1
|
Xiao Y, Guo X, Zhang W, Ma L, Ren K. DNA Nanotechnology for Application in Targeted Protein Degradation. ACS Biomater Sci Eng 2024; 10:6814-6827. [PMID: 39367877 DOI: 10.1021/acsbiomaterials.4c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
DNA is a kind of flexible and versatile biomaterial for constructing nanostructures and nanodevices. Due to high biocompatibility and programmability and easy modification and fabrication, DNA nanotechnology has emerged as a powerful tool for application in intracellular targeted protein degradation. In this review, we summarize the recent advances in the design and mechanism of targeted protein degradation technologies such as protein hydrolysis targeted chimeras, lysosomal targeted chimeras, and autophagy based protein degradation. Subsequently, we introduce the DNA nanotechnologies of DNA cascade circuits, DNA nanostructures, and dynamic machines. Moreover, we present the latest developments in DNA nanotechnologies in targeted protein degradation. Finally, the vision and challenges are discussed.
Collapse
Affiliation(s)
- Yang Xiao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xinyi Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Weiwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lequn Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
2
|
Yang Y, Yang Z, Liu H, Zhou Y. Aptamers in dentistry: diagnosis, therapeutics, and future perspectives. Biomater Sci 2024. [PMID: 39523847 DOI: 10.1039/d4bm01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Oral health is essential to general health. The diagnosis of dental diseases and treatment planning of dental care need to be straightforward and accurate. Recent studies have reported the use of aptamers in dentistry to achieve a simple diagnosis and facilitate therapy. Aptamers comprise nucleic acid sequences that possess a strong affinity for their target. Synthesized chemically, aptamers have several advantages, including smaller size, higher stability, and lower immunogenicity compared with monoclonal antibodies. They can be used to detect biomarkers in saliva and the presence of various pathogens, or can be used as a targeted drug delivery system for disease treatment. This review highlights current research on aptamers for dental care, especially the recent progress in oral disease diagnosis and therapeutics. The challenges and unresolved problems faced by the clinical use of aptamers are also discussed. In the future, the clinical applications of aptamers will be further extended to include, for example, dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Yang Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Zhen Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Hao Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, China.
- National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, China
| |
Collapse
|
3
|
Groff K, Allen D, Casey W, Clippinger AJ. Progress and Remaining Opportunities to Increase the Use of Animal-free Antibodies in the USA. Altern Lab Anim 2024; 52:285-289. [PMID: 39044652 DOI: 10.1177/02611929241266472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The scientific and ethical issues associated with the use of animal-derived antibodies in research can be overcome by the use of animal-free, sequence-defined recombinant antibodies, whose benefits are well documented. Here, we describe progress made following a 2019 expert meeting focused on improving the quality and reproducibility of biomedical research by accelerating the production and use of animal-free recombinant antibodies in the USA. In the five intervening years since the meeting, participants have established multifaceted initiatives to tackle the next steps outlined during the meeting. These initiatives include: prioritising the replacement of ascites-derived and polyclonal antibodies; distributing educational materials describing recombinant antibodies; fostering public-private partnerships to increase access to recombinant antibodies; and increasing the availability of funding for recombinant antibody development. Given the widescale use of antibodies across scientific disciplines, a transition to modern antibody production methods relies on a commitment from government agencies, universities, industry and funding organisations, to initiatives such as those outlined here.
Collapse
Affiliation(s)
- Katherine Groff
- PETA Science Consortium International e.V., Stuttgart, Germany
| | - David Allen
- Integrated Laboratory Systems, an Inotiv Company, Morrisville, NC, USA
| | - Warren Casey
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Durham, NC, USA
| | | |
Collapse
|
4
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
5
|
Chen X, Chang Y, Ye M, Wang Z, Wu S, Duan N. Rational Design of a Robust G-Quadruplex Aptamer as an Inhibitor to Alleviate Listeria monocytogenes Infection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15946-15958. [PMID: 38519414 DOI: 10.1021/acsami.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Listeria monocytogenes (LM) is one of the most invasive foodborne pathogens that cause listeriosis, making it imperative to explore novel inhibiting strategies for alleviating its infection. The adhesion and invasion of LM within host cells are partly orchestrated by an invasin protein internalin A (InlA), which facilitates bacterial passage by interacting with the host cell E-cadherin (E-Cad). Hence, in this work, we proposed an aptamer blocking strategy by binding to the region on InlA that directly mediated E-Cad receptor engagement, thereby alleviating LM infection. An aptamer GA8 with a robust G-quadruplex (G4) structural feature was designed through truncation and base mutation from the original aptamer A8. The molecular docking and dynamics analysis showed that the InlA/aptamer GA8 binding interface was highly overlapping with the natural InlA/E-Cad binding interface, which confirmed that GA8 can tightly and stably bind InlA and block more distinct epitopes on InlA that involved the interaction with E-Cad. On the cellular level, it was confirmed that GA8 effectively blocked LM adhesion with an inhibition rate of 78%. Overall, the robust G4 aptamer-mediated design provides a new direction for the development of inhibitors against other wide-ranging and emerging pathogens.
Collapse
Affiliation(s)
- Xiaowan Chen
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuting Chang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Mingyue Ye
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Werth EG, Roos D, Philip ET. Immunocapture LC-MS methods for pharmacokinetics of large molecule drugs. Bioanalysis 2024; 16:165-177. [PMID: 38348660 DOI: 10.4155/bio-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Implementation of immunocapture LC-MS methods to characterize the pharmacokinetic profile of large molecule drugs has become a widely used technique over the past decade. As the pharmaceutical industry strives for speediness into clinical development without jeopardizing quality, robust assays with generic application across the pipeline are becoming instrumental in bioanalysis, especially in early-stage development. This review highlights the capabilities and challenges involved in hybrid immunocapture LC-MS techniques and its continued applications in nonclinical and clinical pharmacokinetic assay design. This includes a comparison of LC-MS-based approaches to conventional ligand-binding assays and the driving demands in large molecule drug portfolios including growing sensitivity requirements and the unique challenges of new modalities requiring innovation in the bioanalytical laboratory.
Collapse
Affiliation(s)
- Emily G Werth
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - David Roos
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Elsy T Philip
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| |
Collapse
|
7
|
Chang JL, Huang CJ, Tsai YC, Chiang NJ, Huang YS, Hung SC, Shan YS, Lee GB. An integrated microfluidic system for automatic detection of cholangiocarcinoma cells from bile. LAB ON A CHIP 2024; 24:375-382. [PMID: 38126571 DOI: 10.1039/d3lc00862b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cholangiocarcinoma (CCA) is an aggressive cancer that originates from the epithelial cells lining the bile ducts. Due to its location deep within the body and nonspecific symptoms in the early stages, it is often diagnosed at the advanced stage, thus leading to worse prognosis. Circulating tumor cells within liquid biopsies (i.e. blood) have been considered as promising biomarkers for CCA diagnosis, though current methods for profiling them are not satisfactory in terms of sensitivity and specificity. Herein we developed a new cancer cell probing and immuno-tracking assay known as "CAPTURE", which was performed on an integrated microfluidic system (IMS) to automate CCA diagnosis from bile with a sample amount of only 1 mL. The assay utilized magnetic beads surface-coated with two affinity reagents, a nucleic acid aptamer (HN16) and a glycosaminoglycan (SCH 45-mix), for capturing cancer cells in bile; the "gold standard" anti-epithelial cell adhesion molecule was used as a comparison. In a single-blind test of 54 CCA-positive (+) and 102 CCA-negative (-) clinical samples, sensitivities and specificities of 96 and 80%, respectively, were documented with the CAPTURE assay on-bench. An IMS composed of a centrifugal module for sample pretreatment and a CAPTURE module for cell capture and staining was integrated with a new "vertical integration module" for detecting cancer cells from bile without human intervention. Furthermore, a novel micro-tier structure within the centrifugal module was designed to block passage of gallbladder stones with diameters >1 mm, thereby preventing their interference during the subsequent CAPTURE assay. Improved sensitivity and specificity (100 & 83%, respectively) by using three affinity reagents were achieved on the IMS when using 26 clinical bile samples, confirming its clinical bio-applicability for CCA diagnosis. This approach could be therefore used for early-stage CCA diagnostics, ideally enabling effective treatment, as well as reducing potential for relapse.
Collapse
Affiliation(s)
- Jui-Lin Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
| | - Chien-Jui Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Cheng Tsai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Nai-Jung Chiang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Yu-Shan Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gwo-Bin Lee
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
- Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Lebendiker M. Purification and Quality Control of Recombinant Proteins Expressed in Mammalian Cells: A Practical Review. Methods Mol Biol 2024; 2810:329-353. [PMID: 38926289 DOI: 10.1007/978-1-0716-3878-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
In the recent years, there has been a rapid development of new technologies and strategies when it comes to protein purification and quality control (QC), but the basic technologies for these processes go back a long way, with many improvements over the past few decades. The purpose of this chapter is to review these approaches, as well as some other topics such as the advantages and disadvantages of various purification methods for intracellular or extracellular proteins, the most effective and widely used genetically engineered affinity tags, solubility-enhancing tags, and specific proteases for removal of nontarget sequences. Affinity chromatography (AC), like Protein A or G resins for the recovery of antibodies or Fc fusion proteins or immobilized metals for the recovery of histidine-tagged proteins, will be discussed along with other conventional chromatography techniques: ion exchange (IEC), hydrophobic exchange (HEC), mixed mode (MMC), size exclusion (SEC), and ultrafiltration (UF) systems. How to select and combine these different technologies for the purification of any given protein and the minimal criteria for QC characterization of the purity, homogeneity, identity, and integrity of the final product will be presented.
Collapse
Affiliation(s)
- Mario Lebendiker
- Protein Expression and Purification Facilities, The Wolfson Centre for Applied Structural Biology, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
9
|
Luo F, Tang Y, Zheng J, Xie Z, Wang J, Zhou J, Wu Y. Smartphone-assisted colorimetric aptasensor for rapid detection of carbendazim residue in agriculture products based on the oxidase-mimicking activity of octahedral Ag 2O nanoparticles. Talanta 2023; 265:124845. [PMID: 37385190 DOI: 10.1016/j.talanta.2023.124845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Carbendazim (CBZ) is a widely used pesticides, and its excessive intake is serious damage to humans and animals. Herein, a stable and sensitive colorimetric aptasensor for rapid detection of CBZ residue has been established based on the enhancement of CBZ-specific aptamer (CZ-13) on oxidase-mimicking activity of octahedral Ag2O nanoparticles (NPs). The CZ-13 aptamer can significantly increase the catalytic activity by promoting the production of superoxide anion (·O2-) on the surface of Ag2O NPs and enhancing the affinity of octahedral Ag2O NPs to 3,3',5,5'-tetramethylbenzidine (TMB) molecules. In the presence of CBZ, the quantity of CZ-13 aptamer will be exhausted due to the specific binding to CBZ pesticide. Thus, the rest CZ-13 aptamer no longer enhanced the catalytic activity of octahedral Ag2O NPs, which leads to the change in color of sensing solution. The color change of sensing solution can be easily converted to the corresponding RGB value by a smartphone for quantitative and rapid detection of CBZ. The designed aptasensor has excellent sensitivity and specificity, and the limit of detection was determined as low as 7.35 μg L-1 for CBZ assay. Besides, the aptasensor exhibited good recoveries in the spiked cabbage, apple and cucumber, showing that it may have broad application prospects for detecting CBZ residues in agriculture products.
Collapse
Affiliation(s)
- Feng Luo
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Yue Tang
- College of Life Sciences, Guizhou University, Guiyang, 550025, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Zhengmin Xie
- Wuliangye Yibin Co., Ltd, Yibin, 644000, Sichuan Province, China
| | - Junjun Wang
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Jianli Zhou
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China
| | - Yuangen Wu
- Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang, 550025, China; College of Life Sciences, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
10
|
Mendez Q, Driscoll HA, Mirando GR, Acca F, Chapados CD, Jones KS, Weiner M, Li X, Ferguson MR. MILKSHAKE Western blot and Sundae ELISA: We all scream for better antibody validation. J Immunol Methods 2023; 521:113540. [PMID: 37597727 PMCID: PMC10568614 DOI: 10.1016/j.jim.2023.113540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Knowing that an antibody's sensitivity and specificity is accurate is crucial for reliable data collection. This certainty is especially difficult to achieve for antibodies (Abs) which bind post-translationally modified proteins. Here we describe two validation methods using surrogate proteins in western blot and ELISA. The first method, which we termed "MILKSHAKE" is a modified maltose binding protein, hence the name, that is enzymatically conjugated to a peptide from the chosen target which is either modified or non-modified at the residue of interest. The surety of the residue's modification status can be used to confirm Ab specificity to the target's post-translational modification (PTM). The second method uses a set of surrogate proteins, which we termed "Sundae". Sundae consists of a set of modified maltose binding proteins with a genetically encoded target sequence, each of which contains a single amino acid substitution at one position of interest. With Sundae, Abs can be evaluated for binding specificities to all twenty amino acids at a single position. Combining MILKSHAKE and Sundae methods, Ab specificity can be determined at a single-residue resolution. These data improve evaluation of commercially available Abs and identify off-target effects for Research-Use-Only and therapeutic Abs.
Collapse
Affiliation(s)
- Qiana Mendez
- Department of Molecular Sciences, Abbratech, 25 Business Park Drive Branford, CT, USA.
| | - Holland A Driscoll
- Department of Molecular Sciences, Abbratech, 25 Business Park Drive Branford, CT, USA.
| | - Gregory R Mirando
- Department of Molecular Sciences, Abbratech, 25 Business Park Drive Branford, CT, USA.
| | - Felicity Acca
- Department of Molecular Sciences, Abbratech, 25 Business Park Drive Branford, CT, USA.
| | - Cassandra D Chapados
- Department of Molecular Sciences, Abbratech, 25 Business Park Drive Branford, CT, USA.
| | - Kezzia S Jones
- Department of Molecular Sciences, Abbratech, 25 Business Park Drive Branford, CT, USA.
| | - Michael Weiner
- Department of Molecular Sciences, Abbratech, 25 Business Park Drive Branford, CT, USA.
| | - Xiaofeng Li
- Department of Molecular Sciences, Abbratech, 25 Business Park Drive Branford, CT, USA.
| | - Mary R Ferguson
- Department of Molecular Sciences, Abbratech, 25 Business Park Drive Branford, CT, USA.
| |
Collapse
|
11
|
Chang ZY, Alhamami FAMS, Chin KL. Aptamer-Based Strategies to Address Challenges in COVID-19 Diagnosis and Treatments. Interdiscip Perspect Infect Dis 2023; 2023:9224815. [PMID: 37554129 PMCID: PMC10406522 DOI: 10.1155/2023/9224815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Coronavirus disease (COVID-19), a highly contagious and rapidly spreading disease with significant fatality in the elderly population, has swept across the world since 2019. Since its first appearance, the causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has undergone multiple mutations, with Omicron as the predominant circulating variant of concern at the moment. The gold standard for diagnosis of COVID-19 by real-time polymerase chain reaction (RT-PCR) to detect the virus is laborious and requires well-trained personnel to perform sophisticated procedures. Also, the genetic variants of SARS-CoV-2 that arise regularly could result in false-negative detection. Meanwhile, the current COVID-19 treatments such as conventional medicine, complementary and alternative medicine, passive antibody therapy, and respiratory therapy are associated with adverse effects. Thus, there is an urgent need to discover novel diagnostic and therapeutic approaches against SARS-CoV-2 and its variants. Over the past 30 years, nucleic acid-based aptamers have gained increasing attention and serve as a promising alternative to the antibodies in the diagnostic and therapeutic fields with their uniqueness of being small, nonimmunogenicity, and thermally stable. Aptamer targeting the SARS-CoV-2 structural proteins or the host receptor proteins represent a powerful tool to control COVID-19 infection. In this review, challenges faced by currently available diagnostic and therapeutic tools for COVID-19 are underscored, along with how aptamers can shed a light on the current COVID-19 pandemic, focusing on the critical factors affecting the discovery of high-affinity aptamers and their potential applications to control COVID-19 infection.
Collapse
Affiliation(s)
- Zi Yuan Chang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | | | - Kai Ling Chin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
12
|
Kalpana S, Lin WY, Wang YC, Fu Y, Wang HY. Alternate Antimicrobial Therapies and Their Companion Tests. Diagnostics (Basel) 2023; 13:2490. [PMID: 37568853 PMCID: PMC10417861 DOI: 10.3390/diagnostics13152490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
New antimicrobial approaches are essential to counter antimicrobial resistance. The drug development pipeline is exhausted with the emergence of resistance, resulting in unsuccessful trials. The lack of an effective drug developed from the conventional drug portfolio has mandated the introspection into the list of potentially effective unconventional alternate antimicrobial molecules. Alternate therapies with clinically explicable forms include monoclonal antibodies, antimicrobial peptides, aptamers, and phages. Clinical diagnostics optimize the drug delivery. In the era of diagnostic-based applications, it is logical to draw diagnostic-based treatment for infectious diseases. Selection criteria of alternate therapeutics in infectious diseases include detection, monitoring of response, and resistance mechanism identification. Integrating these diagnostic applications is disruptive to the traditional therapeutic development. The challenges and mitigation methods need to be noted. Applying the goals of clinical pharmacokinetics that include enhancing efficacy and decreasing toxicity of drug therapy, this review analyses the strong correlation of alternate antimicrobial therapeutics in infectious diseases. The relationship between drug concentration and the resulting effect defined by the pharmacodynamic parameters are also analyzed. This review analyzes the perspectives of aligning diagnostic initiatives with the use of alternate therapeutics, with a particular focus on companion diagnostic applications in infectious diseases.
Collapse
Affiliation(s)
- Sriram Kalpana
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
| | - Wan-Ying Lin
- Department of Medicine, University of California San Diego, San Diego, CA 92093, USA;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yu-Chiang Wang
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yiwen Fu
- Department of Medicine, Kaiser Permanente Santa Clara Medical Center, Santa Clara, CA 95051, USA;
| | - Hsin-Yao Wang
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333423, Taiwan;
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA;
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
13
|
Oktay E, Bush J, Vargas M, Scarton DV, O'Shea B, Hartman A, Green CM, Neyra K, Gomes CM, Medintz IL, Mathur D, Veneziano R. Customized Scaffolds for Direct Assembly of Functionalized DNA Origami. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37267624 DOI: 10.1021/acsami.3c05690] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Functional DNA origami nanoparticles (DNA-NPs) are used as nanocarriers in a variety of biomedical applications including targeted drug delivery and vaccine development. DNA-NPs can be designed into a broad range of nanoarchitectures in one, two, and three dimensions with high structural fidelity. Moreover, the addressability of the DNA-NPs enables the precise organization of functional moieties, which improves targeting, actuation, and stability. DNA-NPs are usually functionalized via chemically modified staple strands, which can be further conjugated with additional polymers and proteins for the intended application. Although this method of functionalization is extremely efficient to control the stoichiometry and organization of functional moieties, fewer than half of the permissible sites are accessible through staple modifications. In addition, DNA-NP functionalization rapidly becomes expensive when a high number of functionalizations such as fluorophores for tracking and chemical modifications for stability that do not require spatially precise organization are used. To facilitate the synthesis of functional DNA-NPs, we propose a simple and robust strategy based on an asymmetric polymerase chain reaction (aPCR) protocol that allows direct synthesis of custom-length scaffolds that can be randomly modified and/or precisely modified via sequence design. We demonstrated the potential of our strategy by producing and characterizing heavily modified scaffold strands with amine groups for dye functionalization, phosphorothioate bonds for stability, and biotin for surface immobilization. We further validated our sequence design approach for precise conjugation of biomolecules by synthetizing scaffolds including binding loops and aptamer sequences that can be used for direct hybridization of nucleic acid tagged biomolecules or binding of protein targets.
Collapse
Affiliation(s)
- Esra Oktay
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| | - Joshua Bush
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| | - Merlyn Vargas
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
| | - Dylan Valerio Scarton
- College of Science, Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, Virginia 22030-4444, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| | - Bailey O'Shea
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
| | - Amber Hartman
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington DC 20375-0001, United States
| | - Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, United States
| | - Carolina M Gomes
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington DC 20375-0001, United States
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, United States
| | - Remi Veneziano
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110-2201, United States
- Institute for Advanced Biomedical Research, Manassas, Virginia 20110-2201, United States
| |
Collapse
|
14
|
Saldanha DJ, Cai A, Dorval Courchesne NM. The Evolving Role of Proteins in Wearable Sweat Biosensors. ACS Biomater Sci Eng 2023; 9:2020-2047. [PMID: 34491052 DOI: 10.1021/acsbiomaterials.1c00699] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sweat is an increasingly popular biological medium for fitness monitoring and clinical diagnostics. It contains an abundance of biological information and is available continuously and noninvasively. Sweat-sensing devices often employ proteins in various capacities to create skin-friendly matrices that accurately extract valuable and time-sensitive information from sweat. Proteins were first used in sensors as biorecognition elements in the form of enzymes and antibodies, which are now being tuned to operate at ranges relevant for sweat. In addition, a range of structural proteins, sometimes assembled in conjunction with polymers, can provide flexible and compatible matrices for skin sensors. Other proteins also naturally possess a range of functionalities─as adhesives, charge conductors, fluorescence emitters, and power generators─that can make them useful components in wearable devices. Here, we examine the four main components of wearable sweat sensors─the biorecognition element, the transducer, the scaffold, and the adhesive─and the roles that proteins have played so far, or promise to play in the future, in each component. On a case-by-case basis, we analyze the performance characteristics of existing protein-based devices, their applicable ranges of detection, their transduction mechanism and their mechanical properties. Thereby, we review and compare proteins that can readily be used in sweat sensors and others that will require further efforts to overcome design, stability or scalability challenges. Incorporating proteins in one or multiple components of sweat sensors could lead to the development and deployment of tunable, greener, and safer biosourced devices.
Collapse
Affiliation(s)
- Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | - Anqi Cai
- Department of Chemical Engineering, McGill University, Montréal, Québec, Canada H3A 0C5
| | | |
Collapse
|
15
|
Li R, Li L, Zhang Y, Lin X, Guo H, Lin C, Feng J. Construction of a Carcinoembryonic Antigen Surface-Enhanced Raman Spectroscopy (SERS) Aptamer Sensor Based on the Silver Nanorod Array Chip. APPLIED SPECTROSCOPY 2023; 77:170-177. [PMID: 36138574 DOI: 10.1177/00037028221131577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carcinoembryonic antigen (CEA) is a cancer-related tumor marker, which is commonly used for preventive screening, auxiliary diagnosis, and recurrence monitoring. Therefore, it is of great significance to develop a new CEA detection method. In this paper, we developed an SERS aptasensor for CEA based on silver nanorod array chip, thiol aptamer, and 4-mercaptophenylboronic acid (4-MPBA). The silver nanorod array chip modified by CEA thiol aptamer (aptamer-SH) was used as SERS capture substrates. Ag@4-MPBA was used as a surface-enhanced Raman spectroscopy (SERS) tag. This proposed SERS aptasensor could detect CEA down to 0.447 pg·mL-1 with a wide linear range from 1 pg·mL-1 to 100 ng·mL-1 (R2 = 0.9907). The recovery of the standard addition test for CEA in serum was between 97.25% and 102.67%, and the RSD ≤ 2.52% (n = 3). The sensor has the advantages of good specificity, high sensitivity, and a wide linear range. It provides a new method for the detection of CEA in serum.
Collapse
Affiliation(s)
- Rui Li
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Lijun Li
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Yan Zhang
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Xin Lin
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Heyuanxi Guo
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Chubing Lin
- College of Biological and Chemical Engineering, 66514Guangxi University of Science and Technology, Liuzhou, China
| | - Jun Feng
- School of Medicine, 66514Guangxi University of Science and Technology, Liuzhou, China
| |
Collapse
|
16
|
Stephens M. The emerging potential of Aptamers as therapeutic agents in infection and inflammation. Pharmacol Ther 2022; 238:108173. [DOI: 10.1016/j.pharmthera.2022.108173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
|
17
|
Wu G, Liu C, Cao B, Cao Z, Zhai H, Liu B, Jin S, Yang X, Lv C, Wang J. Connective tissue growth factor-targeting DNA aptamer suppresses pannus formation as diagnostics and therapeutics for rheumatoid arthritis. Front Immunol 2022; 13:934061. [PMID: 35990694 PMCID: PMC9389230 DOI: 10.3389/fimmu.2022.934061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Connective tissue growth factor (CTGF) has been recently acknowledged as an ideal biomarker in the early disease course, participating in the pathogenesis of pannus formation in rheumatoid arthritis (RA). However, existing approaches for the detection of or antagonist targeting CTGF are either lacking or unsatisfactory in the diagnosis and treatment of RA. To address this, we synthesized and screened high-affinity single-stranded DNA aptamers targeting CTGF through a protein-based SELEX procedure. The structurally optimized variant AptW2-1-39-PEG was characterized thoroughly for its high-affinity (KD 7.86 nM), sensitivity (minimum protein binding concentration, 2 ng), specificity (negative binding to other biomarkers of RA), and stability (viability-maintaining duration in human serum, 48 h) properties using various biochemical and biophysical assays. Importantly, we showed the antiproliferative and antiangiogenic activities of the aptamers obtained using functional experiments and further verified the therapeutic effect of the aptamers on joint injury and inflammatory response in collagen-induced arthritis (CIA) mice, thus advancing this study into actual therapeutic application. Furthermore, we revealed that the binding within AptW2-1-39-PEG/CTGF was mediated by the thrombospondin 1 (TSP1) domain of CTGF using robust bioinformatics tools together with immunofluorescence. In conclusion, our results revealed a novel aptamer that holds promise as an additive or alternative approach for CTGF-targeting diagnostics and therapeutics for RA.
Collapse
Affiliation(s)
- Gan Wu
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Can Liu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ben Cao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zelin Cao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Haige Zhai
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bin Liu
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shengwei Jin
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianguang Wang, ; Chen Lv, ; Xinyu Yang,
| | - Chen Lv
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianguang Wang, ; Chen Lv, ; Xinyu Yang,
| | - Jianguang Wang
- Department of Anesthesia and Critical Care, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Jianguang Wang, ; Chen Lv, ; Xinyu Yang,
| |
Collapse
|
18
|
Gao S, Li Q, Zhang S, Sun X, Zheng X, Qian H, Wu J. One-step high-throughput detection of low-abundance biomarker BDNF using a biolayer interferometry-based 3D aptasensor. Biosens Bioelectron 2022; 215:114566. [PMID: 35863136 DOI: 10.1016/j.bios.2022.114566] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/15/2022]
Abstract
Although biosensors for signal monitoring have been extensively developed, their application in one-step high-throughput detection of low-abundance disease biomarkers remains challenging. This study presents a 3D aptasensor based on a biolayer interferometry (BLI) technique, followed by the sensitive and rapid detection of the specific biomarker brain-derived neurotrophic factor (BDNF) for early screening of glaucoma, an irreversible disease that causes blindness. The developed 3D aptasensor enabled one-step batch conversion of the low-abundance biomarker BDNF binding into optical interference signal, which was mainly attributed to the following factors: (1) A dimeric aptamer with extremely high targeting affinity was constructed as a biorecognition molecule, (2) highly sensitive 3D matrix sensors were integrated as signal transduction elements, and (3) the BLI Octet system with automated, high-throughput, and real-time online monitoring capabilities was used for reporting. The 3D aptasensor exhibited a broad detection window from 0.41 to 250 ng/mL BDNF, with a limit of detection of 0.2 ng/mL. Furthermore, detection of BDNF in glaucoma patient serum using the aptasensor showed good agreement with ELISA findings as well as the clinical diagnosis of the patient, demonstrating the feasibility of the system as a screening tool for glaucoma. This one-step high-throughput screening approach provides a valuable solution for the early diagnosis of glaucoma and may reduce the risk of blindness in visually impaired people.
Collapse
Affiliation(s)
- Shunxiang Gao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Qian Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Shenghai Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xin Zheng
- Department of Laboratory Medicine, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| | - Husun Qian
- Department of Laboratory Medicine, The Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, China.
| | - Jihong Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China.
| |
Collapse
|
19
|
Alomran N, Chinnappan R, Alsolaiss J, Casewell NR, Zourob M. Exploring the Utility of ssDNA Aptamers Directed against Snake Venom Toxins as New Therapeutics for Snakebite Envenoming. Toxins (Basel) 2022; 14:469. [PMID: 35878207 PMCID: PMC9318713 DOI: 10.3390/toxins14070469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
Snakebite is a neglected tropical disease that causes considerable death and disability in the tropical world. Although snakebite can cause a variety of pathologies in victims, haemotoxic effects are particularly common and are typically characterised by haemorrhage and/or venom-induced consumption coagulopathy. Antivenoms are the mainstay therapy for treating the toxic effects of snakebite, but despite saving thousands of lives annually, these therapies are associated with limited cross-snake species efficacy due to venom variation, which ultimately restricts their therapeutic utility to particular geographical regions. In this study, we sought to explore the potential of ssDNA aptamers as toxin-specific inhibitory alternatives to antibodies. As a proof of principle model, we selected snake venom serine protease toxins, which are responsible for contributing to venom-induced coagulopathy following snakebite envenoming, as our target. Using SELEX technology, we selected ssDNA aptamers against recombinantly expressed versions of the fibrinogenolytic SVSPs ancrod from the venom of C. rhodostoma and batroxobin from B. atrox. From the resulting pool of specific ssDNA aptamers directed against each target, we identified candidates that exhibited low nanomolar binding affinities to their targets. Downstream aptamer-linked immobilised sorbent assay, fibrinogenolysis, and coagulation profiling experiments demonstrated that the candidate aptamers were able to recognise native and recombinant SVSP toxins and inhibit the toxin- and venom-induced prolongation of plasma clotting times and the consumption of fibrinogen, with inhibitory potencies highly comparable to commercial polyvalent antivenoms. Our findings demonstrate that rationally selected toxin-specific aptamers can exhibit broad in vitro cross-reactivity against toxin isoforms found in different snake venoms and are capable of inhibiting toxins in pathologically relevant in vitro and ex vivo models of venom activity. These data highlight the potential utility of ssDNA aptamers as novel toxin-inhibiting therapeutics of value for tackling snakebite envenoming.
Collapse
Affiliation(s)
- Nessrin Alomran
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (N.A.); (J.A.)
| | - Raja Chinnappan
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia;
- King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
| | - Jaffer Alsolaiss
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (N.A.); (J.A.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (N.A.); (J.A.)
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia;
- King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
| |
Collapse
|
20
|
Rogers B, Brown J, Allen DG, Casey W, Clippinger AJ. Replacement of in vivo leptospirosis vaccine potency testing in the United States. Biologicals 2022; 78:36-44. [PMID: 35753962 DOI: 10.1016/j.biologicals.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/29/2022] [Indexed: 11/02/2022] Open
Abstract
The U.S. Department of Agriculture (USDA) regulates the potency testing of leptospirosis vaccines, which are administered to animals to protect against infection by Leptospira bacteria. Despite the long-term availability of in vitro test methods for assessing batch potency, the use of hamsters in lethal in vivo batch potency testing persists to varying degrees across leptospirosis vaccine manufacturers. For all manufacturers of these products, data collected from public USDA records show an estimated 40% decline in the annual use of hamsters from 2014 to 2020, with an estimated 55% decrease in the number of hamsters expected to have been used in leptospirosis vaccine potency tests (i.e., those in USDA Category E). An estimated 49,000 hamsters were used in 2020, with about 15,000 hamsters in Category E specifically. Based on this assessment, additional efforts are needed to fully implement in vitro batch potency testing as a replacement for the in vivo batch potency test. We propose steps that can be taken collaboratively by the USDA Center for Veterinary Biologics (CVB), manufacturers of leptospirosis vaccines, government agencies, and non-governmental organizations to accelerate broader use of the in vitro approach.
Collapse
Affiliation(s)
- Bridget Rogers
- PETA Science Consortium International e.V, Friolzheimer Str. 3, 70499, Stuttgart, Germany.
| | - Jeffrey Brown
- PETA Science Consortium International e.V, Friolzheimer Str. 3, 70499, Stuttgart, Germany
| | - David G Allen
- Inotiv Inc, PO Box 13501, Research Triangle Park, NC, 27709, USA
| | - Warren Casey
- Predictive Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, PO Box 12233, MD:K2-16, Research Triangle Park, NC, 27709, USA
| | - Amy J Clippinger
- PETA Science Consortium International e.V, Friolzheimer Str. 3, 70499, Stuttgart, Germany
| |
Collapse
|
21
|
Xue A, Fan S. Matrices and Affinity Ligands for Antibody Purification and Corresponding Applications in Radiotherapy. Biomolecules 2022; 12:biom12060821. [PMID: 35740946 PMCID: PMC9221399 DOI: 10.3390/biom12060821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/05/2023] Open
Abstract
Antibodies have become an important class of biological products in cancer treatments such as radiotherapy. The growing therapeutic applications have driven a demand for high-purity antibodies. Affinity chromatography with a high affinity and specificity has always been utilized to separate antibodies from complex mixtures. Quality chromatographic components (matrices and affinity ligands) have either been found or generated to increase the purity and yield of antibodies. More importantly, some matrices (mainly particles) and affinity ligands (including design protocols) for antibody purification can act as radiosensitizers or carriers for therapeutic radionuclides (or for radiosensitizers) either directly or indirectly to improve the therapeutic efficiency of radiotherapy. This paper provides a brief overview on the matrices and ligands used in affinity chromatography that are involved in antibody purification and emphasizes their applications in radiotherapy to enrich potential approaches for improving the efficacy of radiotherapy.
Collapse
|
22
|
Yılmaz D, Muslu T, Parlar A, Kurt H, Yüce M. SELEX against whole-cell bacteria resulted in lipopolysaccharide binding aptamers. J Biotechnol 2022; 354:10-20. [PMID: 35700936 DOI: 10.1016/j.jbiotec.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Nucleic acid aptamers are target-specific oligonucleotides selected from combinatorial libraries through an iterative in vitro screening process known as Systemic Evolution of Ligands by Exponential Enrichment (SELEX). In this report, the selection of bacteria differentiating ssDNA aptamer candidates from a combinatorial library through the whole-cell SELEX method was performed. The enriched SELEX pool was sequenced using Illumina Next-Generation Sequencing (NGS) technology and analyzed for the most abundant sequences using CLC Genomics Workbench. The sequencing data resulted in several oligonucleotide families from which three individual sequences were chosen per SELEX based on the copy numbers. The binding performance of the selected aptamers was assessed by flow cytometry and fluorescence spectroscopy, and the binding constants were estimated using binding saturation curves. Varying results were obtained from two independent SELEX procedures where the SELEX against the model gram-negative bacterium Escherichia coli provided more selective sequences while the SELEX library used against gram-positive bacterium Listeria monocytogenes did not evolve as expected. The sequences that emerged from E. coli SELEX were shown to bind Lipopolysaccharide residues (LPS) and inhibit LPS-induced macrophage polarization. Thus, it can be said that, performed whole-cell SELEX could be resulted as the selection of aptamers which can bind LPS and inhibit LPS induced inflammation response and thus can be candidates for the inhibition of bacterial infections. In future studies, the selected aptamer sequences could be structurally and chemically modified and exploited as potential diagnostic tools and therapeutic agents as LPS antagonists.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Tuzla 34956, Istanbul, Turkey
| | - Tuğdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Ayhan Parlar
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34956, Istanbul, Turkey
| | - Hasan Kurt
- School of Engineering and Natural Sciences, Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey; Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Beykoz, 34810 Istanbul, Turkey; Nanosolar Plasmonics Ltd., Gebze, 41400 Kocaeli, Turkey
| | - Meral Yüce
- Sabanci University SUNUM Nanotechnology Research and Application Centre, Tuzla 34956, Istanbul, Turkey.
| |
Collapse
|
23
|
Investigation of Conditions for Capture of Live Legionella pneumophila with Polyclonal and Recombinant Antibodies. BIOSENSORS 2022; 12:bios12060380. [PMID: 35735528 PMCID: PMC9221320 DOI: 10.3390/bios12060380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/16/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Since Legionella pneumophila has caused punctual epidemics through various water systems, the need for a biosensor for fast and accurate detection of pathogenic bacteria in industrial and environmental water has increased. In this report, we evaluated conditions for the capture of live L. pneumophila on a surface by polyclonal antibodies (pAb) and recombinant antibodies (recAb) targeting the bacterial lipopolysaccharide. Using immunoassay and PCR quantification, we demonstrated that, when exposed to live L. pneumophila in PBS or in a mixture containing other non-target bacteria, recAb captured one third fewer L. pneumophila than pAb, but with a 40% lower standard deviation, even when using the same batch of pAb. The presence of other bacteria did not interfere with capture nor increase background by either Ab. Increased reproducibility, as manifested by low standard deviation, is a characteristic that is coveted for biosensing. Hence, the recAb provided a better choice for immune adhesion in biosensors even though it was slightly less sensitive than pAb. Polyclonal or recombinant antibodies can specifically capture large targets such as whole bacteria, and this opens the door to multiple biosensor approaches where any of the components of the bacteria can then be measured for detection or characterisation.
Collapse
|
24
|
MALDI-TOF-MS-Based Identification of Monoclonal Murine Anti-SARS-CoV-2 Antibodies within One Hour. Antibodies (Basel) 2022; 11:antib11020027. [PMID: 35466280 PMCID: PMC9036215 DOI: 10.3390/antib11020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023] Open
Abstract
During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 °C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context.
Collapse
|
25
|
Chakraborty B, Das S, Gupta A, Xiong Y, Vyshnavi TV, Kizer ME, Duan J, Chandrasekaran AR, Wang X. Aptamers for Viral Detection and Inhibition. ACS Infect Dis 2022; 8:667-692. [PMID: 35220716 PMCID: PMC8905934 DOI: 10.1021/acsinfecdis.1c00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 02/07/2023]
Abstract
Recent times have experienced more than ever the impact of viral infections in humans. Viral infections are known to cause diseases not only in humans but also in plants and animals. Here, we have compiled the literature review of aptamers selected and used for detection and inhibition of viral infections in all three categories: humans, animals, and plants. This review gives an in-depth introduction to aptamers, different types of aptamer selection (SELEX) methodologies, the benefits of using aptamers over commonly used antibody-based strategies, and the structural and functional mechanism of aptasensors for viral detection and therapy. The review is organized based on the different characterization and read-out tools used to detect virus-aptasensor interactions with a detailed index of existing virus-targeting aptamers. Along with addressing recent developments, we also discuss a way forward with aptamers for DNA nanotechnology-based detection and treatment of viral diseases. Overall, this review will serve as a comprehensive resource for aptamer-based strategies in viral diagnostics and treatment.
Collapse
Affiliation(s)
- Banani Chakraborty
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sreyashi Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Arushi Gupta
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T-V Vyshnavi
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Megan E. Kizer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinwei Duan
- Department of Chemistry and Materials Science, Chang’an University, Xi’an, Shaanxi 710064, China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Aubret M, Savonnet M, Laurent P, Roupioz Y, Cubizolles M, Buhot A. Development of an Innovative Quantification Assay Based on Aptamer Sandwich and Isothermal Dumbbell Exponential Amplification. Anal Chem 2022; 94:3376-3385. [PMID: 35143170 DOI: 10.1021/acs.analchem.1c05532] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Detecting blood biomarkers such as proteins with high sensitivity and specificity is of the utmost importance for early and reliable disease diagnosis. As molecular probes, aptamers are raising increasing interest for biosensor applications as an alternative to antibodies, which are used in classical enzyme-linked immuno-sorbent assays (ELISA). We have developed a sensitive and antibody-free molecular quantification assay that combines the specificity of aptamers and the sensitivity of the loop-mediated isothermal amplification (LAMP). For the proof-of-concept, we consider two types of biomarkers: (i) a model of oligonucleotide mimicking nucleic acid targets and (ii) the thrombin involved in the complex coagulation cascade as a model protein for which two relevant aptamers form a stable sandwich. The assay protocol is based on a few successive steps, similar to sandwich ELISA. First, aptamer-coated magnetic beads are added to the sample to specifically capture the targets. Then, the sandwich complex is formed by adding the second aptamer. This secondary aptamer is integrated in a larger oligonucleotide dumbbell sequence designed for LAMP detection using only two primers. After a proper rinsing step, the isothermal dumbbell exponential amplification is performed to detect and quantify a low amount of targets (limit of detection ∼ 1 pM for the oligonucleotide and ∼100 pM for thrombin). This study demonstrates that our innovative aptamero-LAMP assay could be relevant for the detection of different types of biomarkers and their quantification at physiological levels. This may also pave the way for antibody-free molecular assays.
Collapse
Affiliation(s)
- Mathilde Aubret
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| | - Maud Savonnet
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| | - Patricia Laurent
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France
| | - Yoann Roupioz
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| | - Myriam Cubizolles
- Univ. Grenoble Alpes, CEA, LETI, Technologies for Healthcare and Biology Division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France
| | - Arnaud Buhot
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-SyMMES, 38000 Grenoble, France
| |
Collapse
|
27
|
Gisdon FJ, Kynast JP, Ayyildiz M, Hine AV, Plückthun A, Höcker B. Modular peptide binders - development of a predictive technology as alternative for reagent antibodies. Biol Chem 2022; 403:535-543. [PMID: 35089661 DOI: 10.1515/hsz-2021-0384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 11/15/2022]
Abstract
Current biomedical research and diagnostics critically depend on detection agents for specific recognition and quantification of protein molecules. Monoclonal antibodies have been used for this purpose over decades and facilitated numerous biological and biomedical investigations. Recently, however, it has become apparent that many commercial reagent antibodies lack specificity or do not recognize their target at all. Thus, synthetic alternatives are needed whose complex designs are facilitated by multidisciplinary approaches incorporating experimental protein engineering with computational modeling. Here, we review the status of such an engineering endeavor based on the modular armadillo repeat protein scaffold and discuss challenges in its implementation.
Collapse
Affiliation(s)
- Florian J Gisdon
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Josef P Kynast
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Merve Ayyildiz
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Anna V Hine
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, CH-8057 Zürich, Switzerland
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, D-95447 Bayreuth, Germany
| |
Collapse
|
28
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
29
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
30
|
Farokhinejad F, Lane RE, Lobb RJ, Edwardraja S, Wuethrich A, Howard CB, Trau M. Generation of Nanoyeast Single-Chain Variable Fragments as High-Avidity Biomaterials for Dengue Virus Detection. ACS Biomater Sci Eng 2021; 7:5850-5860. [PMID: 34738789 DOI: 10.1021/acsbiomaterials.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioengineered yeast bio-nanomaterials termed nanoyeasts displaying antibody single-chain variable fragments (scFvs) against diagnostic targets are a promising alternative to monoclonal antibodies (mAbs). A potential limitation for translating nanoyeasts into diagnostic tools is batch-to-batch variability. Herein, we demonstrate a systematic approach for cost-efficient production of highly specific nanoyeasts that enabled accurate dengue virus (DENV) detection by immunoassay (2.5% CV). Yeasts bioengineered to surface express DENV-specific scFvs (up to 66% of the total cell population) were fragmented into nanoyeast fractions trialing sonication, bead beating, and high-pressure disruption methods. Nanoyeast fractions from sonication had optimal target binding, uniform particle size (±89 nm), were stable, and retained diagnostic activity for 7 days at 37 °C compared to traditional mAbs that lost activity after 1 day at 37 °C. We engineered a panel of nanoyeast scFvs targeting DENV nonstructural protein 1 (NS1): (i) specific for serotyping DENV 1-4 and (ii) cross-reactive anti-DENV scFvs that are suitable for "yes/no" diagnostic applications. We demonstrate highly specific nanoyeast scFvs for serotyping DENV. We show that nanoyeast scFvs specifically detect NS1 in simulated patient plasma with a limit of detection of 250 ng/mL, the concentration found in infected patients.
Collapse
Affiliation(s)
- Fahimeh Farokhinejad
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca E Lane
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard J Lobb
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Selvakumar Edwardraja
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christopher B Howard
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
31
|
Sun L, Shen K, Zhang J, Wan W, Cao W, Wang Z, Guo C. Aptamer based surface plasma resonance assay for direct detection of neuron specific enolase and progastrin-releasing peptide (31-98). RSC Adv 2021; 11:32135-32142. [PMID: 35495513 PMCID: PMC9041927 DOI: 10.1039/d1ra05041a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Neuron specific enolase (NSE) and progastrin-releasing peptide (31-98) (ProGRP31-98) are considered as reliable biomarkers of small cell lung cancer (SCLC). Sensitive determinations of NSE and ProGRP31-98 show great significance in disease surveillance, clinical diagnosis, efficacy evaluation and prognostic judgment. However, the conventional detection methods have the disadvantages of poor stability, tedious operation, and being very time consuming. Herein, we developed an aptamer-based surface plasmon resonance (SPR) assay in a direct format for NSE and ProGRP31-98 detection. The aptamer was loaded on a sensor chip and used as an affinity ligand. With sample injection, SPR signals increased due to the association of the target to the aptamer coated chip. Further dissociation and regeneration allowed this aptamer sensor chip to be used for the next sample analysis. We achieved sensitive detection of NSE and ProGRP31-98 by measuring the affinity binding-induced SPR responses. The detection limits for NSE and ProGRP31-98 were 3.9 nM and 15.6 nM, respectively. The aptamer sensor chip is stable and reusable, and has potential for diluted human serum analysis. This assay presents strengths in simplicity, rapidity, low material consumption, real time analysis and ease of implementing high throughput and automatic detection. It is promising for application in clinical disease-related biomarkers analysis.
Collapse
Affiliation(s)
- Linlin Sun
- Department of Preventive Medicine, Changzhi Medical College Changzhi Shanxi 046000 China +86-355-3151068
| | - Kemin Shen
- Department of Preventive Medicine, Changzhi Medical College Changzhi Shanxi 046000 China +86-355-3151068
| | - Jianbin Zhang
- Department of Preventive Medicine, Changzhi Medical College Changzhi Shanxi 046000 China +86-355-3151068
| | - Wenjuan Wan
- Department of Preventive Medicine, Changzhi Medical College Changzhi Shanxi 046000 China +86-355-3151068
| | - Wenjun Cao
- Department of Preventive Medicine, Changzhi Medical College Changzhi Shanxi 046000 China +86-355-3151068
| | - Zhijun Wang
- Department of Chemistry, Changzhi University Changzhi Shanxi 046011 China
| | - Chongzheng Guo
- Department of Preventive Medicine, Changzhi Medical College Changzhi Shanxi 046000 China +86-355-3151068
| |
Collapse
|
32
|
Wang Z, Wang H, Cheng X, Geng J, Wang L, Dong Q, Liu C, Chi Z, Chi Z. Aptamer-superparamagnetic nanoparticles capture coupling siderophore-Fe 3+ scavenging actuated with carbon dots to confer an "off-on" mechanism for the ultrasensitive detection of Helicobacter pylori. Biosens Bioelectron 2021; 193:113551. [PMID: 34399193 DOI: 10.1016/j.bios.2021.113551] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The detection of Helicobacter pylori infection in human feces is an appropriate non-invasive diagnostic method. However, the antibody-dependent stool antigen immunoassay bears many challenges. Therefore, we developed an antibody-independent biosensing platform. The core of this platform was a triple-module biosensor. The first module was Ca2+-doped superparamagnetic nanoparticles modified with an H. pylori-specific aptamer, functioning to selectively capture H. pylori cells from samples. The second module was a bifunctional co-polymer of chloroprotoporphyrin IX iron (III)-polyethylene glycol-desferrioxamine, which could bind to H. pylori with high affinity and chelate Fe3+ from the third module of Fe3+-quenched carbon dots (CDs) solution. When the formed module 1-H. pylori-module 2 complexes reacted with module 3, a subsequent magnetic separation could scavenge Fe3+, causing fluorescence recovery from quenched CDs as the transducing mechanism. This transducer could respond to tiny changes in Fe3+ concentration with distinguishable fluorescence differences, thus conferring the biosensor with high sensitivity, a wide detection range of 10-107 CFU/mL and a limit of detection (LOD) as low as 1 CFU/mL. From simulated human stool samples, H. pylori was enriched with a centrifugal microfluidic plate to eliminate any interference from matrices, and the bacteria were subjected to detection using the biosensor. The actual LOD for the biosensing platform coupling microfluidics and the biosensor was 101, and the total time taken was 65 min. This work showcases an instant, accurate, and ultra-sensitive diagnosis of H. pylori in feces.
Collapse
Affiliation(s)
- Zhuangzhuang Wang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China.
| | - Hongying Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, No. 346 Guanhai Road, 264003, Yantai, China
| | - Xiaohong Cheng
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China
| | - Jiayue Geng
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China
| | - Lili Wang
- Central Laboratory and Department of Gastroenterology, Qingdao Municipal Hospital, No. 5 Donghai Middle Road, 266071, Qingdao, China
| | - Quanjiang Dong
- Central Laboratory and Department of Gastroenterology, Qingdao Municipal Hospital, No. 5 Donghai Middle Road, 266071, Qingdao, China
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China
| | - Zhenming Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China; Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, 266237, Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, 266003, Qingdao, China; Pilot National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, 266237, Qingdao, China.
| |
Collapse
|
33
|
Guo X, Chen GH. Capillary electrophoresis-based methodology for screening of oligonucleotide aptamers. Biomed Chromatogr 2021; 35:e5109. [PMID: 33660332 DOI: 10.1002/bmc.5109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023]
Abstract
As a new molecular recognition element, oligonucleotide aptamer not only has higher affinity and specificity to target molecules, but also has the advantages of wide recognition range, in vitro synthesis and chemical stability compared with conventional antibodies. Since a kind of screening method termed systematic evolution of ligands by exponential enrichment (SELEX) was reported, scientists have extensively researched the methodology of how to highly and efficiently screen out aptamers from a library consisting of a large number of random oligonucleotides. Certainly capillary electrophoresis-based screening methodologies, including nonequilibrium capillary electrophoresis of equilibrium mixtures, equilibrium capillary electrophoresis of equilibrium mixtures, non-SELEX, ideal-filter capillary electrophoresis, capillary transient isotachophoresis, etc., are revolutionary. Compared with conventional SELEX, these capillary electrophoresis-based methodologies show incomparable advantages such as the single-round screening of aptamers and increased successful screening rate. Methodology studies on the screening process of aptamers are comprehensively reviewed.
Collapse
Affiliation(s)
- Xin Guo
- College of Food and Bioengineering, Jiangsu University, Zhenjiang, China.,Periodicals Agency of Jiangsu University, Zhenjiang, China
| | - Guan-Hua Chen
- College of Food and Bioengineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
34
|
“One stroke drawing” of poly(ribonucleic acids) with different aptamer functions for sensing probes. Polym J 2021. [DOI: 10.1038/s41428-020-00454-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Zheng X, Gao S, Wu J, Hu X. Recent Advances in Aptamer-Based Biosensors for Detection of Pseudomonas aeruginosa. Front Microbiol 2020; 11:605229. [PMID: 33414776 PMCID: PMC7782355 DOI: 10.3389/fmicb.2020.605229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/03/2020] [Indexed: 11/20/2022] Open
Abstract
Increasing concerns about nosocomial infection, food and environmental safety have prompted the development of rapid, accurate, specific and ultrasensitive methods for the early detection of critical pathogens. Pseudomonas aeruginosa is one of the most common pathogens that cause infection. It is ubiquitous in nature, being found in water, soil, and food, and poses a great threat to public health. The conventional detection technologies are either time consuming or readily produce false positive/negative results, which makes them unsuitable for early diagnosis and spot detection of P. aeruginosa. To circumvent these drawbacks, many efforts have been made to develop biosensors using aptamers as bio-recognition elements. Various aptamer-based biosensors for clinical diagnostics, food, and environmental monitoring of P. aeruginosa have been developed in recent years. In this review, we focus on the latest advances in aptamer-based biosensors for detection of P. aeruginosa. Representative biosensors are outlined according to their sensing mechanisms, which include optical, electrochemical and other signal transduction methods. Possible future trends in aptamer biosensors for pathogen detection are also outlined.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunxiang Gao
- Department of Ophthalmology, Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology, Eye Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Brain Science, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xiaobo Hu
- Department of Clinical Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
36
|
Wang Y, Li Z, Yu H. Aptamer-Based Western Blot for Selective Protein Recognition. Front Chem 2020; 8:570528. [PMID: 33195056 PMCID: PMC7658645 DOI: 10.3389/fchem.2020.570528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/21/2020] [Indexed: 11/13/2022] Open
Abstract
Selective protein recognition is critical in molecular biology techniques such as Western blotting and ELISA. Successful detection of the target proteins in these methods relies on the specific interaction of the antibodies, which often bring a high production cost and require a long incubation time. Aptamers represent an alternative class of simple and affordable affinity reagents for protein recognition, and replacing antibodies with aptamers in Western blotting would potentially be more time- and cost-effective. In this work, multiple fluorescent DNA aptamers were isolated by in vitro selection to selectively label commonly used tag proteins including GST, MBP, and His-tag. The generated aptamers G1, M1, and H1 specifically bound to their cognate target proteins with nanomolar affinities, respectively. Compared with conventional antibody-based immunoblotting, such aptamer-based procedure gave a cleaner background and was able to selectively label target protein in a complex mixture. Lastly, the identified aptamers were also effective in recognition of different fusion proteins with the same tag, thus greatly expanding the scope of the potential applications of these aptamers. This work provided aptamers as useful molecular tools for selective protein recognition in Western blotting analysis.
Collapse
Affiliation(s)
- Yao Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Zhe Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| |
Collapse
|
37
|
Rosch JC, Neal EH, Balikov DA, Rahim M, Lippmann ES. CRISPR-Mediated Isogenic Cell-SELEX Approach for Generating Highly Specific Aptamers Against Native Membrane Proteins. Cell Mol Bioeng 2020; 13:559-574. [PMID: 33184583 PMCID: PMC7596163 DOI: 10.1007/s12195-020-00651-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The generation of affinity reagents that bind native membrane proteins with high specificity remains challenging. Most in vitro selection paradigms utilize different cell types for positive and negative rounds of selection (where the positive selection is against a cell that expresses the desired membrane protein and the negative selection is against a cell that lacks the protein). However, this strategy can yield affinity reagents that bind unintended membrane proteins on the target cells. To address this issue, we developed a systematic evolution of ligands by exponential enrichment (SELEX) scheme that utilizes isogenic pairs of cells generated via CRISPR techniques. METHODS Using a Caco-2 epithelial cell line with constitutive Cas9 expression, we knocked out the SLC2A1 gene (encoding the GLUT1 glucose transporter) via lipofection with synthetic gRNAs. Cell-SELEX rounds were carried out against wild-type and GLUT1-null cells using a single-strand DNA (ssDNA) library. Next-generation sequencing (NGS) was used to quantify enrichment of prospective binders to the wild-type cells. RESULTS 10 rounds of cell-SELEX were conducted via simultaneous exposure of ssDNA pools to wild-type and GLUT1-null Caco-2 cells under continuous perfusion. The top binders identified from NGS were validated by flow cytometry and immunostaining for their specificity to the GLUT1 receptor. CONCLUSIONS Our data indicate that highly specific aptamers can be isolated with a SELEX strategy that utilizes isogenic cell lines. This approach may be broadly useful for generating affinity reagents that selectively bind to membrane proteins in their native conformations on the cell surface.
Collapse
Affiliation(s)
- Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
| | - Emma H. Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
| | - Daniel A. Balikov
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI USA
| | - Mohsin Rahim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
| | - Ethan S. Lippmann
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, PMB 351604, 2301 Vanderbilt Place, Nashville, TN 37235-1604 USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA
- Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN USA
- Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
38
|
Liu Y, Jiao S, Chang Y, Lu X, Liu P, Zhao Y, Zha C, Shen L, Guo Y, Zhu G. High-affinity recombinant full-length antibody-based immunochromatographic strip assay for rapid and reliable detection of pyraclostrobin residues in food samples. FOOD AGR IMMUNOL 2020. [DOI: 10.1080/09540105.2020.1797640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Ying Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, People’s Republic of China
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, People’s Republic of China
| | - Shasha Jiao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yunyun Chang
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, People’s Republic of China
| | - Xinying Lu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, People’s Republic of China
| | - Pengyan Liu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, People’s Republic of China
| | - Ying Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, People’s Republic of China
| | - Changchun Zha
- Biointron Biological Inc., Taizhou, People’s Republic of China
| | - Lirong Shen
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, People’s Republic of China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, People’s Republic of China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, People’s Republic of China
| |
Collapse
|
39
|
Protein A-Mediated Binding of Staphylococcus spp. to Antibodies in Flow Cytometric Assays and Reduction of This Binding by Using Fc Receptor Blocking Reagent. Appl Environ Microbiol 2020; 86:AEM.01435-20. [PMID: 32591386 PMCID: PMC7440785 DOI: 10.1128/aem.01435-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus and other coagulase-positive Staphylococcus spp. bind the Fc region of IgG antibodies through expression of protein A (SpA). These species have consequently been a source of false-positive signals in antibody-based assays designed to detect other target bacteria. Here, flow cytometry was used to study the influence of a number of factors on the SpA-mediated binding of single cells to an anti-human IgG antibody, including strain, heat killing, overnight storage, growth phase, cell physiology, surface adhesion, and growth in model food systems. Through the costaining of antibody-stained cells with the permeability dye propidium iodide and calcein violet AM, the cell physiological status was related to SpA-mediated antibody binding. Generally, permeabilized cells lacking esterase activity did not strongly bind antibody. The binding of a number of commercially available polyclonal IgG antibodies to non-Staphylococcus spp. was also characterized. Not all SpA-expressing species showed strong binding of mouse IgG, and one species not known to express SpA showed strong binding. Most SpA-expressing strains bound rabbit IgG antibodies to some extent, whereas only one strain bound goat IgG. To reduce or eliminate SpA-mediated IgG binding, the following products were evaluated as blocking reagents and applied prior to staining with primary or secondary antibody: normal rabbit serum, mouse IgG isotype control, goat IgG, and a commercial FcR blocking reagent. Only the FcR blocking reagent consistently reduced SpA-mediated binding of Staphylococcus spp. to antibodies against other species and could be recommended as a blocking reagent in immunoassays designed to detect non-Staphylococcus species.IMPORTANCE This study characterizes a widespread but little-studied problem associated with the antibody-based detection of microbes-the Staphylococcus protein A (SpA)-mediated binding of IgG antibodies-and offers a solution: the use of commercial FcR blocking reagent. A common source of false-positive signals in the detection of microbes in clinical, food, or environmental samples can be eliminated by applying this study's findings. Using flow cytometry, the authors demonstrate the extent of heterogeneity in a culture's SpA-mediated binding of antibodies and that the degree of SpA-mediated antibody binding is strain, growth phase, and food matrix dependent and influenced by simulated food processing treatments and cell adherence. In addition, our studies of SpA-mediated binding of Staphylococcus spp. to antibodies against other bacterial species produced a very nuanced picture, leading us to recommend testing against multiple strains of S. aureus and S. hyicus of all antibodies to be incorporated into any immunoassay designed to detect a non-Staphylococcus spp.
Collapse
|
40
|
Mojarad AE, Gargaria SLM. Aptamer-nanobody based ELASA for detection of Vibrio cholerae O1. IRANIAN JOURNAL OF MICROBIOLOGY 2020; 12:263-272. [PMID: 32994896 PMCID: PMC7502147 DOI: 10.18502/ijm.v12i4.3928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background and Objectives In recent years, the prevalence of diseases caused by Vibrio spp. is increasing in the world, and among them species, Vibrio cholerae is the most important Vibrio associated with pandemic and epidemic cholera outbreaks. Therefore, the development of a reliable method for early and accurate detection of V. cholerae for management of diseases is a real need. Aptamers with the ability to detect targets with high specificity and accuracy can be one of the candidates used for the whole cell and thereby V. cholerae detection. Materials and Methods In this research high-affinity DNA aptamers against with two major serotypes of Inaba (ATCC 39315) and Ogawa (clinical sample) were selected from DNA aptamer library through 12 rounds of Systematic Evolution of Ligands by Exponential (SELEX) enrichment procedure using live cells as a target which monitored with flow cytometry. Results The binding efficiency and dissociation constant of the isolated aptamers V.ch47 and V.ch27 were 56.4%, 53.3% and 15.404 ± 4.776 pM, 20.186 ± 3.655 pM, respectively. A sandwich Enzyme-linked aptamer sorbent assay (ELASA) was developed with the biotinylated V.ch47 aptamer and our previously developed nanobody anti-Lipopolysaccharides (LPS). We optimized this system with V. cholerae O1 and analyzed their cross reactivity with close physiological bacteria. The threshold of detection was obtained 104 CFU/ml in the sandwich ELASA process. Conclusion Our results showed that the sandwich ELASA is sensitive enough for the rapid detection of V. cholerae from other bacteria.
Collapse
|
41
|
Tripathi P, Kumar A, Sachan M, Gupta S, Nara S. Aptamer-gold nanozyme based competitive lateral flow assay for rapid detection of CA125 in human serum. Biosens Bioelectron 2020; 165:112368. [PMID: 32729500 DOI: 10.1016/j.bios.2020.112368] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
For several decades, point-of-care technology (POCT) has proven its potential regarding swift and cost-efficient detection of analytes. Lateral flow assay is a highly popular POC technology that needs improvisation to increase its sensitivity, cost effectiveness and quantification so that it becomes more user friendly and affordable technology. In this context, the present study has investigated the use of aptamers and nanozymes together for the first time in developing an Aptamer-nanozyme lateral flow assay (ALFA). The present study uses a specific aptamer for CA125 as capture reagent and peroxidase mimetic gold nanoparticles as label for detection of CA125 in human serum through developed competitive ALFA. The assay was specific and has a limit of detection of 3.71 U/mL. The ALFA test was in house validated for its precision, recovery and showed a significant correlation with established CA125 chemiluminiscent ELISA with P-value<0.0001. In summary, this assay quantitatively detects an analyte by using an aptamer and peroxidase mimetic gold nanoparticles that ensures circumventing the use of antibodies and incorporating enzyme mimetic activity in assay systems.
Collapse
Affiliation(s)
- Pranav Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, Uttar Pradesh, India
| | - Anand Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, Uttar Pradesh, India
| | - Manisha Sachan
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, Uttar Pradesh, India
| | - Sameer Gupta
- Department of Surgical Oncology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, Uttar Pradesh, India.
| |
Collapse
|
42
|
Xu Y, Deng M, Zhang H, Tan S, Li D, Li S, Luo L, Liao G, Wang Q, Huang J, Liu J, Yang X, Wang K. Selection of Affinity Reagents to Neutralize the Hemolytic Toxicity of Melittin Based on a Self-Assembled Nanoparticle Library. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16040-16049. [PMID: 32174109 DOI: 10.1021/acsami.0c00303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antibodies are the most common affinity reagents for specific target recognition. However, their applications are limited by high cost and low stability. Thus, seeking substitutes for antibodies is of great significance. In this work, we designed a library containing 82 self-assembled nanoparticles (SNPs) based on the self-assembly of β-cyclodextrin polymers and adamantane derivatives, and then screened out eight types of SNPs capable of suppressing the toxicity of melittin using a hemolytic activity neutralization assay. The affinities of the SNPs to melittin were demonstrated using surface plasmon resonance (SPR). As evidenced by cytotoxicity experiments, SNPs could also suppress the toxicity of melittin to other cells. In addition, to verify the universality of our method, 11 types of SNPs capable of neutralizing another toxic peptide, phenolic soluble polypeptide (PSMα3) secreted by Staphylococcus aureus, were selected from the same SNP library. Our self-assembly-based method for the library preparation has the advantages of flexible design, mild experimental condition, and simple operation, which is expected to seek artificial affinity reagents for more species.
Collapse
Affiliation(s)
- Yaqing Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Meitao Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Haitao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Sha Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Dan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Shaoyuan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Lei Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Guofu Liao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
43
|
Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints. Antibodies (Basel) 2020; 9:antib9020008. [PMID: 32224944 PMCID: PMC7362173 DOI: 10.3390/antib9020008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Nearly all commercial antibody suppliers also may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that, in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies, as well as to assign a specific reagent to a datasheet of a commercial supplier, public database record, or antibody ID.
Collapse
|
44
|
Predicting Future Prospects of Aptamers in Field-Effect Transistor Biosensors. Molecules 2020; 25:molecules25030680. [PMID: 32033448 PMCID: PMC7036789 DOI: 10.3390/molecules25030680] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/26/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Aptamers, in sensing technology, are famous for their role as receptors in versatile applications due to their high specificity and selectivity to a wide range of targets including proteins, small molecules, oligonucleotides, metal ions, viruses, and cells. The outburst of field-effect transistors provides a label-free detection and ultra-sensitive technique with significantly improved results in terms of detection of substances. However, their combination in this field is challenged by several factors. Recent advances in the discovery of aptamers and studies of Field-Effect Transistor (FET) aptasensors overcome these limitations and potentially expand the dominance of aptamers in the biosensor market.
Collapse
|
45
|
Shao Q, Chen T, Sheng K, Liu Z, Zhang Z, Romesberg FE. Selection of Aptamers with Large Hydrophobic 2'-Substituents. J Am Chem Soc 2020; 142:2125-2128. [PMID: 31961667 DOI: 10.1021/jacs.9b10538] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Previously, we evolved a DNA polymerase, SFM4-3, for the recognition of substrates modified at their 2' positions with a fluoro, O-methyl, or azido substituent. Here we use SFM4-3 to synthesize 2'-azido-modified DNA; we then use the azido group to attach different, large hydrophobic groups via click chemistry. We show that SFM4-3 recognizes the modified templates under standard conditions, producing natural DNA and thereby allowing amplification. To demonstrate the utility of this remarkable property, we use SFM4-3 to select aptamers with large hydrophobic 2' substituents that bind human neutrophil elastase or the blood coagulation protein factor IXa. The results indicate that SFM4-3 should facilitate the discovery of aptamers that adopt novel and perhaps more protein-like folds with hydrophobic cores that in turn allow them to access novel activities.
Collapse
Affiliation(s)
- Qian Shao
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Tingjian Chen
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Kai Sheng
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Zhixia Liu
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Zhuochen Zhang
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Floyd E Romesberg
- Department of Chemistry , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
46
|
Ngo-Duc TT, Alibay Z, Plank JM, Cheeney JE, Haberer ED. Gold-Decorated M13 I-Forms and S-Forms for Targeted Photothermal Lysis of Bacteria. ACS APPLIED MATERIALS & INTERFACES 2020; 12:126-134. [PMID: 31800209 DOI: 10.1021/acsami.9b15682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
With the emergence of multidrug-resistant bacteria, photothermal therapy has been proposed as an alternative to antibiotics for targeting and killing pathogens. In this study, two M13 bacteriophage polymorphs were studied as nanoscaffolds for plasmonic bactericidal agents. Receptor-binding proteins found on the pIII minor coat protein targeted Escherichia coli bacteria with F-pili (F+ strain), while a gold-binding peptide motif displayed on the pVIII major coat protein templated Au nanoparticles. Temperature-dependent exposure to a chloroform-water interface transformed the native filamentous phage into either rod-like or spheroid structures. The morphology, geometry, and size of the polymorphs, as well as the receptor-binding protein and host cell receptor interaction were studied using electron microscopy. Au/template structures were formed through incubation with Au colloid, and optical absorbance was measured. Despite the closely packed Au nanoparticle layer on the surface the viral scaffolds, electron microscopy confirmed that host receptor affinity was retained. Photothermal bactericidal studies were performed using 532 nm laser irradiation with a variety of powers and exposure times. Bacterial viability was assessed using colony count. With the shape-modified M13 scaffolds, up to 64% of E. coli were killed within 20 min. These studies demonstrate the promise of i-form and s-form polymorphs for the directed plasmonic-based photothermal killing of bacteria.
Collapse
Affiliation(s)
- Tam-Triet Ngo-Duc
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
| | - Zaira Alibay
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
| | - Joshua M Plank
- Department of Electrical and Computer Engineering , University of California , Riverside 92521 , United States
| | - Joseph Earl Cheeney
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
| | - Elaine D Haberer
- Materials Science and Engineering Program , University of California , Riverside 92521 , United States
- Department of Electrical and Computer Engineering , University of California , Riverside 92521 , United States
| |
Collapse
|
47
|
Marigliani B, Sehn FP, Silva JVMA, Balottin LBL, Augusto EDFP, Buehler AM. The Overt and Hidden Use of Animal-Derived Products in Alternative Methods for Skin Sensitisation: A Systematic Review. Altern Lab Anim 2020; 47:174-195. [PMID: 31902222 DOI: 10.1177/0261192919896361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In vitro methods that can replace animal testing in the identification of skin sensitisers are now a reality. However, as cell culture and related techniques usually rely on animal-derived products, these methods may be failing to address the complete replacement of animals in safety assessment. The objective of this study was to identify the animal-derived products that are used as part of in vitro methods for skin sensitisation testing. Thus, a systematic review of 156 articles featuring 83 different in vitro methods was carried out and, from this review, the use of several animal-derived products from different species was identified, with the use of fetal bovine serum being cited in most of the methods (78%). The use of sera from other animals, monoclonal antibodies and animal proteins were also variously mentioned. While non-animal alternatives are available and methods free of animal-derived products are emerging, most of the current methods reported used at least one animal-derived product, which raises ethical and technical concerns. Therefore, to deliver technically and ethically better in vitro methods for the safety assessment of chemicals, more effort should be made to replace products of animal origin in existing methods and to avoid their use in the development of new method protocols.
Collapse
Affiliation(s)
- Bianca Marigliani
- Department of Research and Toxicology, Humane Society International (HSI), Washington, DC, USA
| | - Felipe Perraro Sehn
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | | | - Luciene Bottentuit López Balottin
- Laboratory of Tissue Bioengineering, National Institute of Metrology, Quality and Technology (Inmetro), Duque de Caxias, Rio de Janeiro, Brazil
| | - Elisabeth de Fatima Pires Augusto
- Department of Science and Technology, Science and Technology Institute, Federal University of São Paulo (UNIFESP), São José dos Campos, São Paulo, Brazil
| | - Anna Maria Buehler
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
48
|
Afrasiabi S, Pourhajibagher M, Raoofian R, Tabarzad M, Bahador A. Therapeutic applications of nucleic acid aptamers in microbial infections. J Biomed Sci 2020; 27:6. [PMID: 31900238 PMCID: PMC6941257 DOI: 10.1186/s12929-019-0611-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Today, the treatment of bacterial infections is a major challenge, due to growing rate of multidrug-resistant bacteria, complication of treatment and increased healthcare costs. Moreover, new treatments for bacterial infections are limited. Oligonucleotide aptamers are single stranded DNAs or RNAs with target-selective high-affinity feature, which considered as nucleic acid-based affinity ligands, replacing monoclonal antibodies. The aptamer-based systems have been found to be talented tools in the treatment of microbial infections, regarding their promising anti-biofilm and antimicrobial activities; they can reduce or inhibit the effects of bacterial toxins, and inhibit pathogen invasion to immune cell, as well as they can be used in drug delivery systems. The focus of this review is on the therapeutic applications of aptamers in infections. In this regard, an introduction of infections and related challenges were presented, first. Then, aptamer definition and selection, with a brief history of aptamers development against various pathogens and toxins were reviewed. Diverse strategies of aptamer application in drug delivery, as well as, the effect of aptamers on the immune system, as the main natural agents of human defense against pathogens, were also discussed. Finally, the future trends in clinical applications of this technology were discussed.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Raoofian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Li Z, Hu B, Zhou R, Zhang X, Wang R, Gao Y, Sun M, Jiao B, Wang L. Selection and application of aptamers with high-affinity and high-specificity against dinophysistoxin-1. RSC Adv 2020; 10:8181-8189. [PMID: 35497848 PMCID: PMC9049938 DOI: 10.1039/c9ra10600f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022] Open
Abstract
Diarrhetic shellfish toxins (DSTs) are marine toxins distributed widely in the world, which pose a major threat to the health of mankind. Dinophysistoxin-1 (DTX-1) has the most potent toxicity in DSTs. However, the current detection methods have ethical problems and technical defects. Further research is needed, to develop a more suitable alternative to the supervision system. In this work, we successfully obtained an aptamer with high affinity and specificity bound to DTX-1 for the first time. After optimization, a core sequence of the aptamer with a higher KD of 64 nM was obtained, while the binding mode of the core sequence and DTX-1 was explored. Based on this aptamer, we developed a biolayer interferometry (BLI) biosensor platform for DTX-1 detection. The aptasensor exhibited a broad detection range from 40 to 600 nM DTX-1 (linear range from 80 to 200 nM), and the low detection limit was 614 pM. Morever, the aptasensor showed good reproducibility and stability, which indicated that this novel aptasensor had broad development prospects for the sensitive and rapid detection of DTX-1. For the first time, the aptamer of dinophysistoxin-1 was successfully obtained with high affinity and specificity by SELEX, and an aptasensor with a detection range from 40 to 600 nM was developed by biolayer interferometry.![]()
Collapse
Affiliation(s)
- Zhen Li
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Rong Zhou
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Xiaojuan Zhang
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Ruizhe Wang
- Spine Center
- Department of Orthopedics
- Changzheng Hospital Affiliated to Second Military Medical University
- Shanghai
- P. R. China
| | - Yun Gao
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| |
Collapse
|
50
|
Nsairat H, Mahmoud IS, Odeh F, Abuarqoub D, Al-Azzawi H, Zaza R, Qadri MI, Ismail S, Al Bawab A, Awidi A, Alshaer W. Grafting of anti-nucleolin aptamer into preformed and remotely loaded liposomes through aptamer-cholesterol post-insertion. RSC Adv 2020; 10:36219-36229. [PMID: 35517091 PMCID: PMC9056972 DOI: 10.1039/d0ra07325c] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
A new combination strategy of an active loading and active targeting approach was applied in this work. The liposomes actively loaded with Curcumin (CRM) (LipCRM) were decorated with cholesterol tagged-anti-nucleolin AS1411 aptamer (NCL) via a new post-insertion approach, utilizing the cholesterol as a wedge to incorporate aptamer into the surface of the liposome bilayer. A successful NCL post-insertion was verified by agarose gel electrophoresis and dynamic light scattering (DLS). The cellular uptake of AptNCL-Lip was investigated using flow cytometry and Confocal Laser Scanning Microscopy (CLSM) on two different human breast cancer cell lines (MCF-7 and MDA-MB-231). The uptake and cytotoxicity of loaded CRM were investigated using flow cytometry and MTT assay. Our results showed successful post insertion of NCL aptamer to the surface of Lip. Also, higher cellular uptake was noted for AptNCL-Alexa-LipRhod compared to blank LipRhod in both cell lines. Moreover, CLSM showed prominent endocytosis and uptake of AptNCL-Alexa–LipRhod into the cytoplasm of breast cancer cells. Furthermore, the results showed a significant increase in the uptake and cytotoxicity of AptNCL-LipCRM compared to LipCRM in both cell lines. Overall, our results demonstrate a successful post-insertion of cholesterol-tagged aptamer into liposomes and the possible combination between active loading and active targeting. A new combination strategy of an active loading and active targeting approach was applied in this work.![]()
Collapse
|