1
|
Yi X, Wang C, Yuan X, Zhang M, Zhang C, Qin T, Wang H, Xu L, Liu L, Wang Y. Exploring an economic and highly efficient genetic transformation and genome-editing system for radish through developmental regulators and visible reporter. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39387436 DOI: 10.1111/tpj.17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024]
Abstract
Radish (Raphanus sativus L.) is one of the most important root vegetable crops worldwide. However, gene function exploration and germplasm innovation still face tremendous challenges due to its extremely low transformation efficiency. Here, an economic and highly efficient genetic transformation method for radish was explored by Agrobacterium rhizogenes-mediated transformation with the help of combining special developmental regulator (DR) genes and the visual identification reporter. Firstly, the RUBY gene, a betalain biosynthesis system, could result in a visual red-violet color used as a convenient and effective reporter for monitoring transgenic hairy roots screening of radish. However, the hairy roots-to-shoots conversion system of radish still stands as a barrier to the obtainment of whole transgenic plants, although different hormone combinations and various culture conditions were tried. Following, two DR genes including Wuschel2 (Wus2) and isopentenyl transferase (ipt), as well as their combination Wus2-ipt were introduced for the shoot regeneration capacity improvement. The results showed that the transgenic shoots could be directly generated without externally supplying any hormones in the presence of a Wus2-ipt combination. Then, Wus2-ipt along with the RUBY reporter was employed to establish an efficient genetic transformation system of radish. Moreover, this system was applied in generating gene-edited radish plants and the phytoene desaturase (RsPDS) gene was effectively knockout through albino phenotype observation and sequencing analysis. These findings have the potential to be widely applied in genetic transformation and genome-editing genetic improvement of other vegetable species.
Collapse
Affiliation(s)
- Xiaofang Yi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Congcong Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaoqi Yuan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Mi Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Changwei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tiaojiao Qin
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haiyun Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Liu L, Qu J, Wang C, Liu M, Zhang C, Zhang X, Guo C, Wu C, Yang G, Huang J, Yan K, Shu H, Zheng C, Zhang S. An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2093-2103. [PMID: 38491985 PMCID: PMC11258974 DOI: 10.1111/pbi.14328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Genetic transformation is a critical tool for gene editing and genetic improvement of plants. Although many model plants and crops can be genetically manipulated, genetic transformation systems for fruit trees are either lacking or perform poorly. We used Rhizobium rhizogenes to transfer the target gene into the hairy roots of Malus domestica and Actinidia chinensis. Transgenic roots were generated within 3 weeks, with a transgenic efficiency of 78.8%. Root to shoot conversion of transgenic hairy roots was achieved within 11 weeks, with a regeneration efficiency of 3.3%. Finally, the regulatory genes involved in stem cell activity were used to improve shoot regeneration efficiency. MdWOX5 exhibited the most significant effects, as it led to an improved regeneration efficiency of 20.6% and a reduced regeneration time of 9 weeks. Phenotypes of the overexpression of RUBY system mediated red roots and overexpression of MdRGF5 mediated longer root hairs were observed within 3 weeks, suggesting that the method can be used to quickly screen genes that influence root phenotype scores through root performance, such as root colour, root hair, and lateral root. Obtaining whole plants of the RUBY system and MdRGF5 overexpression lines highlights the convenience of this technology for studying gene functions in whole plants. Overall, we developed an optimized method to improve the transformation efficiency and stability of transformants in fruit trees.
Collapse
Affiliation(s)
- Lin Liu
- College of Life SciencesShandong Agricultural UniversityTai'anChina
- National Engineering Research Center for Apple and Technology Innovation Alliance of Apple IndustryShandong Agricultural UniversityTai'anChina
| | - Jinghua Qu
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Chunyan Wang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Miao Liu
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Chunmeng Zhang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Xinyue Zhang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Cheng Guo
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Changai Wu
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Guodong Yang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Jinguang Huang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Kang Yan
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Huairui Shu
- National Engineering Research Center for Apple and Technology Innovation Alliance of Apple IndustryShandong Agricultural UniversityTai'anChina
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Chengchao Zheng
- College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Shizhong Zhang
- College of Life SciencesShandong Agricultural UniversityTai'anChina
- National Engineering Research Center for Apple and Technology Innovation Alliance of Apple IndustryShandong Agricultural UniversityTai'anChina
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
3
|
Morey K, Khakhar A. Exploring the frontier of rapid prototyping technologies for plant synthetic biology and what could lie beyond. THE NEW PHYTOLOGIST 2024; 242:903-908. [PMID: 38426415 DOI: 10.1111/nph.19650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
Realizing the full potential of plant synthetic biology both to elucidate the relationship between genotype and phenotype and to apply these insights to engineer traits requires rapidly iterating through design-build-test cycles. However, the months-long process of transgenesis, the long generation times, and the size-based limitations on experimentation have stymied progress by limiting the speed and scale of these cycles. Herein, we review a representative sample of recent studies that demonstrate a variety of rapid prototyping technologies that overcome some of these bottlenecks and accelerate progress. However, each of them has caveats that limit their broad utility. Their complementary strengths and weaknesses point to the intriguing possibility that these strategies could be combined in the future to enable rapid and scalable deployment of synthetic biology in plants.
Collapse
Affiliation(s)
- Kevin Morey
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80525, USA
| | - Arjun Khakhar
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80525, USA
| |
Collapse
|
4
|
Mei G, Chen A, Wang Y, Li S, Wu M, Hu Y, Liu X, Hou X. A simple and efficient in planta transformation method based on the active regeneration capacity of plants. PLANT COMMUNICATIONS 2024; 5:100822. [PMID: 38243598 PMCID: PMC11009361 DOI: 10.1016/j.xplc.2024.100822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
Plant genetic transformation strategies serve as essential tools for the genetic engineering and advanced molecular breeding of plants. However, the complicated operational protocols and low efficiency of current transformation strategies restrict the genetic modification of most plant species. This paper describes the development of the regenerative activity-dependent in planta injection delivery (RAPID) method based on the active regeneration capacity of plants. In this method, Agrobacterium tumefaciens is delivered to plant meristems via injection to induce transfected nascent tissues. Stable transgenic plants can be obtained by subsequent vegetative propagation of the positive nascent tissues. The method was successfully used for transformation of plants with strong regeneration capacity, including different genotypes of sweet potato (Ipomoea batatas), potato (Solanum tuberosum), and bayhops (Ipomoea pes-caprae). Compared with traditional transformation methods, RAPID has a much higher transformation efficiency and shorter duration, and it does not require tissue culture procedures. The RAPID method therefore overcomes the limitations of traditional methods to enable rapid in planta transformation and can be potentially applied to a wide range of plant species that are capable of active regeneration.
Collapse
Affiliation(s)
- Guoguo Mei
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Chen
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaru Wang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuquan Li
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minyi Wu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilong Hu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Loyola-Vargas VM, Méndez-Hernández HA, Quintana-Escobar AO. The History of Agrobacterium Rhizogenes: From Pathogen to a Multitasking Platform for Biotechnology. Methods Mol Biol 2024; 2827:51-69. [PMID: 38985262 DOI: 10.1007/978-1-0716-3954-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Agrobacterium's journey has been a roller coaster, from being a pathogen to becoming a powerful biotechnological tool. While A. tumefaciens has provided the scientific community with a versatile tool for plant transformation, Agrobacterium rhizogenes has given researchers a Swiss army knife for developing many applications. These applications range from a methodology to regenerate plants, often recalcitrant, to establish bioremediation protocols to a valuable system to produce secondary metabolites. This chapter reviews its discovery, biology, controversies over its nomenclature, and some of the multiple applications developed using A. rhizogenes as a platform.
Collapse
Affiliation(s)
- Víctor M Loyola-Vargas
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico.
| | - Hugo A Méndez-Hernández
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico
| | - Ana O Quintana-Escobar
- Unidad de Biología Integrativa, Centro de Investigación Científica de Yucatán, Mérida, CP, Mexico
| |
Collapse
|
6
|
Wang Y, Luo X, Su H, Guan G, Liu S, Ren M. Technology Invention and Mechanism Analysis of Rapid Rooting of Taxus × media Rehder Branches Induced by Agrobacterium rhizogenes. Int J Mol Sci 2023; 25:375. [PMID: 38203546 PMCID: PMC10779043 DOI: 10.3390/ijms25010375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Taxus, a vital source of the anticancer drug paclitaxel, grapples with a pronounced supply-demand gap. Current efforts to alleviate the paclitaxel shortage involve expanding Taxus cultivation through cutting propagation. However, traditional cutting propagation of Taxus is difficult to root and time-consuming. Obtaining the roots with high paclitaxel content will cause tree death and resource destruction, which is not conducive to the development of the Taxus industry. To address this, establishing rapid and efficient stem rooting systems emerges as a key solution for Taxus propagation, facilitating direct and continuous root utilization. In this study, Agrobacterium rhizogenes were induced in the 1-3-year-old branches of Taxus × media Rehder, which has the highest paclitaxel content. The research delves into the rooting efficiency induced by different A. rhizogenes strains, with MSU440 and C58 exhibiting superior effects. Transcriptome and metabolome analyses revealed A. rhizogenes' impact on hormone signal transduction, amino acid metabolism, zeatin synthesis, and secondary metabolite synthesis pathways in roots. LC-MS-targeted quantitative detection showed no significant difference in paclitaxel and baccatin III content between naturally formed and induced roots. These findings underpin the theoretical framework for T. media rapid propagation, contributing to the sustainable advancement of the Taxus industry.
Collapse
Affiliation(s)
- Ying Wang
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| | - Xiumei Luo
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
| | - Haotian Su
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Ge Guan
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Shuang Liu
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| | - Maozhi Ren
- Functional Plant Cultivation and Application Innovation Team, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610230, China; (Y.W.); (G.G.); (S.L.)
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- School of Agricultural Science, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Ying W, Wen G, Xu W, Liu H, Ding W, Zheng L, He Y, Yuan H, Yan D, Cui F, Huang J, Zheng B, Wang X. Agrobacterium rhizogenes: paving the road to research and breeding for woody plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1196561. [PMID: 38034586 PMCID: PMC10682722 DOI: 10.3389/fpls.2023.1196561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/20/2023] [Indexed: 12/02/2023]
Abstract
Woody plants play a vital role in global ecosystems and serve as valuable resources for various industries and human needs. While many woody plant genomes have been fully sequenced, gene function research and biotechnological breeding advances have lagged behind. As a result, only a limited number of genes have been elucidated, making it difficult to use newer tools such as CRISPR-Cas9 for biotechnological breeding purposes. The use of Agrobacterium rhizogenes as a transformative tool in plant biotechnology has received considerable attention in recent years, particularly in the research field on woody plants. Over the past three decades, numerous woody plants have been effectively transformed using A. rhizogenes-mediated techniques. Some of these transformed plants have successfully regenerated. Recent research on A. rhizogenes-mediated transformation of woody plants has demonstrated its potential for various applications, including gene function analysis, gene expression profiling, gene interaction studies, and gene regulation analysis. The introduction of the Ri plasmid has resulted in the emergence of several Ri phenotypes, such as compact plant types, which can be exploited for Ri breeding purposes. This review paper presents recent advances in A. rhizogenes-mediated basic research and Ri breeding in woody plants. This study highlights various aspects of A. rhizogenes-mediated transformation, its multiple applications in gene function analysis, and the potential of Ri lines as valuable breeding materials.
Collapse
Affiliation(s)
- Wei Ying
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Guangchao Wen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Wenyuan Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Haixia Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Wona Ding
- College of Science and Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yi He
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Fuqiang Cui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Ferguson S, Abel NB, Reid D, Madsen LH, Luu TB, Andersen KR, Stougaard J, Radutoiu S. A simple and efficient protocol for generating transgenic hairy roots using Agrobacterium rhizogenes. PLoS One 2023; 18:e0291680. [PMID: 37910566 PMCID: PMC10619795 DOI: 10.1371/journal.pone.0291680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023] Open
Abstract
For decades, Agrobacterium rhizogenes (now Rhizobium rhizogenes), the causative agent of hairy root disease, has been harnessed as an interkingdom DNA delivery tool for generating transgenic hairy roots on a wide variety of plants. One of the strategies involves the construction of transconjugant R. rhizogenes by transferring gene(s) of interest into previously constructed R. rhizogenes pBR322 acceptor strains; little has been done, however, to improve upon this system since its implementation. We developed a simplified method utilising bi-parental mating in conjunction with effective counterselection for generating R. rhizogenes transconjugants. Central to this was the construction of a new Modular Cloning (MoClo) compatible pBR322-derived integration vector (pIV101). Although this protocol remains limited to pBR322 acceptor strains, pIV101 facilitated an efficient construction of recombinant vectors, effective screening of transconjugants, and RP4-based mobilisation compatibility that enabled simplified conjugal transfer. Transconjugants from this system were tested on Lotus japonicus and found to be efficient for the transformation of transgenic hairy roots and supported infection of nodules by a rhizobia symbiont. The expedited protocol detailed herein substantially decreased both the time and labour for creating transconjugant R. rhizogenes for the subsequent transgenic hairy root transformation of Lotus, and it could readily be applied for the transformation of other plants.
Collapse
Affiliation(s)
- Shaun Ferguson
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Nikolaj B. Abel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Australia
| | - Lene H. Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thi-Bich Luu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kasper R. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Biswas D, Chakraborty A, Mukherjee S, Ghosh B. Hairy root culture: a potent method for improved secondary metabolite production of Solanaceous plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1197555. [PMID: 37731987 PMCID: PMC10507345 DOI: 10.3389/fpls.2023.1197555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/13/2023] [Indexed: 09/22/2023]
Abstract
Secondary metabolites synthesized by the Solanaceous plants are of major therapeutic and pharmaceutical importance, many of which are commonly obtained from the roots of these plants. 'Hairy roots', mirroring the same phytochemical pattern of the corresponding root of the parent plant with higher growth rate and productivity, are therefore extensively studied as an effective alternative for the in vitro production of these metabolites. Hairy roots are the transformed roots, generated from the infection site of the wounded plants with Agrobacterium rhizogenes. With their fast growth, being free from pathogen and herbicide contamination, genetic stability, and autotrophic nature for plant hormones, hairy roots are considered as useful bioproduction systems for specialized metabolites. Lately, several elicitation methods have been employed to enhance the accumulation of these compounds in the hairy root cultures for both small and large-scale production. Nevertheless, in the latter case, the cultivation of hairy roots in bioreactors should still be optimized. Hairy roots can also be utilized for metabolic engineering of the regulatory genes in the metabolic pathways leading to enhanced production of metabolites. The present study summarizes the updated and modern biotechnological aspects for enhanced production of secondary metabolites in the hairy root cultures of the plants of Solanaceae and their respective importance.
Collapse
Affiliation(s)
- Diptesh Biswas
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Avijit Chakraborty
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| | - Swapna Mukherjee
- Department of Microbiology, Dinabandhu Andrews College, Kolkata, India
| | - Biswajit Ghosh
- Plant Biotechnology Laboratory, Post Graduate Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Kolkata, India
| |
Collapse
|
10
|
Bagal D, Chowdhary AA, Mehrotra S, Mishra S, Rathore S, Srivastava V. Metabolic engineering in hairy roots: An outlook on production of plant secondary metabolites. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107847. [PMID: 37352695 DOI: 10.1016/j.plaphy.2023.107847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Plants are one of the vital sources of secondary metabolites. These secondary metabolites have diverse roles in human welfare, including therapeutic implication. Nevertheless, secondary metabolite yields obtained through the exploitation of natural plant populations is insufficient to meet the commercial demand due to their accumulation in low volumes. Besides, in-planta synthesis of these important metabolites is directly linked with the age and growing conditions of the plant. Such limitations have paved the way for the exploration of alternative production methodologies. Hairy root cultures, induced after the interaction of plants with Rhizobium rhizogenes (Agrobacterium rhizogenes), are a practical solution for producing valuable secondary metabolite at low cost and without the influence of seasonal, geographic or climatic variations. Hairy root cultures also offer the opportunity to get combined with other yield enhancements strategies (precursor feeding, elicitation and metabolic engineering) to further stimulate and/or enhance their production potential. Applications of metabolic engineering in exploiting hairy root cultures attracted the interest of several research groups as a means of yield enhancement. Currently, several engineering approaches like overexpression and silencing of pathway genes, and transcription factor overexpression are used to boost metabolite production, along with the contextual success of genome editing. This review attempts to cover metabolic engineering in hairy roots for the production of secondary metabolites, with a primary emphasis on alkaloids, and discusses prospects for taking this research forward to meet desired production demands.
Collapse
Affiliation(s)
- Diksha Bagal
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, 226020, India.
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India.
| | - Sonica Rathore
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India
| | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, Jammu and Kashmir (UT), India.
| |
Collapse
|
11
|
Ali A, Zafar MM, Farooq Z, Ahmed SR, Ijaz A, Anwar Z, Abbas H, Tariq MS, Tariq H, Mustafa M, Bajwa MH, Shaukat F, Razzaq A, Maozhi R. Breakthrough in CRISPR/Cas system: Current and future directions and challenges. Biotechnol J 2023; 18:e2200642. [PMID: 37166088 DOI: 10.1002/biot.202200642] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Targeted genome editing (GE) technology has brought a significant revolution in fictional genomic research and given hope to plant scientists to develop desirable varieties. This technology involves inducing site-specific DNA perturbations that can be repaired through DNA repair pathways. GE products currently include CRISPR-associated nuclease DNA breaks, prime editors generated DNA flaps, single nucleotide-modifications, transposases, and recombinases. The discovery of double-strand breaks, site-specific nucleases (SSNs), and repair mechanisms paved the way for targeted GE, and the first-generation GE tools, ZFNs and TALENs, were successfully utilized in plant GE. However, CRISPR-Cas has now become the preferred tool for GE due to its speed, reliability, and cost-effectiveness. Plant functional genomics has benefited significantly from the widespread use of CRISPR technology for advancements and developments. This review highlights the progress made in CRISPR technology, including multiplex editing, base editing (BE), and prime editing (PE), as well as the challenges and potential delivery mechanisms.
Collapse
Affiliation(s)
- Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | - Zunaira Farooq
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Huma Abbas
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sayyam Tariq
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Science (PIEAS), Nilore, Pakistan
| | - Hala Tariq
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Mahwish Mustafa
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | | | - Fiza Shaukat
- Center of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Razzaq
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ren Maozhi
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Institute of, Urban Agriculture, Chinese Academy of Agriculture Science, Chengdu, China
| |
Collapse
|
12
|
Ye M, Yao M, Li C, Gong M. Salt and osmotic stress can improve the editing efficiency of CRISPR/Cas9-mediated genome editing system in potato. PeerJ 2023; 11:e15771. [PMID: 37547711 PMCID: PMC10399558 DOI: 10.7717/peerj.15771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
CRISPR/Cas9-mediated genome editing technology has been widely used for the study of gene function in crops, but the differences between species have led to widely varying genome editing efficiencies. The present study utilized a potato hairy root genetic transformation system and incorporated a rapid assay with GFP as a screening marker. The results clearly demonstrated that salt and osmotic stress induced by NaCl (10 to 50 mM) and mannitol (50 to 200 mM) treatments significantly increased the positive rates of genetic transformation mediated by A. rhizogenes and the editing efficiency of the CRISPR/Cas9-mediated genome editing system in potato. However, it was observed that the regeneration of potato roots was partially inhibited as a result. The analysis of CRISPR/Cas9-mediated mutation types revealed that chimeras accounted for the largest proportion, ranging from 62.50% to 100%. Moreover, the application of salt and osmotic stress resulted in an increased probability of null mutations in potato. Notably, the highest rate of null mutations, reaching 37.5%, was observed at a NaCl concentration of 10 mM. Three potential off-target sites were sequenced and no off-targeting was found. In conclusion, the application of appropriate salt and osmotic stress significantly improved the editing efficiency of the CRISPR/Cas9-mediated genome editing system in potato, with no observed off-target effects. However, there was a trade-off as the regeneration of potato roots was partially inhibited. Overall, these findings present a new and convenient approach to enhance the genome editing efficiency of the CRISPR/Cas9-mediated gene editing system in potato.
Collapse
Affiliation(s)
- Mingwang Ye
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, China
| | - Mengfan Yao
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, China
| | - Canhui Li
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, China
- Joint Academy of Potato Science, Yunnan Normal University, Kunming, Yunnan, China
| | - Ming Gong
- School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, Yunnan, China
- Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University, Kunming, Yunnan, China
| |
Collapse
|
13
|
Niazian M, Belzile F, Curtin SJ, de Ronne M, Torkamaneh D. Optimization of in vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation of soybean for visual screening of transformants using RUBY. FRONTIERS IN PLANT SCIENCE 2023; 14:1207762. [PMID: 37484469 PMCID: PMC10361064 DOI: 10.3389/fpls.2023.1207762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
In vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation (HRT) assays are key components of the plant biotechnology and functional genomics toolkit. In this report, both in vitro and ex vitro HRT were optimized in soybean using the RUBY reporter. Different parameters including A. rhizogenes strain, optical density of the bacterial cell culture (OD600), co-cultivation media, soybean genotype, explant age, and acetosyringone addition and concentration were evaluated. Overall, the in vitro assay was more efficient than the ex vitro assay in terms of the percentage of induction of hairy roots and transformed roots (expressing RUBY). Nonetheless, the ex vitro technique was deemed faster and a less complicated approach. The highest transformation of RUBY was observed on 7-d-old cotyledons of cv. Bert inoculated for 30 minutes with the R1000 resuspended in ¼ B5 medium to OD600 (0.3) and 150 µM of acetosyringone. The parameters of this assay also led to the highest percentage of RUBY through two-step ex vitro hairy root transformation. Finally, using machine learning-based modeling, optimal protocols for both assays were further defined. This study establishes efficient and reliable hairy root transformation protocols applicable for functional studies in soybean.
Collapse
Affiliation(s)
- Mohsen Niazian
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Shaun J. Curtin
- Plant Science Research Unit, United States Department of Agriculture (USDA), St Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec City, QC, Canada
| |
Collapse
|
14
|
Laura M, Forti C, Barberini S, Ciorba R, Mascarello C, Giovannini A, Pistelli L, Pieracci Y, Lanteri AP, Ronca A, Minuto A, Ruffoni B, Cardi T, Savona M. Highly Efficient CRISPR/Cas9 Mediated Gene Editing in Ocimum basilicum 'FT Italiko' to Induce Resistance to Peronospora belbahrii. PLANTS (BASEL, SWITZERLAND) 2023; 12:2395. [PMID: 37446956 DOI: 10.3390/plants12132395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023]
Abstract
Ocimum basilicum (sweet basil) is an economically important aromatic herb; in Italy, approximately 1000 ha of "Genovese-type" basil are grown annually in greenhouses and open fields and are subjected to Downy Mildew (DM) disease, caused by Peronospora belbahrii, leading to huge crop losses. Mutation of the Susceptibility (S) gene DMR6 (Downy Mildew Resistant 6) has been proven to confer a broad-spectrum resistance to DM. In this work, an effective Genome Editing (GE) approach mediated by CRISPR/Cas9 in O. basilicum 'Italiko', the élite cultivar used to produce "Pesto Genovese D.O.P", was developed. A highly efficient genetic transformation method mediated by A. tumefaciens has been optimized from cotyledonary nodes, obtaining 82.2% of regenerated shoots, 84.6% of which resulted in Cas9+ plants. Eleven T0 lines presented different type of mutations in ObDMR6; 60% were indel frameshift mutations with knock-out of ObDMR6 of 'FT Italiko'. Analysis of six T1 transgene-free seedlings revealed that the mutations of T0 plants were inherited and segregated. Based on infection trials conducted on T0 plants, clone 22B showed a very low percentage of disease incidence after 14 days post infection. The aromatic profile of all in vitro edited plants was also reported; all of them showed oxygenated monoterpenes as the major fraction.
Collapse
Affiliation(s)
- Marina Laura
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Chiara Forti
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBA, Institute of Agricultural Biology and Biotechnology, Via Bassini 12, 20133 Milano, Italy
| | - Sara Barberini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IPSP, Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Roberto Ciorba
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CREA, Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello 52, 00134 Rome, Italy
| | - Carlo Mascarello
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Annalisa Giovannini
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Anna Paola Lanteri
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Agostina Ronca
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Andrea Minuto
- CeRSAA, Center for Agricultural Experimentation and Assistance, Regione Rollo 98, 17031 Albenga, Italy
| | - Barbara Ruffoni
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| | - Teodoro Cardi
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
- CNR-IBBR, Institute of Biosciences and Bioresources, 80055 Portici, Italy
| | - Marco Savona
- CREA, Research Centre for Vegetable and Ornamental Crops, Corso degli Inglesi 508, 18038 Sanremo, Italy
| |
Collapse
|
15
|
Bai S, Han X, Feng D. Shoot-root signal circuit: Phytoremediation of heavy metal contaminated soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1139744. [PMID: 36890896 PMCID: PMC9987563 DOI: 10.3389/fpls.2023.1139744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
High concentrations of heavy metals in the environment will cause serious harm to ecosystems and human health. It is urgent to develop effective methods to control soil heavy metal pollution. Phytoremediation has advantages and potential for soil heavy metal pollution control. However, the current hyperaccumulators have the disadvantages of poor environmental adaptability, single enrichment species and small biomass. Based on the concept of modularity, synthetic biology makes it possible to design a wide range of organisms. In this paper, a comprehensive strategy of "microbial biosensor detection - phytoremediation - heavy metal recovery" for soil heavy metal pollution control was proposed, and the required steps were modified by using synthetic biology methods. This paper summarizes the new experimental methods that promote the discovery of synthetic biological elements and the construction of circuits, and combs the methods of producing transgenic plants to facilitate the transformation of constructed synthetic biological vectors. Finally, the problems that should be paid more attention to in the remediation of soil heavy metal pollution based on synthetic biology were discussed.
Collapse
Affiliation(s)
- Shiyan Bai
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fujian, China
| | - Dan Feng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Pereira BM, Arraes F, Martins ACQ, Alves NSF, Melo BP, Morgante CV, Saraiva MAP, Grossi-de-Sá MF, Guimaraes PM, Brasileiro ACM. A novel soybean hairy root system for gene functional validation. PLoS One 2023; 18:e0285504. [PMID: 37200365 DOI: 10.1371/journal.pone.0285504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/24/2023] [Indexed: 05/20/2023] Open
Abstract
Agrobacterium rhizogenes-mediated transformation has long been explored as a versatile and reliable method for gene function validation in many plant species, including soybean (Glycine max). Likewise, detached-leaf assays have been widely used for rapid and mass screening of soybean genotypes for disease resistance. The present study combines these two methods to establish an efficient and practical system to generate transgenic soybean hairy roots from detached leaves and their subsequent culture under ex vitro conditions. We demonstrated that hairy roots derived from leaves of two (tropical and temperate) soybean cultivars could be successfully infected by economically important species of root-knot nematodes (Meloidogyne incognita and M. javanica). The established detached-leaf method was further explored for functional validation of two candidate genes encoding for cell wall modifying proteins (CWMPs) to promote resistance against M. incognita through distinct biotechnological strategies: the overexpression of a wild Arachis α-expansin transgene (AdEXPA24) and the dsRNA-mediated silencing of an endogenous soybean polygalacturonase gene (GmPG). AdEXPA24 overexpression in hairy roots of RKN-susceptible soybean cultivar significantly reduced nematode infection by approximately 47%, whereas GmPG downregulation caused an average decrease of 37%. This novel system of hairy root induction from detached leaves showed to be an efficient, practical, fast, and low-cost method suitable for high throughput in root analysis of candidate genes in soybean.
Collapse
Affiliation(s)
| | - Fabrício Arraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | | | | | - Bruno Paes Melo
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Carolina Vianna Morgante
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
- EMBRAPA Semiárido, Petrolina, PE, Brazil
| | - Mario Alfredo Passos Saraiva
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Maria Fátima Grossi-de-Sá
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Patricia Messenberg Guimaraes
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| | - Ana Cristina Miranda Brasileiro
- EMBRAPA Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
- Instituto Nacional de Ciência e Tecnologia-INCT PlantStress Biotech-Embrapa, Brasília, DF, Brazil
| |
Collapse
|
17
|
Alcalde MA, Müller M, Munné-Bosch S, Landín M, Gallego PP, Bonfill M, Palazon J, Hidalgo-Martinez D. Using machine learning to link the influence of transferred Agrobacterium rhizogenes genes to the hormone profile and morphological traits in Centella asiatica hairy roots. FRONTIERS IN PLANT SCIENCE 2022; 13:1001023. [PMID: 36119596 PMCID: PMC9479193 DOI: 10.3389/fpls.2022.1001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Hairy roots are made after the integration of a small set of genes from Agrobacterium rhizogenes in the plant genome. Little is known about how this small set is linked to their hormone profile, which determines development, morphology, and levels of secondary metabolite production. We used C. asiatica hairy root line cultures to determine the putative links between the rol and aux gene expressions with morphological traits, a hormone profile, and centelloside production. The results obtained after 14 and 28 days of culture were processed via multivariate analysis and machine-learning processes such as random forest, supported vector machines, linear discriminant analysis, and neural networks. This allowed us to obtain models capable of discriminating highly productive root lines from their levels of genetic expression (rol and aux genes) or from their hormone profile. In total, 12 hormones were evaluated, resulting in 10 being satisfactorily detected. Within this set of hormones, abscisic acid (ABA) and cytokinin isopentenyl adenosine (IPA) were found to be critical in defining the morphological traits and centelloside content. The results showed that IPA brings more benefits to the biotechnological platform. Additionally, we determined the degree of influence of each of the evaluated genes on the individual hormone profile, finding that aux1 has a significant influence on the IPA profile, while the rol genes are closely linked to the ABA profile. Finally, we effectively verified the gene influence on these two specific hormones through feeding experiments that aimed to reverse the effect on root morphology and centelloside content.
Collapse
Affiliation(s)
- Miguel Angel Alcalde
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Mariana Landín
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Group I+D Farma (GI-1645), Faculty of Pharmacy, University of Santiago, Santiago de Compostela, Spain
| | - Pedro Pablo Gallego
- Agrobiotech for Health, Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Mercedes Bonfill
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Javier Palazon
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| | - Diego Hidalgo-Martinez
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
18
|
Morey KJ, Peebles CAM. Hairy roots: An untapped potential for production of plant products. FRONTIERS IN PLANT SCIENCE 2022; 13:937095. [PMID: 35991443 PMCID: PMC9389236 DOI: 10.3389/fpls.2022.937095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
While plants are an abundant source of valuable natural products, it is often challenging to produce those products for commercial application. Often organic synthesis is too expensive for a viable commercial product and the biosynthetic pathways are often so complex that transferring them to a microorganism is not trivial or feasible. For plants not suited to agricultural production of natural products, hairy root cultures offer an attractive option for a production platform which offers genetic and biochemical stability, fast growth, and a hormone free culture media. Advances in metabolic engineering and synthetic biology tools to engineer hairy roots along with bioreactor technology is to a point where commercial application of the technology will soon be realized. We discuss different applications of hairy roots. We also use a case study of the advancements in understanding of the terpenoid indole alkaloid pathway in Catharanthus roseus hairy roots to illustrate the advancements and challenges in pathway discovery and in pathway engineering.
Collapse
|
19
|
Asmani F, Khavari-Nejad RA, Salmanian AH, Amani J. Immunological evaluation of recombinant chimeric construct from Enterotoxigenic E. coli expressed in hairy roots. Mol Immunol 2022; 147:81-89. [DOI: 10.1016/j.molimm.2022.02.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 01/05/2023]
|
20
|
Overexpression of an Inositol Phosphorylceramide Glucuronosyltransferase Gene IbIPUT1 Inhibits Na+ Uptake in Sweet Potato Roots. Genes (Basel) 2022; 13:genes13071140. [PMID: 35885923 PMCID: PMC9317492 DOI: 10.3390/genes13071140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
IPUT1 is a glycosyltransferase capable of synthesizing the glycosyl inositol phosphorylceramide (GIPC) sphingolipid. The GIPC sphingolipid is a Na+ receptor on cell membranes which can sense extracellular Na+ concentrations, promote the increase in intracellular Ca2+ concentrations, and plays critical roles in maintaining intracellular Na+ balance. Therefore, the IPUT1 gene plays an important role in the genetic improvement of crop salt tolerance. Herein, the IbIPUT1 gene, which encodes an ortholog of Arabidopsis AtIPUT1, from sweet potato was cloned. Agrobacterium rhizogenes-mediated in vivo transgenic technology, non-invasive micro-measuring technology (NMT) and Na+ fluorescence imaging technology were then combined to quickly study the potential function of IbIPUT1 in salt tolerance. The data showed that IbIPUT1 was involved in the regulation of root cell Na+ balance, and the overexpression of IbIPUT1 could not promote sweet potato root cell Na+ efflux under salt stress, but it could significantly inhibit the Na+ absorption of root cells, thereby reducing the accumulation of Na+ in root cells under salt stress. Additionally, Ca2+ efflux in transgenic root cells was slightly higher than that in control roots under salt stress. Collectively, an efficient transgenic method for gene function studies was established, and our results suggested that IbIPUT1 acts as a candidate gene for the genetic enhancement of sweet potato salt tolerance.
Collapse
|
21
|
Bose R, Sengupta M, Basu D, Jha S. The rolB-transgenic Nicotiana tabacum plants exhibit upregulated ARF7 and ARF19 gene expression. PLANT DIRECT 2022; 6:e414. [PMID: 35774625 PMCID: PMC9219009 DOI: 10.1002/pld3.414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 05/08/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Agrobacterium rhizogenes root oncogenic locus B (rolB) is known to induce hairy roots along with triggering several physiological and morphological changes when present as a transgene. However, it is still unknown how this gene triggers these changes within the plant system. In this study, the effect of rolB in-planta, when present as a transgene, was assessed on the gene expression levels of auxin response factors (ARFs)-transcription factors which are key players in auxin-mediated responses. The goal was to uncover Auxin/ARF-driven transcriptional networks potentially active and working selectively, if any, in rolB transgenic background, which might potentially be associated with hairy root development. Hence, the approach involved establishing rolB-transgenic Nicotiana tabacum plants, selecting ARFs (NtARFs) for context-relevance using bioinformatics followed by gene expression profiling. It was observed that out of the chosen NtARFs, NtARF7 and NtARF19 exhibited a consistent pattern of gene upregulation across organ types. In order to understand the significance of these selective gene upregulation, ontology-based transcriptional network maps of the differentially and nondifferentially expressed ARFs were constructed, guided by co-expression databases. The network maps suggested that NtARF7-NtARF19 might have major deterministic, underappreciated roles to play in root development in a rolB-transgenic background-as observed by higher number of "root-related" biological processes present as nodes compared to network maps for similarly constructed other non-differentially expressed ARFs. Based on the inferences drawn, it is hypothesized that rolB, when present as a transgene, might drive hairy root development by selective induction of NtARF7 and NtARF19, suggesting a functional link between the two, leading to the specialized and characteristic rolB-associated traits.
Collapse
Affiliation(s)
- Rahul Bose
- Department of GeneticsUniversity of CalcuttaKolkataWest BengalIndia
| | - Mainak Sengupta
- Department of GeneticsUniversity of CalcuttaKolkataWest BengalIndia
| | - Debabrata Basu
- Division of Plant BiologyBose InstituteKolkataWest BengalIndia
| | - Sumita Jha
- Department of BotanyUniversity of CalcuttaKolkataWest BengalIndia
| |
Collapse
|
22
|
Mora-Vásquez S, Wells-Abascal GG, Espinosa-Leal C, Cardineau GA, García-Lara S. Application of metabolic engineering to enhance the content of alkaloids in medicinal plants. Metab Eng Commun 2022; 14:e00194. [PMID: 35242556 PMCID: PMC8881666 DOI: 10.1016/j.mec.2022.e00194] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/27/2022] [Accepted: 02/13/2022] [Indexed: 12/22/2022] Open
Abstract
Plants are a rich source of bioactive compounds, many of which have been exploited for cosmetic, nutritional, and medicinal purposes. Through the characterization of metabolic pathways, as well as the mechanisms responsible for the accumulation of secondary metabolites, researchers have been able to increase the production of bioactive compounds in different plant species for research and commercial applications. The intent of the current review is to describe the metabolic engineering methods that have been used to transform in vitro or field-grown medicinal plants over the last decade and to identify the most effective approaches to increase the production of alkaloids. The articles summarized were categorized into six groups: endogenous enzyme overexpression, foreign enzyme overexpression, transcription factor overexpression, gene silencing, genome editing, and co-overexpression. We conclude that, because of the complex and multi-step nature of biosynthetic pathways, the approach that has been most commonly used to increase the biosynthesis of alkaloids, and the most effective in terms of fold increase, is the co-overexpression of two or more rate-limiting enzymes followed by the manipulation of regulatory genes.
Collapse
Affiliation(s)
- Soledad Mora-Vásquez
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | | | - Claudia Espinosa-Leal
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| | - Guy A. Cardineau
- Arizona State University, Beus Center for Law and Society, Mail Code 9520, 111 E. Taylor Street, Phoenix, AZ, 85004-4467, USA
| | - Silverio García-Lara
- Tecnológico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Nuevo León, Mexico
| |
Collapse
|
23
|
Li JW, Zeng T, Xu ZZ, Li JJ, Hu H, Yu Q, Zhou L, Zheng RR, Luo J, Wang CY. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter. PLANT METHODS 2022; 18:32. [PMID: 35292048 PMCID: PMC8925089 DOI: 10.1186/s13007-022-00863-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/24/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Traditional CRISPR/Cas9 systems that rely on U6 or U3 snRNA promoters (RNA polymerase III-dependent promoters) can only achieve constitutive gene editing in plants, hampering the functional analysis of specifically expressed genes. Ribozyme-mediated CRISPR/Cas9 systems increase the types of promoters which can be used to transcribe sgRNA. Therefore, such systems allow specific gene editing; for example, transcription of the artificial gene Ribozyme-sgRNA-Ribozyme (RGR) is initiated by an RNA polymerase II-dependent promoter. Genetic transformation is indispensable for editing plant genes. In certain plant species, including pyrethrum, genetic transformation remains challenging to do, limiting the functional verification of novel CRISPR/Cas9 systems. Thus, this study's aim was to develop a simple Agrobacterium rhizogenes-mediated hairy root transformation system to analyze the function of a ribozyme-mediated CRISPR/Cas9 system in pyrethrum. RESULTS A hairy root transformation system for pyrethrum is described, with a mean transformation frequency of 7%. Transgenic hairy roots transformed with the pBI121 vector exhibited significantly increased beta-glucuronidase staining as a visual marker of transgene expression. Further, a ribozyme-based CRISPR/Cas9 vector was constructed to edit the TcEbFS gene, which catalyzes synthesis of the defense-related compound (E)-β-farnesene in pyrethrum. The vector was transferred into the hairy roots of pyrethrum and two stably transformed hairy root transgenic lines obtained. Editing of the TcEbFS gene in the hairy roots was evaluated by gene sequencing, demonstrating that both hairy root transgenic lines had DNA base loss at the editing target site. Gas chromatography-mass spectrometry showed that the (E)-β-farnesene content was significantly decreased in both hairy root transgenic lines compared with the empty vector control group. Altogether, these results show that RGR can be driven by the CaMV35S promoter to realize TcEbFS gene editing in pyrethrum hairy roots. CONCLUSION An A. rhizogenes-mediated hairy root transformation and ribozyme-mediated CRISPR/Cas9 gene editing system in pyrethrum was established, thereby facilitating gene editing in specific organs or at a particular developmental stage in future pyrethrum research.
Collapse
Affiliation(s)
- Jia-Wen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Zhi-Zhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Jin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Hu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Yu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ri-Ru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Cai-Yun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Yan Y, Zhu X, Yu Y, Li C, Zhang Z, Wang F. Nanotechnology Strategies for Plant Genetic Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106945. [PMID: 34699644 DOI: 10.1002/adma.202106945] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Plant genetic engineering is essential for improving crop yield, quality, and resistance to abiotic/biotic stresses for sustainable agriculture. Agrobacterium-, biolistic bombardment-, electroporation-, and poly(ethylene glycol) (PEG)-mediated genetic-transformation systems are extensively used in plant genetic engineering. However, these systems have limitations, including species dependency, destruction of plant tissues, low transformation efficiency, and high cost. Recently, nanotechnology-based gene-delivery methods have been developed for plant genetic transformation. This nanostrategy shows excellent transformation efficiency, good biocompatibility, adequate protection of exogenous nucleic acids, and the potential for plant regeneration. However, the nanomaterial-mediated gene-delivery system in plants is still in its infancy, and there are many challenges for its broad applications. Herein, the conventional genetic transformation techniques used in plants are briefly discussed. After that, the progress in the development of nanomaterial-based gene-delivery systems is considered. CRISPR-Cas-mediated genome editing and its combined applications with plant nanotechnology are also discussed. The conceptual innovations, methods, and practical applications of nanomaterial-mediated genetic transformation summarized herein will be beneficial for promoting plant genetic engineering in modern agriculture.
Collapse
Affiliation(s)
- Yong Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Xiaojun Zhu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yue Yu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chao Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, P. R. China
| | - Feng Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
25
|
Genetic Manipulation and Bioreactor Culture of Plants as a Tool for Industry and Its Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030795. [PMID: 35164060 PMCID: PMC8840042 DOI: 10.3390/molecules27030795] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 12/31/2022]
Abstract
In recent years, there has been a considerable increase in interest in the use of transgenic plants as sources of valuable secondary metabolites or recombinant proteins. This has been facilitated by the advent of genetic engineering technology with the possibility for direct modification of the expression of genes related to the biosynthesis of biologically active compounds. A wide range of research projects have yielded a number of efficient plant systems that produce specific secondary metabolites or recombinant proteins. Furthermore, the use of bioreactors allows production to be increased to industrial scales, which can quickly and cheaply deliver large amounts of material in a short time. The resulting plant production systems can function as small factories, and many of them that are targeted at a specific operation have been patented. This review paper summarizes the key research in the last ten years regarding the use of transgenic plants as small, green biofactories for the bioreactor-based production of secondary metabolites and recombinant proteins; it simultaneously examines the production of metabolites and recombinant proteins on an industrial scale and presents the current state of available patents in the field.
Collapse
|
26
|
Development of a new recombineering system for Agrobacterium species. Appl Environ Microbiol 2022; 88:e0249921. [PMID: 35044833 DOI: 10.1128/aem.02499-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Discovery of new and efficient genetic engineering technologies for Agrobacterium will broaden the capacity for fundamental research on this genus and for its utilization as a transgenic vehicle. In this study, we aim to develop an efficient recombineering system for Agrobacterium species. We examined isolates of Agrobacterium and the closely related genus Rhizobium to identify pairs of ET-like recombinases that would aid in the recombineering of Agrobacterium species. Four pairs of ET-like recombinases, named RecETh1h2h3h4AGROB6, RecETh1h2P3RHI597, RecETRHI145, and RecEThRHI483, were identified in Agrobacterium tumefaciens str. B6, Rhizobium leguminosarum bv. trifolii WSM597, Rhizobium sp. LC145, and Rhizobium sp. Root483D2, respectively. Eight more candidate recombineering systems were generated by combining the new ET-like recombinases with Redγ or Pluγ. The PluγETRHI145 system, RecETh1h2h3h4AGROB6 system, and PluγEThRHI483 system were determined to be the most efficient recombineering system for the type strains A. tumefaciens C58, A. tumefaciens EHA105, and R. rhizogenes NBCR13257, respectively. The utility of these systems was demonstrated by knocking out the istB and istA fusion gene in C58, the celI gene in EHA105, and the 3'-5' exonuclease gene and endoglucanase gene in NBCR13257. Our work provides an effective genetic manipulation strategy for Agrobacterium species. IMPORTANCE Agrobacterium is a powerful transgenic vehicle for the genetic manipulation of numerous plant and fungal species and even animal cells. In addition to improving the utility of Agrobacterium as a transgenic vehicle, genetic engineering tools are important for revealing crucial components that are functionally involved in T-DNA translocation events. This work developed an efficient and versatile recombineering system for Agrobacterium. Successful genome modification of Agrobacterium strains revealed that this new recombineering system could be used for the genetic engineering of Agrobacterium.
Collapse
|
27
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
28
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
29
|
Zhang L, Ren Y, Xu Q, Wan Y, Zhang S, Yang G, Huang J, Yan K, Zheng C, Wu C. SiCEP3, a C-terminally encoded peptide from Setaria italica, promotes ABA import and signaling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6260-6273. [PMID: 34097059 DOI: 10.1093/jxb/erab267] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
C-terminally encoded peptides (CEPs) are small peptides, typically post-translationally modified, and highly conserved in many species. CEPs are known to inhibit plant growth and development, but the mechanisms are not well understood. In this study, 14 CEPs were identified in Setaria italica and divided into two groups. The transcripts of most SiCEPs were more abundant in roots than in other detected tissues. SiCEP3, SiCEP4, and SiCEP5 were also highly expressed in panicles. Moreover, expression of all SiCEPs was induced by abiotic stresses and phytohormones. SiCEP3 overexpression and application of synthetic SiCEP3 both inhibited seedling growth. In the presence of abscisic acid (ABA), growth inhibition and ABA content in seedlings increased with the concentration of SiCEP3. Transcripts encoding eight ABA transporters and six ABA receptors were induced or repressed by synthetic SiCEP3, ABA, and their combination. Further analysis using loss-of-function mutants of Arabidopsis genes functioning as ABA transporters, receptors, and in the biosynthesis and degradation of ABA revealed that SiCEP3 promoted ABA import at least via NRT1.2 (NITRATE TRANSPORTER 1.2) and ABCG40 (ATP-BINDING CASSETTE G40). In addition, SiCEP3, ABA, or their combination inhibited the kinase activities of CEP receptors AtCEPR1/2. Taken together, our results indicated that the CEP-CEPR module mediates ABA signaling by regulating ABA transporters and ABA receptors in planta.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Yue Ren
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Qian Xu
- Phytohormone Analysis Platform, Agronomy College of Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yiman Wan
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Kang Yan
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| | - Changai Wu
- State Key Laboratory of Crop Biology, Engineering center of Saline-alkali soil plant - microbial joint restoration, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018,China
| |
Collapse
|
30
|
Dormatey R, Sun C, Ali K, Fiaz S, Xu D, Calderón-Urrea A, Bi Z, Zhang J, Bai J. ptxD/Phi as alternative selectable marker system for genetic transformation for bio-safety concerns: a review. PeerJ 2021; 9:e11809. [PMID: 34395075 PMCID: PMC8323600 DOI: 10.7717/peerj.11809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/27/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotic and herbicide resistance genes are the most common marker genes for plant transformation to improve crop yield and food quality. However, there is public concern about the use of resistance marker genes in food crops due to the risk of potential gene flow from transgenic plants to compatible weedy relatives, leading to the possible development of “superweeds” and antibiotic resistance. Several selectable marker genes such as aph, nptII, aaC3, aadA, pat, bar, epsp and gat, which have been synthesized to generate transgenic plants by genetic transformation, have shown some limitations. These marker genes, which confer antibiotic or herbicide resistance and are introduced into crops along with economically valuable genes, have three main problems: selective agents have negative effects on plant cell proliferation and differentiation, uncertainty about the environmental effects of many selectable marker genes, and difficulty in performing recurrent transformations with the same selectable marker to pyramid desired genes. Recently, a simple, novel, and affordable method was presented for plant cells to convert non-metabolizable phosphite (Phi) to an important phosphate (Pi) for developing cells by gene expression encoding a phosphite oxidoreductase (PTXD) enzyme. The ptxD gene, in combination with a selection medium containing Phi as the sole phosphorus (P) source, can serve as an effective and efficient system for selecting transformed cells. The selection system adds nutrients to transgenic plants without potential risks to the environment. The ptxD/Phi system has been shown to be a promising transgenic selection system with several advantages in cost and safety compared to other antibiotic-based selection systems. In this review, we have summarized the development of selection markers for genetic transformation and the potential use of the ptxD/Phi scheme as an alternative selection marker system to minimize the future use of antibiotic and herbicide marker genes.
Collapse
Affiliation(s)
- Richard Dormatey
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Chao Sun
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Kazim Ali
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China.,National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad Pakistan
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | - Derong Xu
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Alejandro Calderón-Urrea
- Department of Biology, College of Science and Mathematics, California State University, Fresno, CA, USA
| | - Zhenzhen Bi
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Junlian Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| | - Jiangping Bai
- Gansu Provincial Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Landzhou, China
| |
Collapse
|
31
|
Song J, Tóth K, Montes-Luz B, Stacey G. Soybean Hairy Root Transformation: A Rapid and Highly Efficient Method. Curr Protoc 2021; 1:e195. [PMID: 34288607 DOI: 10.1002/cpz1.195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
New genetic engineering techniques have advanced the field of plant molecular biology, and Agrobacterium-mediated transformation has enabled the discovery of numerous molecular and genetic functions. It has been widely used in many plants, including the economically important crop, soybean. Large-scale genetic analyses are needed to comprehend the molecular mechanisms that underlie the agronomic traits of soybean, and the generation of stable transgenic plants involves a lengthy and laborious process. Agrobacterium rhizogenes-mediated hairy root transformation is a quick and efficient method for investigations of root-specific processes and interactions. Generation of composite plants with transgenic roots and wild-type shoots allows for the study of the genetic mechanisms involved in root biology, such as the Bradyrhizobium-soybean interaction. Here, we provide an updated protocol for generating hairy soybean roots in as little as 18 days in a cost- and space-effective manner and demonstrate possible uses of composite plants with soybean nodulation assays and gene expression analysis as examples. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Soybean hairy root transformation Basic Protocol 2: Soybean nodulation assay Alternate Protocol: Soybean nodulation assay in germination pouches Support Protocol: Bradyrhizobium japonicum culture preparation for inoculation Basic Protocol 3: Histochemical GUS staining for promoter analysis.
Collapse
Affiliation(s)
- Jaehyo Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri
| | - Katalin Tóth
- Division of Plant Sciences, University of Missouri, Columbia, Missouri
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, Oulu, Finland
| | - Bruna Montes-Luz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri
| | - Gary Stacey
- Division of Plant Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
32
|
Sharma S, Singh Y, Verma PK, Vakhlu J. Establishment of Agrobacterium rhizogenes-mediated hairy root transformation of Crocus sativus L. 3 Biotech 2021; 11:82. [PMID: 33505837 PMCID: PMC7813919 DOI: 10.1007/s13205-020-02626-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Efficient transformation system for genetic improvement is essential in Crocus sativus, as it lacks sexual reproduction. This is the first report wherein an efficient protocol is developed for the transformation of Crocus sativus L. by Agrobacterium rhizogenes strain ARqua1 with a transformation efficiency of 78.51%. The ARqua1 strain harboring both Ri plasmid and binary vector plasmid pSITE-4NB, and marker genes for red fluorescent protein (RFP) and a β-glucuronidase (GUS) reporter gene were used for selection. Transformation was confirmed by RFP signal, GUS reporter assay and polymerase chain reaction (PCR) analysis of the test samples after 21 days post inoculation. These results confirm the establishment of protocol for hairy root transformation in C. sativus that can be further used for gene transfer or gene editing in Crocus for its genetic improvement.
Collapse
Affiliation(s)
- Shilpi Sharma
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| | - Yeshveer Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen K. Verma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Jyoti Vakhlu
- School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir 180006 India
| |
Collapse
|
33
|
Lachner LA, Galstyan LG, Krause K. A highly efficient protocol for transforming Cuscuta reflexa based on artificially induced infection sites. PLANT DIRECT 2020; 4:e00254. [PMID: 32789286 PMCID: PMC7417715 DOI: 10.1002/pld3.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/17/2020] [Indexed: 05/02/2023]
Abstract
The parasitic plant genus Cuscuta is notoriously difficult to transform and to propagate or regenerate in vitro. With it being a substantial threat to many agroecosystems, techniques allowing functional analysis of gene products involved in host interaction and infection mechanisms are, however, in high demand. We set out to explore whether Agrobacterium-mediated transformation of different plant parts can provide efficient alternatives to the currently scarce and inefficient protocols for transgene expression in Cuscuta. We used fluorescent protein genes on the T-DNA as markers for transformation efficiency and transformation stability. As a result, we present a novel highly efficient transformation protocol for Cuscuta reflexa cells that exploits the propensity of the infection organ to take up and express transgenes with the T-DNA. Both, Agrobacterium rhizogenes and Agrobacterium tumefaciens carrying binary transformation vectors with reporter fluorochromes yielded high numbers of transformation events. An overwhelming majority of transformed cells were observed in the cell layer below the adhesive disk's epidermis, suggesting that these cells are particularly susceptible to infection. Cotransformation of these cells happens frequently when Agrobacterium strains carrying different constructs are applied together. Explants containing transformed tissue expressed the fluorescent markers in in vitro culture for several weeks, offering a future possibility for development of transformed cells into callus. These results are discussed with respect to the future potential of this technique and with respect to the special characteristics of the infection organ that may explain its competence to take up the foreign DNA.
Collapse
Affiliation(s)
| | - Levon Galstyan Galstyan
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
- Present address:
Faculty of Food TechnologiesArmenian National Agrarian UniversityYerevanArmenia
| | - Kirsten Krause
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
34
|
Lei T, Wang H, Li S, Cai X, Chen S, Cheng T, Shen J, Shi S, Zhou D. Comparison of Profiling of Hairy Root of Two Tibetan Medicinal Plants Przewalskia tangutica Maxim. and Anisodus tanguticus Maxim. Curr Pharm Biotechnol 2020; 21:516-527. [DOI: 10.2174/1389201020666191127125842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/08/2019] [Accepted: 11/07/2019] [Indexed: 11/22/2022]
Abstract
Background:
Tropane Alkaloids (TAs) are important drugs for curing many diseases in the
medical industry.
Methods:
To sustainably exploit TA resources in endangered traditional Tibetan herbs, the hairy root
(HR) systems of Przewalskia tangutica Maxim. and Anisodus tanguticus Maxim. were compared under
the same culture conditions.
Results:
The results indicated that both the Agrobacterium rhizogenes strains and explants affected the
HR induction frequency, MSU440, A4 and LBA9402 strains could induce hairy roots following infection
of cotyledon and hypocotyl of A. tanguticus while LBA9402 could not induce HR on either explants
of P. tangutica. The efficiency of LBA9402 was higher than A4 and MSU440 on A. tanguticus
and A4 was better strain than MSU440 on P. tangutica. The hypocotyl explant was more suitable for
P.tangutica and cotyledon explant was better for A.tangutica with a transformation frequency of 33.3%
(P. tangutica) and 82.5% (A. tanguticus), respectively. In a flask reactor system, both the growth
curves of HR for two species both appeared to be “S” curve; however, the HR of P. tangutica grew
more rapidly than that of A. tanguticus, and the latter accumulated more biomass than the former. As
the culture volume increased, the HR proliferation coefficient of both the species increased. HPLC
analysis results showed that the content of TAs in the HR of P. tangutica was 257.24mg/100g·DW,
which was more than that of A. tanguticus HR (251.08mg/100g·DW), and the anisodamine in the Pt-
HR was significantly higher than that in At-HR. Moreover, tropane alkaloids in the HR of the two species
were all significantly higher than that of the roots of aseptic seedlings.
Conclusion:
Our results suggest that HR of P. tangutica and A. tanguticus both could provide a useful
platform for sustainable utilization of two Tibetan medicinal plants in the Qinghai-Tibetan Plateau in
the future.
Collapse
Affiliation(s)
- Tianxiang Lei
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Huan Wang
- Tibetan Medicine Center, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Songling Li
- Institute of Soil and Fertilizer, Qinghai University, Xining 810016, Qinghai, China
| | - Xiaojian Cai
- Institute of Soil and Fertilizer, Qinghai University, Xining 810016, Qinghai, China
| | - Shilong Chen
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Tingfeng Cheng
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Jianwei Shen
- Tibetan Medicine Center, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Shengbo Shi
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| | - Dangwei Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, Qinghai, China
| |
Collapse
|
35
|
El-Mounadi K, Morales-Floriano ML, Garcia-Ruiz H. Principles, Applications, and Biosafety of Plant Genome Editing Using CRISPR-Cas9. FRONTIERS IN PLANT SCIENCE 2020; 11:56. [PMID: 32117392 PMCID: PMC7031443 DOI: 10.3389/fpls.2020.00056] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/15/2020] [Indexed: 05/13/2023]
Abstract
The terms genome engineering, genome editing, and gene editing, refer to modifications (insertions, deletions, substitutions) in the genome of a living organism. The most widely used approach to genome editing nowadays is based on Clustered Regularly Interspaced Short Palindromic Repeats and associated protein 9 (CRISPR-Cas9). In prokaryotes, CRISPR-Cas9 is an adaptive immune system that naturally protects cells from DNA virus infections. CRISPR-Cas9 has been modified to create a versatile genome editing technology that has a wide diversity of applications in medicine, agriculture, and basic studies of gene functions. CRISPR-Cas9 has been used in a growing number of monocot and dicot plant species to enhance yield, quality, and nutritional value, to introduce or enhance tolerance to biotic and abiotic stresses, among other applications. Although biosafety concerns remain, genome editing is a promising technology with potential to contribute to food production for the benefit of the growing human population. Here, we review the principles, current advances and applications of CRISPR-Cas9-based gene editing in crop improvement. We also address biosafety concerns and show that humans have been exposed to Cas9 protein homologues long before the use of CRISPR-Cas9 in genome editing.
Collapse
Affiliation(s)
- Kaoutar El-Mounadi
- Department of Biology, Kuztown University of Pennsylvania, Kuztown, PA, United States
| | - María Luisa Morales-Floriano
- Recursos Genéticos y Productividad-Genética, Colegio de Postgraduados, Texcoco, Montecillo, Mexico
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Hernan Garcia-Ruiz
- Department of Plant Pathology and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
36
|
Kowalczyk T, Wieczfinska J, Skała E, Śliwiński T, Sitarek P. Transgenesis as a Tool for the Efficient Production of Selected Secondary Metabolites from in Vitro Plant Cultures. PLANTS (BASEL, SWITZERLAND) 2020; 9:E132. [PMID: 31973076 PMCID: PMC7076688 DOI: 10.3390/plants9020132] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/18/2020] [Accepted: 01/19/2020] [Indexed: 12/28/2022]
Abstract
The plant kingdom abounds in countless species with potential medical uses. Many of them contain valuable secondary metabolites belonging to different classes and demonstrating anticancer, anti-inflammatory, antioxidant, antimicrobial or antidiabetic properties. Many of these metabolites, e.g., paclitaxel, vinblastine, betulinic acid, chlorogenic acid or ferrulic acid, have potential applications in medicine. Additionally, these compounds have many therapeutic and health-promoting properties. The growing demand for these plant secondary metabolites forces the use of new green biotechnology tools to create new, more productive in vitro transgenic plant cultures. These procedures have yielded many promising results, and transgenic cultures have been found to be safe, efficient and cost-effective sources of valuable secondary metabolites for medicine and industry. This review focuses on the use of various in vitro plant culture systems for the production of secondary metabolites.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (E.S.); (P.S.)
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland; (E.S.); (P.S.)
| |
Collapse
|
37
|
Khazaei A, Bahramnejad B, Mozafari AA, Dastan D, Mohammadi S. Hairy root induction and Farnesiferol B production of endemic medicinal plant Ferula pseudalliacea. 3 Biotech 2019; 9:407. [PMID: 31692659 DOI: 10.1007/s13205-019-1935-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 10/09/2019] [Indexed: 12/30/2022] Open
Abstract
The effects of medium, gibberellic acid (GA3) and stratification treatments on the seed germination of Ferula pseudalliacea were evaluated. Filter paper medium, 500 micro molar GA3 and 8 week chilling treatment were resulted in significantly more seed germination than others. F. pseudalliacea was also transformed by Agrobacterium rhizogenes. Explants from young leaves, stems, cotyledon, and embryo were inoculated with A. rhizogenes strains ATCC 15834, 1724, A4, LB9402 and Ar318. Hairy roots were induced only from 10 to 12-days embryo explants using strains ATCC 15824 and 1724. Although, the transformation efficiency of ATCC 15834 (4%) strain was higher than 1724 (2%). Maximum hairy root transformation frequency (25%) was obtained in infection time of 10 min compared to that of 20 (20%) and 30 (5%) min. In addition, the transformation rate was significantly higher at the inoculation time of 72 h (29%) compared to that of 48 h (22%) and 24 h (6%). Transgenic hairy root lines were confirmed by PCR amplification of rolB gene. Hairy root lines were produced higher biomass in half B5 medium compared to that of half MS medium. Hairy roots lines from the strain ATCC 15834 produced more hairy root numbers and fresh and dried biomass compared to that of the strain 1724. Analyses of transgenic hairy root and natural roots extracts using HPLC showed that all the hairy root lines produced farnesiferol B.
Collapse
Affiliation(s)
- Abedin Khazaei
- 1Department of Agronomy and Plant Breeding, University of Kurdistan, 416, Sanandaj, Iran
| | - Bahman Bahramnejad
- 1Department of Agronomy and Plant Breeding, University of Kurdistan, 416, Sanandaj, Iran
| | - Ali-Akbar Mozafari
- 2Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Dara Dastan
- 3Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- 4Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Mohammadi
- 1Department of Agronomy and Plant Breeding, University of Kurdistan, 416, Sanandaj, Iran
| |
Collapse
|