, and spray frequency were varied to observe their effects on process yield, moisture content, a median of particle size distribution, Z-average, zeta potential, encapsulation efficiency of DNA NPs, and DNA recovery. The impact of mannitol concentration was also examined on the spray-dried NPs and evaluated via biological functionality in vitro. RESULTS The results demonstrated that mannitol concentration was the strongest variable impacting all responses apart from encapsulation efficiency. All measured responses demonstrated a strong dependency on the experimental variables. Furthermore, spray drying with the optimal variables in combination with a low mannitol concentration (1% and 3%, w/v) produced functional RALA/pDNA NPs. CONCLUSION The optimal parameters have been determined to spray dry RALA/pDNA NPs into an dry powder with excellent biological functionality, which have the potential to be used for gene therapy applications via pulmonary delivery.
Collapse
Affiliation(s)
- Miftakul Munir
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Research and Technology Center for Radioisotope and Radiopharmaceutical, National Research and Innovation Agency, South Tangerang, Indonesia
| | - Vicky L Kett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
11
|
Sharma G, Khanna G, Sharma P, Deol PK, Kaur IP. Mechanistic Role of Probiotics in Improving Skin Health. PROBIOTIC RESEARCH IN THERAPEUTICS 2022:27-47. [DOI: 10.1007/978-981-16-5628-6_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
12
|
Chen SY, Xu XX, Li X, Yi NB, Li SZ, Xiang XC, Cheng DB, Sun T. Recent advances in the intracellular delivery of macromolecule therapeutics. Biomater Sci 2022; 10:6642-6655. [DOI: 10.1039/d2bm01348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the uptake pathway of intracellular delivery vehicles for macromolecule therapeutics, and provides in-depth discussions and prospects about intracellular delivery of macromolecule therapeutics.
Collapse
Affiliation(s)
- Si-Yi Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xiao-Xue Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Ning-Bo Yi
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Shi-Zhuo Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xing-Cheng Xiang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
13
|
Spray drying: Inhalable powders for pulmonary gene therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112601. [DOI: 10.1016/j.msec.2021.112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
|
14
|
de Oliveira RS, Fantaus SS, Guillot AJ, Melero A, Beck RCR. 3D-Printed Products for Topical Skin Applications: From Personalized Dressings to Drug Delivery. Pharmaceutics 2021; 13:1946. [PMID: 34834360 PMCID: PMC8625283 DOI: 10.3390/pharmaceutics13111946] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023] Open
Abstract
3D printing has been widely used for the personalization of therapies and on-demand production of complex pharmaceutical forms. Recently, 3D printing has been explored as a tool for the development of topical dosage forms and wound dressings. Thus, this review aims to present advances related to the use of 3D printing for the development of pharmaceutical and biomedical products for topical skin applications, covering plain dressing and products for the delivery of active ingredients to the skin. Based on the data acquired, the important growth in the number of publications over the last years confirms its interest. The semisolid extrusion technique has been the most reported one, probably because it allows the use of a broad range of polymers, creating the most diverse therapeutic approaches. 3D printing has been an excellent field for customizing dressings, according to individual needs. Studies discussed here imply the use of metals, nanoparticles, drugs, natural compounds and proteins and peptides for the treatment of wound healing, acne, pain relief, and anti-wrinkle, among others. The confluence of 3D printing and topical applications has undeniable advantages, and we would like to encourage the research groups to explore this field to improve the patient's life quality, adherence and treatment efficacy.
Collapse
Affiliation(s)
- Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Stephani Silva Fantaus
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| | - Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy, University of Valencia, Avenida Vicente Andres Estelles SN, 46100 Burjassot, Spain;
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
- Departamento de Produção e Controle de Medicamentos, Universidade Federal do Rio Grande do Sul. Avenida Ipiranga, 2752, Porto Alegre 90610-000, Brazil;
| |
Collapse
|
15
|
Sharma G, Sharma M, Sood R, Neelamraju J, Lakshmi SG, Madempudi RS, Rishi P, Kaur IP. Self-preserving gelatin emulgel containing whole cell probiotic for topical use: preclinical safety, efficacy, and germination studies. Expert Opin Drug Deliv 2021; 18:1777-1789. [PMID: 34176401 DOI: 10.1080/17425247.2021.1947239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Dermal disorders, owing to disruption of skin-microflora balance can be served by direct application of probiotics. However, there are few topical whole probiotic products in market because of (i) loss of viability during manufacturing and storage(ii) inadequate germination and retention on skin. Presently we report a novel (IPA 201811010395) emulgel incorporatingBacillus coagulans (Unique IS-2) for possible topical use. METHODS Developed emulgel was characterized for particle size, texture, rheology, morphology, water activity, self-preservation, safety, and stability. RESULTS We successfully incorporated 97 ± 5% (1.7×108CFU/g) Bacillus coagulans in honeycomb network of gelatin nanoparticles (≈600 nm). Maintenance of CFU at 30 ± 2°C, 65 ± 5% RH for 3 months confirmed viability of incorporated probiotic. Low water-activity (0.66-0.732aw) and challenge test (0.05-0.5% viability) confirmed its self-preserving nature. Early initiation (6 h) and complete (24 h) spore germination was evident onrabbit skin. No cytotoxicity, dermal irritation or translocation established its safety. Faster wound closure and reduced oxidative stress (LPO, catalase, SOD, glutathione reductase) in comparison to Soframycin® (1%w/w Framycetin) was observed in excision wound in mice. CONCLUSIONS A whole cell probiotic formulation that is self-preserving, maintains probiotic viability, guarantees germination, and has wound healing properties was successfully formulated.
Collapse
Affiliation(s)
- Garima Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Manuhaar Sharma
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Rishav Sood
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | | | | | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
16
|
Guo JW, Jee SH. Strategies to Develop a Suitable Formulation for Inflammatory Skin Disease Treatment. Int J Mol Sci 2021; 22:ijms22116078. [PMID: 34199951 PMCID: PMC8200229 DOI: 10.3390/ijms22116078] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 12/16/2022] Open
Abstract
Skin barrier functions, environmental insults, and genetic backgrounds are intricately linked and form the basis of common inflammatory skin disorders, such as atopic dermatitis, psoriasis, and seborrheic dermatitis, which may seriously affect one’s quality of life. Topical therapy is usually the first line of management. It is believed that successful topical treatment requires pharmaceutical formulation from a sufficient dosage to exert therapeutic effects by penetrating the stratum corneum and then diffusing to the target area. However, many factors can affect this process including the physicochemical properties of the active compound, the composition of the formulation base, and the limitations and conditions of the skin barrier, especially in inflammatory skin. This article briefly reviews the available data on these issues and provides opinions on strategies to develop a suitable formulation for inflammatory skin disease treatment.
Collapse
Affiliation(s)
- Jiun-Wen Guo
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan
- Program in Pharmaceutical Biotechnology, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence: ; Tel.: +886-2864-61500 (ext. 2327)
| | - Shiou-Hwa Jee
- Department of Dermatology, Cathay General Hospital, Taipei 10630, Taiwan;
- Department of Dermatology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
17
|
Işık D, Joshi AA, Guo X, Rancan F, Klossek A, Vogt A, Rühl E, Hedtrich S, Klinger D. Sulfoxide-functionalized nanogels inspired by the skin penetration properties of DMSO. Biomater Sci 2021; 9:712-725. [PMID: 33285562 DOI: 10.1039/d0bm01717e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Among polymeric nanocarriers, nanogels are especially promising non-irritating delivery vehicles to increase dermal bioavailability of therapeutics. However, accurately tailoring defined interactions with the amphiphilic skin barrier is still challenging. To address this limited specificity, we herein present a new strategy to combine biocompatible nanogels with the outstanding skin interaction properties of sulfoxide moieties. These chemical motifs are known from dimethyl sulfoxide (DMSO), a potent chemical penetration enhancer, which can often cause undesired skin damage upon long-term usage. By covalently functionalizing the nanogels' polymer network with such methyl sulfoxide side groups, tailor-made dermal delivery vehicles are developed to circumvent the skin disrupting properties of the small molecules. Key to an effective nanogel-skin interaction is assumed to be the specific nanogel amphiphilicity. This is examined by comparing the delivery efficiency of sulfoxide-based nanogels (NG-SOMe) with their corresponding thioether (NG-SMe) and sulfone-functionalized (NG-SO2Me) analogues. We demonstrate that the amphiphilic sulfoxide-based NG-SOMe nanogels are superior in their interaction with the likewise amphipathic stratum corneum (SC) showing an increased topical delivery efficacy of Nile red (NR) to the viable epidermis (VE) of excised human skin. In addition, toxicological studies on keratinocytes and fibroblasts show good biocompatibility while no perturbation of the complex protein and lipid distribution is observed via stimulated Raman microscopy. Thus, our NG-SOMe nanogels show high potential to effectively emulate the skin penetration enhancing properties of DMSO without its negative side effects.
Collapse
Affiliation(s)
- Doğuş Işık
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Aaroh Anand Joshi
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| | - Xiao Guo
- Clinical Research Center of Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center of Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - André Klossek
- Physical Chemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Annika Vogt
- Clinical Research Center of Hair and Skin Science, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Eckart Rühl
- Physical Chemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Sarah Hedtrich
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany. and The University of British Columbia, Faculty of Pharmaceutical Sciences, 2405 Wesbrook Mall, Vancouver, V6T1Z3, BC, Canada
| | - Daniel Klinger
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2-4, 14195 Berlin, Germany.
| |
Collapse
|
18
|
Rockinger U, Müller C, Bracher F, Funk M, Winter G. DMSO as new, counterintuitive excipient for freeze-drying human keratinocytes. Eur J Pharm Sci 2021; 160:105746. [PMID: 33561511 DOI: 10.1016/j.ejps.2021.105746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
DMSO is widely used as powerful cryoprotectant for the storage and transport of frozen cells. Beyond this established application of DMSO, we could now show that it has also promising lyoprotectant effects in the field of lyophilisation of therapeutic cells. Freeze-drying of HaCaT keratinocytes in 10% HES, 5% HE and in presence of DMSO led to an increase in cell membrane integrity from 25.3 ± 2.7 % without DMSO to 41.4 ± 4.3 % with 2% DMSO, as determined by trypan blue exclusion. Interruption of the lyophilisation cycle at different sampling points showed a rapid decrease of cell membrane integrity below a critical residual moisture content. DMSO was able to stabilise cell membranes below this moisture level up to a final residual moisture content of less than 1%. Furthermore, DMSO increased the total protein content of cells after freeze-drying and subsequent SDS PAGE analysis indicated that certain abundant proteins were better preserved with the use of DMSO. Owed to its low vapour pressure, a significant part of DMSO is not removed during freeze-drying and remains as plasticiser in the lyophilised cake. However, a Tg above 60°C for 2% DMSO indicates that samples can still be stored at temperatures of 2-8°C. Also, no macroscopic or microscopic collapse can be observed by SEM or BET measurements and DMSO addition leads even to more elegant cakes with reduced cake cracking. With a better preservation of cell membranes and cellular structures, DMSO can contribute to the still unsolved problem of freeze-drying cells of higher complexity.
Collapse
Affiliation(s)
- Ute Rockinger
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| | - Christoph Müller
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, Munich, Germany
| | - Franz Bracher
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, Munich, Germany
| | - Martin Funk
- QRSKIN GmbH, Friedrich-Bergius-Ring 15, Würzburg, Germany
| | - Gerhard Winter
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| |
Collapse
|
19
|
Bianchi E, Ruggeri M, Rossi S, Vigani B, Miele D, Bonferoni MC, Sandri G, Ferrari F. Innovative Strategies in Tendon Tissue Engineering. Pharmaceutics 2021; 13:89. [PMID: 33440840 PMCID: PMC7827834 DOI: 10.3390/pharmaceutics13010089] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 12/15/2022] Open
Abstract
The tendon is a highly aligned connective tissue that transmits force from muscle to bone. Each year, more than 32 million tendon injuries have been reported, in fact, tendinopathies represent at least 50% of all sports injuries, and their incidence rates have increased in recent decades due to the aging population. Current clinical grafts used in tendon treatment are subject to several restrictions and there is a significant demand for alternative engineered tissue. For this reason, innovative strategies need to be explored. Tendon replacement and regeneration are complex since scaffolds need to guarantee an adequate hierarchical structured morphology and mechanical properties to stand the load. Moreover, to guide cell proliferation and growth, scaffolds should provide a fibrous network that mimics the collagen arrangement of the extracellular matrix in the tendons. This review focuses on tendon repair and regeneration. Particular attention has been devoted to the innovative approaches in tissue engineering. Advanced manufacturing techniques, such as electrospinning, soft lithography, and three-dimensional (3D) printing, have been described. Furthermore, biological augmentation has been considered, as an emerging strategy with great therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (E.B.); (M.R.); (S.R.); (B.V.); (D.M.); (M.C.B.); (F.F.)
| | | |
Collapse
|
20
|
Jiang Y, Dong S, Qin G, Liu L, Zhao H. Oxidation and ATP dual-responsive block copolymer containing tertiary sulfoniums: self-assembly, protein complexation and triggered release. Polym Chem 2021. [DOI: 10.1039/d0py01622e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alkylation of thioether-containing block copolymer simultaneously incorporated sulfoniums and phenylboronic acid moieties. The co-assembly of this cationic polymer and protein generated micelles with an H2O2-and ATP-responsive release profile.
Collapse
Affiliation(s)
- Yanfen Jiang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Shuqi Dong
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Guoyang Qin
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| |
Collapse
|
21
|
Ren J, Jiang F, Wang M, Hu H, Zhang B, Chen L, Dai F. Increased cross-linking micelle retention in the brain of Alzheimer's disease mice by elevated asparagine endopeptidase protease responsive aggregation. Biomater Sci 2020; 8:6533-6544. [PMID: 33111725 DOI: 10.1039/d0bm01439g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Current forms of medication for Alzheimer's disease (AD) provide a symptomatic benefit limited to those with early onset, but there is no single drug available for later stage patients. Given the recent failures of AD drugs in clinical trials, an intensive treatment strategy based on drug combination that is approved is attractive. At present, the greatest difficulty lies in the low accumulation of drugs in the brain. All hydrophilic drugs are limited by the physical and biochemical barriers within the blood-brain barrier and lipophilic drugs are often transported back into the blood by efflux pumps located in the blood-brain barrier. Here, we select elevated asparagine endopeptidase (AEP) as a target to trigger in situ cross-linking of small sized particles to form large sized drug clusters to block the efflux of the brain. Subsequently, responsive cross-linking micelles (RCMs) loaded with the acetylcholinesterase inhibitor, donepezil (DON), the microtubule therapeutic agent, Paclitaxel (PTX), and the glucose metabolism disorder regulator, insulin (INS) are investigated, with a focus on high levels of drug accumulation in the brain in AD. These smart multi-drug delivery RCMs provide a powerful system for AD treatment and can be adapted for other central nervous system (CNS) disorders.
Collapse
Affiliation(s)
- Jian Ren
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang B, Li Q, Jia S, Li F, Li Q, Li J. LincRNA-EPS in biomimetic vesicles targeting cerebral infarction promotes inflammatory resolution and neurogenesis. J Transl Med 2020; 18:110. [PMID: 32122362 PMCID: PMC7052981 DOI: 10.1186/s12967-020-02278-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/21/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Inflammatory damage following stroke aggravates brain damage, resulting in long-term neurological sequelae. The purpose of this study was to identify ways to reduce inflammatory reactions and to accelerate neuron regeneration after cerebral apoplexy. METHODS We formulated a biomimetic vesicle, the leukosome, constituted by liposome, artificial long intergenic noncoding RNA (lincRNA)-EPS, and membrane proteins derived from macrophages and their physical-chemical characteristics were evaluated. Migration distance and cytotoxic levels were measured to determine the effect of lncEPS-leukosomes on lipopolysaccharide-activated microglia. An in vivo transient middle cerebral artery occlusion/reperfusion (tMCAO) model was established in mice, which were treated with lncEPS-leukosomes. Vesicle seepage, infiltration of inflammatory cells, cytotoxic levels in the cerebrospinal fluid, and neural stem cell (NSC) density were measured. RESULTS Biomimetic vesicles with a homogeneous size increased lincRNA-EPS levels in activated microglia by 77.9%. In vitro studies showed that lincRNA-EPS inhibited the migration and cytotoxic levels of activated microglia by 63.2% and 43.6%, respectively, which promoted NSC proliferation and anti-apoptotic ability. In vivo data showed that leukosomes targeted to inflamed sites and lncEPS-leukosomes decreased the infiltration of inflammatory cells and cytotoxic levels by 81.3% and 48.7%, respectively. In addition, lncEPS-leukosomes improved neuron density in the ischemic core and boundary zone after tMCAO. CONCLUSIONS The biomimetic vesicles formulated in this study targeted inflammatory cells and accelerated neuron regeneration by promoting inflammation resolution. This study may provide a promising treatment approach for accelerated neuron regeneration after cerebral apoplexy.
Collapse
Affiliation(s)
- Benping Zhang
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Qian Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Shuwei Jia
- Department of Physiology, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Feng Li
- Department of Neurology, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Qingsong Li
- Departments of Neurosurgery, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Jiebing Li
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150086, Heilongjiang, People's Republic of China.
| |
Collapse
|
23
|
Martins C, Chauhan VM, Selo AA, Al-Natour M, Aylott JW, Sarmento B. Modelling protein therapeutic co-formulation and co-delivery with PLGA nanoparticles continuously manufactured by microfluidics. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00395a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Formulating protein therapeutics into nanoparticles (NPs) of poly(lactic-co-glycolic acid) (PLGA) provides key features such as protection against clearance, sustained release and less side effects by possible attachment of targeting ligands.
Collapse
Affiliation(s)
- Cláudia Martins
- i3S – Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- 4200-393 Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| | - Veeren M. Chauhan
- School of Pharmacy
- Boots Science Building
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | - Amjad A. Selo
- School of Pharmacy
- Boots Science Building
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | - Mohammad Al-Natour
- School of Pharmacy
- Boots Science Building
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | - Jonathan W. Aylott
- School of Pharmacy
- Boots Science Building
- University of Nottingham
- NG7 2RD Nottingham
- UK
| | - Bruno Sarmento
- i3S – Instituto de Investigação e Inovação em Saúde
- Universidade do Porto
- 4200-393 Porto
- Portugal
- INEB – Instituto de Engenharia Biomédica
| |
Collapse
|
24
|
Ayata N, Sezer AD, Bucak S, Turanlı ET. Preparation and in vitro characterization of monoclonal antibody ranibizumab conjugated magnetic nanoparticles for ocular drug delivery. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902020000118171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
25
|
Lee JJ, Han YM, Kwon TW, Kim DH, Lee HS, Jung WJ, Kim J, Kang S, Kim SK, Cho CW, Lee KR, Kim DD, Park MC, Lee JY. Functional Fragments of AIMP1-Derived Peptide (AdP) and Optimized Hydrosol for Their Topical Deposition by Box-Behnken Design. Molecules 2019; 24:molecules24101967. [PMID: 31121831 PMCID: PMC6572189 DOI: 10.3390/molecules24101967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 11/16/2022] Open
Abstract
Aminoacyl-tRNA synthetase complex-interacting multifunctional protein 1 (AIMP1)-derived peptide (AdP) has been developed as a cosmeceutical ingredient for skin anti-aging given its fibroblast-activating (FA) and melanocyte-inhibiting (MI) functions. However, a suitable strategy for the topical delivery of AdP was required due to its low-permeable properties. In this study, FA and MI domains of AdP (FA-AdP and MI-AdP, respectively) were determined by functional domain mapping, where the activities of several fragments of AdP on fibroblast and melanocyte were tested, and a hydrosol-based topical delivery system for these AdP fragments was prepared. The excipient composition of the hydrosol was optimized to maximize the viscosity and drying rate by using Box-Behnken design. The artificial skin deposition of FA-AdP-loaded hydrosol was evaluated using Keshary-Chien diffusion cells equipped with Strat-M membrane (STM). The quantification of the fluorescent dye-tagged FA-AdP in STM was carried out by near-infrared fluorescence imaging. The optimized hydrosol showed 127-fold higher peptide deposition in STM than free FA-AdP (p < 0.05). This work suggests that FA- and MI-AdP are active-domains for anti-wrinkle and whitening activities, respectively, and the hydrosol could be used as a promising cosmetic formulation for the delivery of AdPs to the skin.
Collapse
Affiliation(s)
- Jeong-Jun Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Young-Min Han
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Tae-Wan Kwon
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Dong Hyun Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Han Sol Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Woo Jin Jung
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Jina Kim
- CureBio Research Center, Suwon 16229, Korea.
| | - Sujin Kang
- CureBio Research Center, Suwon 16229, Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Cheong-Weon Cho
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Keong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | | | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
26
|
Leonida M, Belbekhouche S, Adams F, Bijja UK, Choudhary DA, Kumar I. Enzyme nanovehicles: Histaminase and catalase delivered in nanoparticulate chitosan. Int J Pharm 2019; 557:145-153. [DOI: 10.1016/j.ijpharm.2018.12.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 11/28/2022]
|
27
|
Ferrari E. A plug and play approach for the decoration of nanoparticles with recombinant proteins. Nanomedicine (Lond) 2018; 13:2547-2550. [PMID: 30284513 DOI: 10.2217/nnm-2018-0261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Enrico Ferrari
- College of Science, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK
| |
Collapse
|
28
|
Wu W, Luo L, Wang Y, Wu Q, Dai HB, Li JS, Durkan C, Wang N, Wang GX. Endogenous pH-responsive nanoparticles with programmable size changes for targeted tumor therapy and imaging applications. Theranostics 2018; 8:3038-3058. [PMID: 29896301 PMCID: PMC5996358 DOI: 10.7150/thno.23459] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Li Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Yi Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Qi Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Han-Bin Dai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Jian-Shu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, CB3 0FF, UK
| | - Gui-Xue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
29
|
Acar H, Ting JM, Srivastava S, LaBelle JL, Tirrell MV. Molecular engineering solutions for therapeutic peptide delivery. Chem Soc Rev 2018; 46:6553-6569. [PMID: 28902203 DOI: 10.1039/c7cs00536a] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins and their interactions in and out of cells must be well-orchestrated for the healthy functioning and regulation of the body. Even the slightest disharmony can cause diseases. Therapeutic peptides are short amino acid sequences (generally considered <50 amino acids) that can naturally mimic the binding interfaces between proteins and thus, influence protein-protein interactions. Because of their fidelity of binding, peptides are a promising next generation of personalized medicines to reinstate biological harmony. Peptides as a group are highly selective, relatively safe, and biocompatible. However, they are also vulnerable to many in vivo pharmacologic barriers limiting their clinical translation. Current advances in molecular, chemical, and nanoparticle engineering are helping to overcome these previously insurmountable obstacles and improve the future of peptides as active and highly selective therapeutics. In this review, we focus on self-assembled vehicles as nanoparticles to carry and protect therapeutic peptides through this journey, and deliver them to the desired tissue.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| | | | | | | | | |
Collapse
|
30
|
Abstract
TopicalPdb (http://crdd.osdd.net/raghava/topicalpdb/) is a repository of experimentally verified topically delivered peptides. Data was manually collected from research articles. The current release of TopicalPdb consists of 657 entries, which includes peptides delivered through the skin (462 entries), eye (173 entries), and nose (22 entries). Each entry provides comprehensive information related to these peptides like the source of origin, nature of peptide, length, N- and C-terminal modifications, mechanism of penetration, type of assays, cargo and biological properties of peptides, etc. In addition to natural peptides, TopicalPdb contains information of peptides having non-natural, chemically modified residues and D-amino acids. Besides this primary information, TopicalPdb stores predicted tertiary structures as well as peptide sequences in SMILE format. Tertiary structures of peptides were predicted using state-of-art method PEPstrMod. In order to assist users, a number of web-based tools have been integrated that includes keyword search, data browsing, similarity search and structural similarity. We believe that TopicalPdb is a unique database of its kind and it will be very useful in designing peptides for non-invasive topical delivery.
Collapse
|
31
|
Chaulagain B, Jain A, Tiwari A, Verma A, Jain SK. Passive delivery of protein drugs through transdermal route. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:472-487. [PMID: 29378433 DOI: 10.1080/21691401.2018.1430695] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Skin is the largest external organ in the human body but its use for therapeutic purposes has been minimal. Stratum corneum residing on the uppermost layer of the skin provides a tough barrier to transport the drugs across the skin. Very small group of drugs sharing Lipinski properties, i.e. drugs having molecular weight not larger than 500 Da, having high lipophilicity and optimum polarity are fortunate enough to be used on skin therapeutics. But, at a time where modern therapeutics is slowly shifting from use of small molecular drugs towards the use of macromolecular therapeutic agents such as peptides, proteins and nucleotides in origin, skin therapeutics need to be evolved accordingly to cater the delivery of these agents. Physical technologies like iontophoresis, laser ablation, micro-needles and ultrasound, etc. have been introduced to enhance skin permeability. But their success is limited due to their complex working mechanisms and involvement of certain irreversible skin damage in some or other way. This review therefore explores the delivery strategies for transport of mainly peptide and protein drugs that do not involve any injuries (non-invasive) to the skin termed as passive delivery techniques. Chemical enhancers, nanocarriers, certain biological peptides and miscellaneous approaches like prodrugs are also thoroughly reviewed for their applications in protein delivery.
Collapse
Affiliation(s)
- Bivek Chaulagain
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| | - Ankit Jain
- b Institute of Pharmaceutical Research, GLA University , Mathura , India
| | - Ankita Tiwari
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| | - Amit Verma
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| | - Sanjay K Jain
- a Department of Pharmaceutical Sciences, Pharmaceutics Research Projects Laboratory , Dr. Hari Singh Gour Central University , Sagar , India
| |
Collapse
|
32
|
Ji S, Thulstrup PW, Mu H, Hansen SH, van de Weert M, Rantanen J, Yang M. Investigation of factors affecting the stability of lysozyme spray dried from ethanol-water solutions. Int J Pharm 2017; 534:263-271. [DOI: 10.1016/j.ijpharm.2017.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/07/2017] [Accepted: 10/10/2017] [Indexed: 12/24/2022]
|
33
|
Xie F, Ding RL, He WF, Liu ZJL, Fu SZ, Wu JB, Yang LL, Lin S, Wen QL. In vivo antitumor effect of endostatin-loaded chitosan nanoparticles combined with paclitaxel on Lewis lung carcinoma. Drug Deliv 2017; 24:1410-1418. [PMID: 28933203 PMCID: PMC8241112 DOI: 10.1080/10717544.2017.1378938] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 11/11/2022] Open
Abstract
The purpose of this study was to prepare endostatin-loaded chitosan nanoparticles (ES-NPs) and evaluate their antitumor effect when combined with paclitaxel (PTX) on Lewis lung carcinoma (LLC) mouse xenografts. ES-NPs were prepared by ionic cross-linking. Characterization of the ES-NPs included size distribution, drug-loading efficiency (DL), and encapsulation efficiency (EE). An in vitro release test was also used to determine the release behavior of the ES-NPs. A subcutaneous LC xenograft model of C57BL/6J mice was established. The mice were randomly divided into six groups: control (0.9% NaCl), ES, PTX, ES-NPs, ES + PTX, and ES-NPs + PTX. The tumor volume was dynamically measured for the duration of the experiment. Immunohistochemistry was performed to determine the Ki-67 and microvascular density (MVD) in each group. Serum vascular endothelial growth factor (VEGF) and ES levels were determined by enzyme-linked immunosorbent assay (ELISA). ES-NPs were successfully synthesized and had suitable size distribution and high EE. The NPs were homogenously spherical and exhibited an ideal release profile in vitro. In vivo, tumor growth was significantly inhibited in the ES-NPs + PTX group. The tumor inhibitory rate was significantly higher in the ES-NPs + PTX group than in the other groups (p < .05). The results of the immunohistochemical assay and ELISA confirmed that ES-NPs combined with PTX had a strong antiangiogenic effect. ES-NPs can overcome the shortcomings of free ES, such as short retention time in circulation, which enhances the antitumor effect of ES. The antitumor effect was more pronounced when treatment included PTX and ES-loaded NPs.
Collapse
Affiliation(s)
- Fang Xie
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui-Lin Ding
- Experiment and Training Center, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, China
| | - Wen-Feng He
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zong-Jun-Lin Liu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Shao-Zhi Fu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing-Bo Wu
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ling-Lin Yang
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Sheng Lin
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Qing-Lian Wen
- Department of Oncology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
34
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017; 6. [PMID: 28892296 DOI: 10.1002/adhm.201700258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Approaches to increase the efficiency in developing drugs and diagnostics tools, including new drug delivery and diagnostic technologies, are needed for improved diagnosis and treatment of major diseases and health problems such as cancer, inflammatory diseases, chronic wounds, and antibiotic resistance. Development within several areas of research ranging from computational sciences, material sciences, bioengineering to biomedical sciences and bioimaging is needed to realize innovative drug development and diagnostic (DDD) approaches. Here, an overview of recent progresses within key areas that can provide customizable solutions to improve processes and the approaches taken within DDD is provided. Due to the broadness of the area, unfortunately all relevant aspects such as pharmacokinetics of bioactive molecules and delivery systems cannot be covered. Tailored approaches within (i) bioinformatics and computer-aided drug design, (ii) nanotechnology, (iii) novel materials and technologies for drug delivery and diagnostic systems, and (iv) disease models to predict safety and efficacy of medicines under development are focused on. Current developments and challenges ahead are discussed. The broad scope reflects the multidisciplinary nature of the field of DDD and aims to highlight the convergence of biological, pharmaceutical, and medical disciplines needed to meet the societal challenges of the 21st century.
Collapse
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
35
|
Sahlgren C, Meinander A, Zhang H, Cheng F, Preis M, Xu C, Salminen TA, Toivola D, Abankwa D, Rosling A, Karaman DŞ, Salo-Ahen OMH, Österbacka R, Eriksson JE, Willför S, Petre I, Peltonen J, Leino R, Johnson M, Rosenholm J, Sandler N. Tailored Approaches in Drug Development and Diagnostics: From Molecular Design to Biological Model Systems. Adv Healthc Mater 2017. [DOI: 10.1002/adhm.201700258 10.1002/adhm.201700258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Cecilia Sahlgren
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Annika Meinander
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Hongbo Zhang
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Fang Cheng
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
| | - Maren Preis
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Chunlin Xu
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Tiina A. Salminen
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Diana Toivola
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Center for Disease Modeling; University of Turku; FI-20520 Turku Finland
| | - Daniel Abankwa
- Department of Biomedical Engineering; Technical University of Eindhoven; 5613 DR Eindhoven Netherlands
| | - Ari Rosling
- Faculty of Science and Engineering; Polymer Technologies; Åbo Akademi University; FI-20500 Turku Finland
| | - Didem Şen Karaman
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Outi M. H. Salo-Ahen
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Ronald Österbacka
- Faculty of Science and Engineering; Physics; Åbo Akademi University; FI-20500 Turku Finland
| | - John E. Eriksson
- Faculty of Science and Engineering; Cell Biology; Åbo Akademi University; FI-20520 Turku Finland
- Turku Centre for Biotechnology; Åbo Akademi University and University of Turku; FI-20520 Turku Finland
| | - Stefan Willför
- Faculty of Science and Engineering; Natural Materials Technology; Åbo Akademi University; FI-20500 Turku Finland
| | - Ion Petre
- Faculty of Science and Engineering; Computer Science; Åbo Akademi University; FI-20500 Turku Finland
| | - Jouko Peltonen
- Faculty of Science and Engineering; Physical Chemistry; Åbo Akademi University; FI-20500 Turku Finland
| | - Reko Leino
- Faculty of Science and Engineering; Organic Chemistry; Johan Gadolin Process Chemistry Centre; Åbo Akademi University; FI-20500 Turku Finland
| | - Mark Johnson
- Faculty of Science and Engineering; Structural Bioinformatics Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Jessica Rosenholm
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| | - Niklas Sandler
- Faculty of Science and Engineering; Pharmaceutical Sciences Laboratory; Åbo Akademi University; FI-20520 Turku Finland
| |
Collapse
|
36
|
Wang Z, Wen F, Lim PN, Zhang Q, Konishi T, Wang D, Teoh SH, Thian ES. Nanomaterial scaffolds to regenerate musculoskeletal tissue: signals from within for neovessel formation. Drug Discov Today 2017; 22:1385-1391. [DOI: 10.1016/j.drudis.2017.03.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/20/2017] [Accepted: 03/20/2017] [Indexed: 01/13/2023]
|
37
|
Zhang M, Liu E, Cui Y, Huang Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med 2017; 14:212-227. [PMID: 28884039 PMCID: PMC5570599 DOI: 10.20892/j.issn.2095-3941.2017.0054] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 12/28/2022] Open
Abstract
Multidrug resistance (MDR) is a major obstacle to successful cancer treatment and is crucial to cancer metastasis and relapse. Combination therapy is an effective strategy for overcoming MDR. However, the different pharmacokinetic (PK) profiles of combined drugs often undermine the combination effect in vivo, especially when greatly different physicochemical properties (e.g., those of macromolecules and small drugs) combine. To address this issue, nanotechnology-based codelivery techniques have been actively explored. They possess great advantages for tumor targeting, controlled drug release, and identical drug PK profiles. Thus, a powerful tool for combination therapy is provided, and the translation from in vitro to in vivo is facilitated. In this review, we present a summary of various combination strategies for overcoming MDR and the nanotechnology-based combination therapy.
Collapse
Affiliation(s)
- Meng Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ergang Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanna Cui
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Obst K, Yealland G, Balzus B, Miceli E, Dimde M, Weise C, Eravci M, Bodmeier R, Haag R, Calderón M, Charbaji N, Hedtrich S. Protein Corona Formation on Colloidal Polymeric Nanoparticles and Polymeric Nanogels: Impact on Cellular Uptake, Toxicity, Immunogenicity, and Drug Release Properties. Biomacromolecules 2017; 18:1762-1771. [DOI: 10.1021/acs.biomac.7b00158] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Katja Obst
- Institute
for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow, Germany
| | - Guy Yealland
- Institute
for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - Benjamin Balzus
- Institute
for Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Enrico Miceli
- Institute
for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow, Germany
| | - Mathias Dimde
- Institute
for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Christoph Weise
- Institute
for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Murat Eravci
- Institute
for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Roland Bodmeier
- Institute
for Pharmacy, Freie Universität Berlin, Kelchstr. 31, 12169 Berlin, Germany
| | - Rainer Haag
- Institute
for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow, Germany
| | - Marcelo Calderón
- Institute
for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow, Germany
| | - Nada Charbaji
- Institute
for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow, Germany
| | - Sarah Hedtrich
- Institute
for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
- Multifunctional
Biomaterials for Medicine, Helmholtz Virtual Institute, Kantstr. 55, 14513 Teltow, Germany
| |
Collapse
|
39
|
Haidari H, Zhang Q, Melville E, Kopecki Z, Song Y, Cowin AJ, Garg S. Development of Topical Delivery Systems for Flightless Neutralizing Antibody. J Pharm Sci 2017; 106:1795-1804. [PMID: 28336300 DOI: 10.1016/j.xphs.2017.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/10/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
Abstract
Flightless I (Flii) is an actin remodeling protein important for cytoskeletal regulation and cellular processes including migration, proliferation, and adhesion. Previous studies have clearly identified Flii as a novel therapeutical target for improved wound repair and have demonstrated Flii regulation using Flii neutralizing antibodies (FnAb) in different models of wound healing in vivo. Here we describe the development of an optimized topical delivery system that can neutralize Flii activity in the epidermis. Topical delivery of FnAb is an attractive approach as it provides a convenient application, sustained release, localized effect, and reduced dosage. Three successful formulations were developed, and their physical and chemical stability examined. The in vitro release revealed prolonged and sustained release of FnAb in all the tested formulations. Additionally, penetration studies using intact porcine skin showed that FnAb penetrated the epidermis and upper papillary dermis. The penetrated FnAb significantly reduced Flii expression compared to dosed matched IgG controls. This study has successfully developed a topical delivery system for FnAb that could serve as a potential platform for future localized wound treatments.
Collapse
Affiliation(s)
- Hanif Haidari
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Qian Zhang
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Elizabeth Melville
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Yunmei Song
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Sanjay Garg
- Centre for Pharmaceutical Innovation and Development, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5000, Australia.
| |
Collapse
|
40
|
Hanold LE, Fulton MD, Kennedy EJ. Targeting kinase signaling pathways with constrained peptide scaffolds. Pharmacol Ther 2017; 173:159-170. [PMID: 28185915 DOI: 10.1016/j.pharmthera.2017.02.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kinases are amongst the largest families in the human proteome and serve as critical mediators of a myriad of cell signaling pathways. Since altered kinase activity is implicated in a variety of pathological diseases, kinases have become a prominent class of proteins for targeted inhibition. Although numerous small molecule and antibody-based inhibitors have already received clinical approval, several challenges may still exist with these strategies including resistance, target selection, inhibitor potency and in vivo activity profiles. Constrained peptide inhibitors have emerged as an alternative strategy for kinase inhibition. Distinct from small molecule inhibitors, peptides can provide a large binding surface area that allows them to bind shallow protein surfaces rather than defined pockets within the target protein structure. By including chemical constraints within the peptide sequence, additional benefits can be bestowed onto the peptide scaffold such as improved target affinity and target selectivity, cell permeability and proteolytic resistance. In this review, we highlight examples of diverse chemistries that are being employed to constrain kinase-targeting peptide scaffolds and highlight their application to modulate kinase signaling as well as their potential clinical implications.
Collapse
Affiliation(s)
- Laura E Hanold
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Melody D Fulton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States
| | - Eileen J Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
41
|
Mahlapuu M, Håkansson J, Ringstad L, Björn C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front Cell Infect Microbiol 2016; 6:194. [PMID: 28083516 PMCID: PMC5186781 DOI: 10.3389/fcimb.2016.00194] [Citation(s) in RCA: 1127] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are short and generally positively charged peptides found in a wide variety of life forms from microorganisms to humans. Most AMPs have the ability to kill microbial pathogens directly, whereas others act indirectly by modulating the host defense systems. Against a background of rapidly increasing resistance development to conventional antibiotics all over the world, efforts to bring AMPs into clinical use are accelerating. Several AMPs are currently being evaluated in clinical trials as novel anti-infectives, but also as new pharmacological agents to modulate the immune response, promote wound healing, and prevent post-surgical adhesions. In this review, we provide an overview of the biological role, classification, and mode of action of AMPs, discuss the opportunities and challenges to develop these peptides for clinical applications, and review the innovative formulation strategies for application of AMPs.
Collapse
Affiliation(s)
- Margit Mahlapuu
- Promore Pharma AB, Karolinska Institutet Science ParkSolna, Sweden; The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of GothenburgGothenburg, Sweden
| | - Joakim Håkansson
- SP Technical Research Institute of Sweden, Chemistry, Materials, and Surfaces Borås, Sweden
| | - Lovisa Ringstad
- SP Technical Research Institute of Sweden, Chemistry, Materials, and Surfaces Borås, Sweden
| | - Camilla Björn
- The Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, The Sahlgrenska Academy at University of GothenburgGothenburg, Sweden; SP Technical Research Institute of Sweden, Chemistry, Materials, and SurfacesBorås, Sweden
| |
Collapse
|
42
|
Abstract
Macromolecules (proteins/peptides) have the potential for the development of new therapeutics. Due to their specific mechanism of action, macromolecules can be administered at relatively low doses compared with small-molecule drugs. Unfortunately, the therapeutic potential and clinical application of macromolecules is hampered by various obstacles including their large size, short in vivo half-life, phagocytic clearance, poor membrane permeability and structural instability. These challenges have encouraged researchers to develop novel strategies for effective delivery of macromolecules. In this review, various routes of macromolecule administration (invasive/noninvasive) are discussed. The advantages/limitations of novel delivery systems and the potential role of nanotechnology for the delivery of macromolecules are elaborated. In addition, fabrication approaches to make nanoformulations in different shapes and sizes are also summarized.
Collapse
|
43
|
Mehta P. Dry Powder Inhalers: A Focus on Advancements in Novel Drug Delivery Systems. JOURNAL OF DRUG DELIVERY 2016; 2016:8290963. [PMID: 27867663 PMCID: PMC5102732 DOI: 10.1155/2016/8290963] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/25/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Administration of drug molecules by inhalation route for treatment of respiratory diseases has the ability to deliver drugs, hormones, nucleic acids, steroids, proteins, and peptides, particularly to the site of action, improving the efficacy of the treatment and consequently lessening adverse effects of the treatment. Numerous inhalation delivery systems have been developed and studied to treat respiratory diseases such as asthma, COPD, and other pulmonary infections. The progress of disciplines such as biomaterials science, nanotechnology, particle engineering, molecular biology, and cell biology permits further improvement of the treatment capability. The present review analyzes modern therapeutic approaches of inhaled drugs with special emphasis on novel drug delivery system for treatment of various respiratory diseases.
Collapse
Affiliation(s)
- Piyush Mehta
- Dry Powder Inhaler Lab, Respiratory Formulations, Cipla R & D, LBS Road, Vikhroli (W), Mumbai, Maharashtra 400079, India
| |
Collapse
|
44
|
Zhang Y, Zhang J, Xing C, Zhang M, Wang L, Zhao H. Protein Nanogels with Temperature-Induced Reversible Structures and Redox Responsiveness. ACS Biomater Sci Eng 2016; 2:2266-2275. [DOI: 10.1021/acsbiomaterials.6b00490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yue Zhang
- Key
Laboratory of Functional Polymer Materials, Ministry of Education,
College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jiamin Zhang
- The
Key Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Cheng Xing
- The
Key Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Lianyong Wang
- The
Key Laboratory of Bioactive Materials, Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- Key
Laboratory of Functional Polymer Materials, Ministry of Education,
College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative
Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
45
|
Calderón M, Sosnik A. Polymeric soft nanocarriers as smart drug delivery systems: State-of-the-art and future perspectives. Biotechnol Adv 2015; 33:1277-8. [DOI: 10.1016/j.biotechadv.2015.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|