1
|
Wolfe KD, Alahuhta M, Himmel ME, Bomble YJ, Jennings GK, Cliffel DE. Long-Term Stability of Nicotinamide Cofactors in Common Aqueous Buffers: Implications for Cell-Free Biocatalysis. Molecules 2024; 29:5453. [PMID: 39598842 PMCID: PMC11597533 DOI: 10.3390/molecules29225453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
The use of nicotinamide cofactors in cell-free biocatalytic systems is necessitated by the high specificity that these enzymes show for their natural redox mediators. Unfortunately, isolation and use of natural cofactors is costly, which suggests that enhancing their stability is key to enabling their use in industrial processes. This study details NAD+ and NADH stability in three buffer systems (sodium phosphate, HEPES, and Tris) at 19 °C and 25 °C and for up to 43 d. In Tris, both NADH and NAD+ were found to be highly stable. NADH degradation rates of 4 μM/d (19 °C) and 11 μM/d (25 °C) were observed in Tris buffer, corresponding to >90% and 75% remaining after 43 d, respectively. Higher degradation rates (up to 34 μM/d) were observed when sodium phosphate or HEPES buffers were used. The effect of a mild increase in temperature was determined to be significant for long-term stability, and it was shown that degradation under these conditions can be easily monitored via UV-Vis, because the degradation proceeds via the oxidation/de-aromatization of the dihydropyridine ring. Overall, this work emphasizes that the choice of buffer system is consequential for bioreactor systems employing natural nicotinamide cofactors for extended periods of time.
Collapse
Affiliation(s)
- Kody D. Wolfe
- Institute for Sustainable Energy & The Environment, Ohio University, Athens, OH 45701, USA;
| | - Markus Alahuhta
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO 80401, USA; (M.A.); (M.E.H.); (Y.J.B.)
| | - Michael E. Himmel
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO 80401, USA; (M.A.); (M.E.H.); (Y.J.B.)
| | - Yannick J. Bomble
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO 80401, USA; (M.A.); (M.E.H.); (Y.J.B.)
| | - G. Kane Jennings
- Chemical & Biomolecular Engineering Department, Vanderbilt University, Nashville, TN 37235, USA
| | - David E. Cliffel
- Chemistry Department, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Feng J, Jin R, Cheng S, Li H, Wang X, Chen K. Establishing an Artificial Pathway for the Biosynthesis of Octopamine and Synephrine. ACS Synth Biol 2024; 13:1762-1772. [PMID: 38815614 DOI: 10.1021/acssynbio.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
In this study, we designed an artificial pathway composed of tyramine β-hydroxylase (TBH) and phenylethanolamine N-methyltransferase (PNMT) for the biosynthesis of both octopamine and synephrine. As most TBH and PNMT originate from eukaryotic animals and plants, the heterologous expression and identification of functional TBH and PNMT are critical for establishing the pathway in mode microorganisms like Escherichia coli. Here, three TBHs were evaluated, and only TBH from Drosophila melanogaster was successfully expressed in the soluble form in E. coli. Its expression was promoted by evaluating the effects of different expression strategies. The specific enzyme activity of TBH was optimized up to 229.50 U·g-1, and the first step in the biosynthetic pathway was successfully established and converted tyramine to synthesize 0.10 g/L of octopamine. Furthermore, the second step to produce synephrine from octopamine was developed by screening PNMT, enhancing enzyme activity, and optimizing reaction conditions, with a maximum synephrine production of 2.02 g/L. Finally, based on the optimization of the reaction conditions for each individual reaction, the one-pot cascade reaction for synthesizing synephrine from tyramine was constructed by combining the TBH and PNMT. The synthetic synephrine reached 30.05 mg/L with tyramine as substrate in the two-step enzyme cascade system. With further optimization and amplification, the titers of octopamine and synephrine were increased to 0.45 and 0.20 g/L, respectively, with tyramine as substrate. This work was the first achievement of the biosynthesis of octopamine and synephrine to date.
Collapse
Affiliation(s)
- Jiao Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Runyuan Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Shasha Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Hui Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| |
Collapse
|
3
|
Sigg A, Klimacek M, Nidetzky B. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production I: Kinetic model development. Biotechnol Bioeng 2024; 121:580-592. [PMID: 37983971 DOI: 10.1002/bit.28602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
One-pot cascade reactions of coupled disaccharide phosphorylases enable an efficient transglycosylation via intermediary α-d-glucose 1-phosphate (G1P). Such transformations have promising applications in the production of carbohydrate commodities, including the disaccharide cellobiose for food and feed use. Several studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis from sucrose, but the boundaries on transformation efficiency that result from kinetic and thermodynamic characteristics of the individual enzyme reactions are not known. Here, we assessed in a step-by-step systematic fashion the practical requirements of a kinetic model to describe cellobiose production at industrially relevant substrate concentrations of up to 600 mM sucrose and glucose each. Mechanistic initial-rate models of the two-substrate reactions of sucrose phosphorylase (sucrose + phosphate → G1P + fructose) and cellobiose phosphorylase (G1P + glucose → cellobiose + phosphate) were needed and additionally required expansion by terms of glucose inhibition, in particular a distinctive two-site glucose substrate inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with mass action terms accounting for the approach to equilibrium, the kinetic model gave an excellent fit and a robust prediction of the full reaction time courses for a wide range of enzyme activities as well as substrate concentrations, including the variable substoichiometric concentration of phosphate. The model thus provides the essential engineering tool to disentangle the highly interrelated factors of conversion efficiency in the coupled enzyme reaction; and it establishes the necessary basis of window of operation calculations for targeted optimizations toward different process tasks.
Collapse
Affiliation(s)
- Alexander Sigg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| |
Collapse
|
4
|
Sigg A, Klimacek M, Nidetzky B. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production II: Model-based multiobjective optimization. Biotechnol Bioeng 2024; 121:566-579. [PMID: 37986649 DOI: 10.1002/bit.28601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
The inherent complexity of coupled biocatalytic reactions presents a major challenge for process development with one-pot multienzyme cascade transformations. Kinetic models are powerful engineering tools to guide the optimization of cascade reactions towards a performance suitable for scale up to an actual production. Here, we report kinetic model-based window of operation analysis for cellobiose production (≥100 g/L) from sucrose and glucose by indirect transglycosylation via glucose 1-phosphate as intermediate. The two-step cascade transformation is catalyzed by sucrose and cellobiose phosphorylase in the presence of substoichiometric amounts of phosphate (≤27 mol% of substrate). Kinetic modeling was instrumental to uncover the hidden effect of bulk microviscosity due to high sugar concentrations on decreasing the rate of cellobiose phosphorylase specifically. The mechanistic-empirical hybrid model thus developed gives a comprehensive description of the cascade reaction at industrially relevant substrate conditions. Model simulations serve to unravel opposed relationships between efficient utilization of the enzymes and maximized concentration (or yield) of the product within a given process time, in dependence of the initial concentrations of substrate and phosphate used. Optimum balance of these competing key metrics of process performance is suggested from the model-calculated window of operation and is verified experimentally. The evidence shown highlights the important use of kinetic modeling for the characterization and optimization of cascade reactions in ways that appear to be inaccessible to purely data-driven approaches.
Collapse
Affiliation(s)
- Alexander Sigg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology (acib), Graz, Austria
| |
Collapse
|
5
|
Ma X, Sun C, Xian M, Guo J, Zhang R. Progress in research on the biosynthesis of 1,2,4-butanetriol by engineered microbes. World J Microbiol Biotechnol 2024; 40:68. [PMID: 38200399 DOI: 10.1007/s11274-024-03885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
1,2,4-butanetriol (BT) is a polyol with unique chemical properties, which has a stereocenter and can be divided into D-BT (the S-enantiomer) and L-BT (the R-enantiomer). BT can be used for the synthesis of 1,2,4-butanetriol trinitrate, 3-hydroxytetrahydrofuran, polyurethane, and other chemicals. It is widely used in the military industry, medicine, tobacco, polymer. At present, the BT is mainly synthesized by chemical methods, which are accompanied by harsh reaction conditions, poor selectivity, many by-products, and environmental pollution. Therefore, BT biosynthesis methods with the advantages of mild reaction conditions and green sustainability have become a current research hotspot. In this paper, the research status of microbial synthesis of BT was summarized from the following three aspects: (1) the biosynthetic pathway establishment for BT from xylose; (2) metabolic engineering strategies employed for improving BT production from xylose; (3) other substrates for BT production. Finally, the challenges and prospects of biosynthetic BT were discussed for future methods to improve competitiveness for industrial production.
Collapse
Affiliation(s)
- Xiangyu Ma
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Sun
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jing Guo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| | - Rubing Zhang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
- Shandong Energy Institute, Qingdao, 266101, China.
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China.
| |
Collapse
|
6
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
7
|
Dong H, Yang X, Shi J, Xiao C, Zhang Y. Exploring the Feasibility of Cell-Free Synthesis as a Platform for Polyhydroxyalkanoate (PHA) Production: Opportunities and Challenges. Polymers (Basel) 2023; 15:polym15102333. [PMID: 37242908 DOI: 10.3390/polym15102333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The extensive utilization of traditional petroleum-based plastics has resulted in significant damage to the natural environment and ecological systems, highlighting the urgent need for sustainable alternatives. Polyhydroxyalkanoates (PHAs) have emerged as promising bioplastics that can compete with petroleum-based plastics. However, their production technology currently faces several challenges, primarily focused on high costs. Cell-free biotechnologies have shown significant potential for PHA production; however, despite recent progress, several challenges still need to be overcome. In this review, we focus on the status of cell-free PHA synthesis and compare it with microbial cell-based PHA synthesis in terms of advantages and drawbacks. Finally, we present prospects for the development of cell-free PHA synthesis.
Collapse
Affiliation(s)
- Huaming Dong
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jingjing Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Chunqiao Xiao
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
8
|
Maureira D, Romero O, Illanes A, Wilson L, Ottone C. Industrial bioelectrochemistry for waste valorization: State of the art and challenges. Biotechnol Adv 2023; 64:108123. [PMID: 36868391 DOI: 10.1016/j.biotechadv.2023.108123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023]
Abstract
Bioelectrochemistry has gained importance in recent years for some of its applications on waste valorization, such as wastewater treatment and carbon dioxide conversion, among others. The aim of this review is to provide an updated overview of the applications of bioelectrochemical systems (BESs) for waste valorization in the industry, identifying current limitations and future perspectives of this technology. BESs are classified according to biorefinery concepts into three different categories: (i) waste to power, (ii) waste to fuel and (iii) waste to chemicals. The main issues related to the scalability of bioelectrochemical systems are discussed, such as electrode construction, the addition of redox mediators and the design parameters of the cells. Among the existing BESs, microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) stand out as the more advanced technologies in terms of implementation and R&D investment. However, there has been little transfer of such achievements to enzymatic electrochemical systems. It is necessary that enzymatic systems learn from the knowledge reached with MFC and MEC to accelerate their development to achieve competitiveness in the short term.
Collapse
Affiliation(s)
- Diego Maureira
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Oscar Romero
- Bioprocess Engineering and Applied Biocatalysis Group, Departament of Chemical, Biological and Enviromental Engineering, Universitat Autònoma de Barcelona, 08193, Spain.
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Lorena Wilson
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile
| | - Carminna Ottone
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2085, Valparaíso, Chile.
| |
Collapse
|
9
|
Cell-free protein synthesis system for bioanalysis: Advances in methods and applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
10
|
Bhat NA, Ganjoo A, Sharma N, Lone BA, Shafeeq H, Kumari H, Gairola S, Babu V. Biotransformation of D-limonene to carveol by an endophytic fungus Aspergillus flavus IIIMF4012. BIOCATAL BIOTRANSFOR 2023. [DOI: 10.1080/10242422.2023.2178309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
| | - Ananta Ganjoo
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nitika Sharma
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Bashir Ahmad Lone
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Haseena Shafeeq
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Hema Kumari
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sumeet Gairola
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vikash Babu
- CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
11
|
Paluch E, Sobierajska P, Okińczyc P, Widelski J, Duda-Madej A, Krzyżanowska B, Krzyżek P, Ogórek R, Szperlik J, Chmielowiec J, Gościniak G, Wiglusz RJ. Nanoapatites Doped and Co-Doped with Noble Metal Ions as Modern Antibiofilm Materials for Biomedical Applications against Drug-Resistant Clinical Strains of Enterococcus faecalis VRE and Staphylococcus aureus MRSA. Int J Mol Sci 2022; 23:1533. [PMID: 35163457 PMCID: PMC8836119 DOI: 10.3390/ijms23031533] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
The main aim of our research was to investigate antiadhesive and antibiofilm properties of nanocrystalline apatites doped and co-doped with noble metal ions (Ag+, Au+, and Pd2+) against selected drug-resistant strains of Enterococcus faecalis and Staphylococcus aureus. The materials with the structure of apatite (hydroxyapatite, nHAp; hydroxy-chlor-apatites, OH-Cl-Ap) containing 1 mol% and 2 mol% of dopants and co-dopants were successfully obtained by the wet chemistry method. The majority of them contained an additional phase of metallic nanoparticles, in particular, AuNPs and PdNPs, which was confirmed by the XRPD, FTIR, UV-Vis, and SEM-EDS techniques. Extensive microbiological tests of the nanoapatites were carried out determining their MIC, MBC value, and FICI. The antiadhesive and antibiofilm properties of the tested nanoapatites were determined in detail with the use of fluorescence microscopy and computer image analysis. The results showed that almost all tested nanoapatites strongly inhibit adhesion and biofilm production of the tested bacterial strains. Biomaterials have not shown any significant cytotoxic effect on fibroblasts and even increased their survival when co-incubated with bacterial biofilms. Performed analyses confirmed that the nanoapatites doped and co-doped with noble metal ions are safe and excellent antiadhesive and antibiofilm biomaterials with potential use in the future in medical sectors.
Collapse
Affiliation(s)
- Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Jarosław Widelski
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Barbara Krzyżanowska
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Rafał Ogórek
- Department of Mycology and Genetics, University of Wroclaw, Przybyszewskiego 63, 51-148 Wroclaw, Poland;
| | - Jakub Szperlik
- Faculty of Biological Sciences, Botanical Garden, University of Wroclaw, Sienkiewicza 23, 50-525 Wroclaw, Poland;
| | - Jacek Chmielowiec
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| | - Grażyna Gościniak
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-376 Wroclaw, Poland; (A.D.-M.); (B.K.); (P.K.); (G.G.)
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (P.S.); (J.C.)
| |
Collapse
|
12
|
Li F, Wei X, Zhang L, Liu C, You C, Zhu Z. Installing a Green Engine To Drive an Enzyme Cascade: A Light‐Powered In Vitro Biosystem for Poly(3‐hydroxybutyrate) Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fei Li
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Lin Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences 20 Nanxincun, Xiangshan Beijing 100093 P. R. China
| | - Cheng Liu
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences 20 Nanxincun, Xiangshan Beijing 100093 P. R. China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- National Technology Innovation Center of Synthetic Biology 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
- University of Chinese Academy of Sciences 19A Yuquan Road, Shijingshan District Beijing 100049 P. R. China
- National Technology Innovation Center of Synthetic Biology 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 P. R. China
| |
Collapse
|
13
|
Sousa JPM, Ramos MJ, Fernandes PA. Modern strategies for the diversification of the supply of natural compounds - the case of alkaloid painkillers. Chembiochem 2021; 23:e202100623. [PMID: 34971022 DOI: 10.1002/cbic.202100623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Indexed: 11/07/2022]
Abstract
Plant-derived natural compounds are used for treating diseases since the beginning of humankind. The supply of many plant-derived natural compounds for medicinal purposes, such as thebaine, morphine, and codeine, is, nowadays, majorly dependent on opium poppy crop harvesting. This dependency puts an extra risk factor in ensuring the supply chain because crops are highly susceptible to environmental factors. Emerging technologies, such as biocatalysis, might help to solve this problem, by diversifying the sources of supply of these compounds. Here we review the first committed step in the production of alkaloid painkillers, the production of S-norcoclaurine, and the enzymes involved. The improvement of these enzymes can be carried out by experimental directed evolution and rational design strategies, supported by computational methods, to create variants that produce the S-norcoclaurine precursor for alkaloid painkillers in heterologous organisms, meeting the pharmaceutical industry standards and needs without depending on opium poppy crops.
Collapse
Affiliation(s)
- João Pedro Marques Sousa
- REQUIMTE LAQV Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, PORTUGAL
| | - Maria J Ramos
- FCUP: Universidade do Porto Faculdade de Ciencias, Chemistry and Biochemistry, PORTUGAL
| | - Pedro A Fernandes
- Universidade do Porto, Department of Chemistry Theoretical and Computational Chemistry Group, Rua do Campo Alegre, 687, 4169-007, Porto, PORTUGAL
| |
Collapse
|
14
|
Li D, Xiong Q, Liang L, Duan H. Multienzyme nanoassemblies: from rational design to biomedical applications. Biomater Sci 2021; 9:7323-7342. [PMID: 34647942 DOI: 10.1039/d1bm01106e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multienzyme nanoassemblies (MENAs) that combine the functions of several enzymes into one entity have attracted widespread research interest due to their improved enzymatic performance and great potential for multiple applications. Considerable progress has been made to design and fabricate MENAs in recent years. This review begins with an introduction of the up-to-date strategies in designing MENAs, mainly including substrate channeling, compartmentalization and control of enzyme stoichiometry. The desirable properties that endow MENAs with important applications are also discussed in detail. Then, the recent advances in utilizing MENAs in the biomedical field are reviewed, with a particular focus on biosensing, tumor therapy, antioxidant and drug delivery. Finally, the challenges and perspectives for development of versatile MENAs are summarized.
Collapse
Affiliation(s)
- Di Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qirong Xiong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | - Li Liang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. .,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| |
Collapse
|
15
|
Li F, Wei X, Zhang L, Liu C, You C, Zhu Z. Installing a Green Engine To Drive an Enzyme Cascade: A Light-Powered In Vitro Biosystem for Poly(3-hydroxybutyrate) Synthesis. Angew Chem Int Ed Engl 2021; 61:e202111054. [PMID: 34664348 DOI: 10.1002/anie.202111054] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 01/22/2023]
Abstract
Many existing in vitro biosystems harness power from the chemical energy contained in substrates and co-substrates, and light or electric energy provided from abiotic parts, leading to a compromise in atom economy, incompatibility between biological and abiotic parts, and most importantly, incapability to spatiotemporally co-regenerate ATP and NADPH. In this study, we developed a light-powered in vitro biosystem for poly(3-hydroxybutyrate) (PHB) synthesis using natural thylakoid membranes (TMs) to regenerate ATP and NADPH for a five-enzyme cascade. Through effective coupling of cofactor regeneration and mass conversion, 20 mM PHB was yielded from 50 mM sodium acetate with a molar conversion efficiency of carbon of 80.0 % and a light-energy conversion efficiency of 3.04 %, which are much higher than the efficiencies of similar in vitro PHB synthesis biosystems. This suggests the promise of installing TMs as a green engine to drive more enzyme cascades.
Collapse
Affiliation(s)
- Fei Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Xinlei Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Lin Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, P. R. China
| | - Cheng Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, P. R. China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P. R. China.,National Technology Innovation Center of Synthetic Biology, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
16
|
Zhou Y, Wu S, Bornscheuer UT. Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chem Commun (Camb) 2021; 57:10661-10674. [PMID: 34585190 DOI: 10.1039/d1cc04243b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Developing (chemo)enzymatic cascades is very attractive for green synthesis, because they streamline multistep synthetic processes. In this Feature Article, we have summarized the recent advances in in vitro or whole-cell cascade reactions with a focus on the use of renewable bio-based resources as starting materials. This includes the synthesis of rare sugars (such as ketoses, L-ribulose, D-tagatose, myo-inositol or aminosugars) from readily available carbohydrate sources (cellulose, hemi-cellulose, starch), in vitro enzyme pathways to convert glucose to various biochemicals, cascades to convert 5-hydroxymethylfurfural and furfural obtained from lignin or xylose into novel precursors for polymer synthesis, the syntheses of phenolic compounds, cascade syntheses of aliphatic and highly reduced chemicals from plant oils and fatty acids, upgrading of glycerol or ethanol as well as cascades to transform natural L-amino acids into high-value (chiral) compounds. In several examples these processes have demonstrated their efficiency with respect to high space-time yields and low E-factors enabling mature green chemistry processes. Also, the strengths and limitations are discussed and an outlook is provided for improving the existing and developing new cascades.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China.
| | - Shuke Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, P. R. China. .,Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| | - Uwe T Bornscheuer
- Department of Biotechnology & Enzyme Catalysis, Institute of Biochemistry, University Greifswald, Felix-Hausdorff-Str. 4, D-17487 Greifswald, Germany.
| |
Collapse
|
17
|
Getting the Most Out of Enzyme Cascades: Strategies to Optimize In Vitro Multi-Enzymatic Reactions. Catalysts 2021. [DOI: 10.3390/catal11101183] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In vitro enzyme cascades possess great benefits, such as their synthetic capabilities for complex molecules, no need for intermediate isolation, and the shift of unfavorable equilibria towards the products. Their performance, however, can be impaired by, for example, destabilizing or inhibitory interactions between the cascade components or incongruous reaction conditions. The optimization of such systems is therefore often inevitable but not an easy task. Many parameters such as the design of the synthesis route, the choice of enzymes, reaction conditions, or process design can alter the performance of an in vitro enzymatic cascade. Many strategies to tackle this complex task exist, ranging from experimental to in silico approaches and combinations of both. This review collates examples of various optimization strategies and their success. The feasibility of optimization goals, the influence of certain parameters and the usage of algorithm-based optimizations are discussed.
Collapse
|
18
|
Abstract
Significant advances in enzyme discovery, protein and reaction engineering have transformed biocatalysis into a viable technology for the industrial scale manufacturing of chemicals. Multi-enzyme catalysis has emerged as a new frontier for the synthesis of complex chemicals. However, the in vitro operation of multiple enzymes simultaneously in one vessel poses challenges that require new strategies for increasing the operational performance of enzymatic cascade reactions. Chief among those strategies is enzyme co-immobilization. This review will explore how advances in synthetic biology and protein engineering have led to bioinspired co-localization strategies for the scaffolding and compartmentalization of enzymes. Emphasis will be placed on genetically encoded co-localization mechanisms as platforms for future autonomously self-organizing biocatalytic systems. Such genetically programmable systems could be produced by cell factories or emerging cell-free systems. Challenges and opportunities towards self-assembling, multifunctional biocatalytic materials will be discussed.
Collapse
|
19
|
Lacto- N-biose synthesis via a modular enzymatic cascade with ATP regeneration. iScience 2021; 24:102236. [PMID: 33748718 PMCID: PMC7967015 DOI: 10.1016/j.isci.2021.102236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/18/2020] [Accepted: 02/20/2021] [Indexed: 11/23/2022] Open
Abstract
Human milk oligosaccharides (HMOs), the third most abundant solid component of human milk, are reported to be beneficial to infant health. The biosynthesis of lacto-N-biose (LNB), the building block for HMOs, suffers from excessive addition of cofactors and intermediate inhibition. Here, we developed an in vitro multienzyme cascade composed of LNB module, ATP regeneration, and pyruvate oxidase-driven phosphate recycling to produce LNB. The integration between ATP regeneration and Pi alleviation increased the LNB conversion ratio and resulted in a ΔG'° decrease of 540 KJ/mol. Under optimal conditions, the LNB conversion ratio was improved from 0.34 to 0.83 mol/mol GlcNAc and the ATP addition decreased to 50%. Finally, 0.96 mol/mol GlcNAc and 71.6 mg LNB g-1 GlcNAc h-1 of LNB yield was achieved in a 100-mL reaction system. The synergistic strategy not only paves the way for producing LNB but also facilitates other chemicals with multienzyme cascades.
Collapse
|
20
|
Chen LZ, Huang SL, Hou J, Guo XP, Wang FS, Sheng JZ. Cell-based and cell-free biocatalysis for the production of D-glucaric acid. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:203. [PMID: 33303009 PMCID: PMC7731778 DOI: 10.1186/s13068-020-01847-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 12/02/2020] [Indexed: 05/17/2023]
Abstract
D-Glucaric acid (GA) is a value-added chemical produced from biomass, and has potential applications as a versatile platform chemical, food additive, metal sequestering agent, and therapeutic agent. Marketed GA is currently produced chemically, but increasing demand is driving the search for eco-friendlier and more efficient production approaches. Cell-based production of GA represents an alternative strategy for GA production. A series of synthetic pathways for GA have been ported into Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris, respectively, and these engineered cells show the ability to synthesize GA de novo. Optimization of the GA metabolic pathways in host cells has leapt forward, and the titer and yield have increased rapidly. Meanwhile, cell-free multi-enzyme catalysis, in which the desired pathway is constructed in vitro from enzymes and cofactors involved in GA biosynthesis, has also realized efficient GA bioconversion. This review presents an overview of studies of the development of cell-based GA production, followed by a brief discussion of potential applications of biosensors that respond to GA in these biosynthesis routes.
Collapse
Affiliation(s)
- Lu-Zhou Chen
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Si-Ling Huang
- Bloomage BioTechnology Corp., Ltd., Jinan, 250010, China
| | - Jin Hou
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue-Ping Guo
- Bloomage BioTechnology Corp., Ltd., Jinan, 250010, China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China.
| |
Collapse
|
21
|
|
22
|
Lo-Thong O, Charton P, Cadet XF, Grondin-Perez B, Saavedra E, Damour C, Cadet F. Identification of flux checkpoints in a metabolic pathway through white-box, grey-box and black-box modeling approaches. Sci Rep 2020; 10:13446. [PMID: 32778715 PMCID: PMC7417601 DOI: 10.1038/s41598-020-70295-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/27/2020] [Indexed: 11/29/2022] Open
Abstract
Metabolic pathway modeling plays an increasing role in drug design by allowing better understanding of the underlying regulation and controlling networks in the metabolism of living organisms. However, despite rapid progress in this area, pathway modeling can become a real nightmare for researchers, notably when few experimental data are available or when the pathway is highly complex. Here, three different approaches were developed to model the second part of glycolysis of E. histolytica as an application example, and have succeeded in predicting the final pathway flux: one including detailed kinetic information (white-box), another with an added adjustment term (grey-box) and the last one using an artificial neural network method (black-box). Afterwards, each model was used for metabolic control analysis and flux control coefficient determination. The first two enzymes of this pathway are identified as the key enzymes playing a role in flux control. This study revealed the significance of the three methods for building suitable models adjusted to the available data in the field of metabolic pathway modeling, and could be useful to biologists and modelers.
Collapse
Affiliation(s)
- Ophélie Lo-Thong
- University of Paris, UMR_S1134, BIGR, Inserm, 75015, Paris, France.,DSIMB, UMR_S1134, BIGR, Inserm, Laboratory of Excellence GR-Ex, Faculty of Sciences and Technology, University of La Reunion, 97715, Saint-Denis, France
| | - Philippe Charton
- University of Paris, UMR_S1134, BIGR, Inserm, 75015, Paris, France.,DSIMB, UMR_S1134, BIGR, Inserm, Laboratory of Excellence GR-Ex, Faculty of Sciences and Technology, University of La Reunion, 97715, Saint-Denis, France
| | - Xavier F Cadet
- PEACCEL, Artificial Intelligence Department, 6 square Albin Cachot, box 42, 75013, Paris, France
| | - Brigitte Grondin-Perez
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, 97444, St Denis cedex, France
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, 14080, Mexico City, Mexico
| | - Cédric Damour
- LE2P, Laboratory of Energy, Electronics and Processes EA 4079, Faculty of Sciences and Technology, University of La Reunion, 97444, St Denis cedex, France
| | - Frédéric Cadet
- University of Paris, UMR_S1134, BIGR, Inserm, 75015, Paris, France. .,DSIMB, UMR_S1134, BIGR, Inserm, Laboratory of Excellence GR-Ex, Faculty of Sciences and Technology, University of La Reunion, 97715, Saint-Denis, France.
| |
Collapse
|
23
|
Abstract
Metabolic engineering is crucial in the development of production strains for platform chemicals, pharmaceuticals and biomaterials from renewable resources. The central carbon metabolism (CCM) of heterotrophs plays an essential role in the conversion of biomass to the cellular building blocks required for growth. Yet, engineering the CCM ultimately aims toward a maximization of flux toward products of interest. The most abundant dissimilative carbohydrate pathways amongst prokaryotes (and eukaryotes) are the Embden-Meyerhof-Parnas (EMP) and the Entner-Doudoroff (ED) pathways, which build the basics for heterotrophic metabolic chassis strains. Although the EMP is regarded as the textbook example of a carbohydrate pathway owing to its central role in production strains like Escherichia coli, Saccharomyces cerevisiae and Bacillus subtilis, it is either modified, complemented or even replaced by alternative carbohydrate pathways in different organisms. The ED pathway also plays key roles in biotechnological relevant bacteria, like Zymomonas mobilis and Pseudomonas putida, and its importance was recently discovered in photoautotrophs and marine microorganisms. In contrast to the EMP, the ED pathway and its variations are not evolutionary optimized for high ATP production and it differs in key principles such as protein cost, energetics and thermodynamics, which can be exploited in the construction of unique metabolic designs. Single ED pathway enzymes and complete ED pathway modules have been used to rewire carbon metabolisms in production strains and for the construction of cell-free enzymatic pathways. This review focuses on the differences of the ED and EMP pathways including their variations and discusses the use of alternative pathway strategies for in vivo and cell-free metabolic engineering.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
24
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
25
|
Giannakopoulou A, Gkantzou E, Polydera A, Stamatis H. Multienzymatic Nanoassemblies: Recent Progress and Applications. Trends Biotechnol 2020; 38:202-216. [DOI: 10.1016/j.tibtech.2019.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
|
26
|
Petroll K, Care A, Bergquist PL, Sunna A. A novel framework for the cell-free enzymatic production of glucaric acid. Metab Eng 2020; 57:162-173. [DOI: 10.1016/j.ymben.2019.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 10/23/2019] [Accepted: 11/08/2019] [Indexed: 12/21/2022]
|
27
|
Heuson E, Dumeignil F. The various levels of integration of chemo- and bio-catalysis towards hybrid catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00696c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hybrid catalysis is an emerging concept that combines chemo- and biocatalysts in a wide variety of approaches. Combining the specifications and advantages of multiple disciplines, it is a very promising way to diversify tomorrow's catalysis.
Collapse
Affiliation(s)
- Egon Heuson
- Univ. Lille
- INRA
- ISA
- Univ. Artois
- Univ. Littoral Côte d'Opale
| | | |
Collapse
|
28
|
Kopp D, Willows RD, Sunna A. Cell-Free Enzymatic Conversion of Spent Coffee Grounds Into the Platform Chemical Lactic Acid. Front Bioeng Biotechnol 2019; 7:389. [PMID: 31850336 PMCID: PMC6901390 DOI: 10.3389/fbioe.2019.00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022] Open
Abstract
The coffee industry produces over 10 billion kg beans per year and generates high amounts of different waste products. Spent coffee grounds (SCG) are an industrially underutilized waste resource, which is rich in the polysaccharide galactomannan, a polysaccharide consisting of a mannose backbone with galactose side groups. Here, we present a cell-free reaction cascade for the conversion of mannose, the most abundant sugar in SCG, into L-lactic acid. The enzymatic conversion is based on a so far unknown oxidative mannose metabolism from Thermoplasma acidophilum and uses a previously characterized mannonate dehydratase to convert mannose into lactic acid via 4 enzymatic reactions. In comparison to known in vivo metabolisms the bioconversion is free of phosphorylated intermediates and cofactors. Assessment of enzymes, adjustment of enzyme loadings, substrate and cofactor concentrations, and buffer ionic strength allowed the identification of crucial reaction parameters and bottlenecks. Moreover, reactions with isotope labeled mannose enabled the monitoring of pathway intermediates and revealed a reverse flux in the conversion process. Finally, 4.4 ± 0.1 mM lactic acid was produced from 14.57 ± 0.7 mM SCG-derived mannose. While the conversion efficiency of the process can be further improved by enzyme engineering, the reaction demonstrates the first multi-enzyme cascade for the bioconversion of SCG.
Collapse
Affiliation(s)
- Dominik Kopp
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Robert D Willows
- Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.,Biomolecular Discovery and Design Research Centre, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
29
|
Loan TD, Easton CJ, Alissandratos A. DNA amplification with in situ nucleoside to dNTP synthesis, using a single recombinant cell lysate of E. coli. Sci Rep 2019; 9:15621. [PMID: 31666578 PMCID: PMC6821818 DOI: 10.1038/s41598-019-51917-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 02/08/2023] Open
Abstract
Nucleic acid amplification (NAA) is a cornerstone of modern molecular and synthetic biology. Routine application by non-specialists, however, is hampered by difficulties with storing and handling the requisite labile and expensive reagents, such as deoxynucleoside triphosphates (dNTPs) and polymerases, and the complexity of protocols for their use. Here, a recombinant E. coli extract is reported that provides all the enzymes to support high-fidelity DNA amplification, and with labile dNTPs generated in situ from cheap and stable deoxynucleosides. Importantly, this is obtained from a single, engineered cell strain, through minimal processing, as a lysate capable of replacing the cold-stored commercial reagents in a typical PCR. This inexpensive preparation is highly active, as 1 L of bacterial culture is enough to supply ~106 NAA reactions. Lyophilized lysate can be used after a single-step reconstitution, resulting overall in a greatly simplified workflow and a promising synthetic biology tool, in particular for applications such as diagnostics.
Collapse
Affiliation(s)
- Thomas D Loan
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Christopher J Easton
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Apostolos Alissandratos
- Research School of Chemistry, Australian National University, Canberra, Australia. .,CSIRO Synthetic Biology Future Science Platform, Australian National University, Canberra, Australia.
| |
Collapse
|
30
|
Cheng K, Svec F, Lv Y, Tan T. Hierarchical Micro- and Mesoporous Zn-Based Metal-Organic Frameworks Templated by Hydrogels: Their Use for Enzyme Immobilization and Catalysis of Knoevenagel Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902927. [PMID: 31513349 DOI: 10.1002/smll.201902927] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/08/2019] [Indexed: 05/28/2023]
Abstract
Encapsulation of enzymes in metal-organic frameworks (MOFs) is often obstructed by the small size of the orifices typical of most reported MOFs, which prevent the passage of larger-size enzymes. Here, the preparation of hierarchical micro- and mesoporous Zn-based MOFs via the templated emulsification method using hydrogels as a template is presented. Zinc-based hydrogels featuring a 3D interconnecting network are first produced via the formation of hydrogen bonds between melamine and salicylic acid in which zinc ions are well distributed. Further coordination with organic linkers followed by the removal of the hydrogel template produces hierarchical Zn-based MOFs containing both micropores and mesopores. These new MOFs are used for the encapsulation of glucose oxidase and horseradish peroxidase to prove the concept. The immobilized enzymes exhibit a remarkably enhanced increased operational stability and enzymatic activity with a kcat /km value of 85.68 mm s-1 . This value is 7.7-fold higher compared to that found for the free enzymes in solution, and 2.7-fold higher than enzymes adsorbed on conventional microporous MOFs. The much higher catalytic activity of the mesoporous conjugate for Knoevenagel reactions is demonstrated, since the large pores enable easier access to the active sites, and compared with that observed for catalysis using microporous MOFs.
Collapse
Affiliation(s)
- Kaipeng Cheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongqin Lv
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
31
|
Hanatani Y, Imura M, Taniguchi H, Okano K, Toya Y, Iwakiri R, Honda K. In vitro production of cysteine from glucose. Appl Microbiol Biotechnol 2019; 103:8009-8019. [PMID: 31396682 DOI: 10.1007/s00253-019-10061-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/24/2019] [Indexed: 12/19/2022]
Abstract
Cysteine is a commercially valuable amino acid with an increasing demand in the food, cosmetic, and pharmaceutical industries. Although cysteine is conventionally manufactured by extraction from animal proteins, this method has several problems, such as troublesome waste-water treatment and incompatibility with some dietary restrictions. Fermentative production of cysteine from plant-derived substrates is a promising alternative for the industrial production of cysteine. However, it often suffers from low product yield as living organisms are equipped with various regulatory systems to control the intracellular cysteine concentration at a moderate level. In this study, we constructed an in vitro cysteine biosynthetic pathway by assembling 11 thermophilic enzymes. The in vitro pathway was designed to be insensitive to the feedback regulation by cysteine and to balance the intra-pathway consumption and regeneration of cofactors. A kinetic model for the in vitro pathway was built using rate equations of individual enzymes and used to optimize the loading ratio of each enzyme. Consequently, 10.5 mM cysteine could be produced from 20 mM glucose through the optimized pathway. However, the observed yield and production rate of the assay were considerably lower than those predicted by the model. Determination of cofactor concentrations in the reaction mixture indicated that the inconsistency between the model and experimental assay could be attributed to the depletion of ATP and ADP, likely due to host-derived, thermo-stable enzyme(s). Based on these observations, possible approaches to improve the feasibility of cysteine production through an in vitro pathway have been discussed.
Collapse
Affiliation(s)
- Yohei Hanatani
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Makoto Imura
- Bio Science Research Center, Mitsubishi Corporation Life Sciences Ltd., Higashihama 1-6, Saiki, Oita, 876-8580, Japan
| | - Hironori Taniguchi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Kenji Okano
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Yamadaoka 1-5, Suita, Osaka, 565-0871, Japan
| | - Ryo Iwakiri
- Bio Science Research Center, Mitsubishi Corporation Life Sciences Ltd., Higashihama 1-6, Saiki, Oita, 876-8580, Japan
| | - Kohsuke Honda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
32
|
Mixed-mode liquid chromatography for the rapid analysis of biocatalytic glucaric acid reaction pathways. Anal Chim Acta 2019; 1066:136-145. [DOI: 10.1016/j.aca.2019.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 01/25/2023]
|