1
|
Danouche M, Bounaga A, Oulkhir A, Boulif R, Zeroual Y, Benhida R, Lyamlouli K. Advances in bio/chemical approaches for sustainable recycling and recovery of rare earth elements from secondary resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168811. [PMID: 38030017 DOI: 10.1016/j.scitotenv.2023.168811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Rare Earth Elements (REEs) are indispensable in the growing smart technologies, such as smart phones and electronic devices, renewable energy, new generation of hybrid cars, etc. These elements are naturally occurring in specific geological deposits (bastnäsite, monazite, and xenotime), primarily concentrated in the regions of China, Australia, and the USA. The extraction and processing of REEs and the mismanagement of secondary REE resources, such as industrial waste, end-of-life materials, and mining by-products, raise major environmental and health concerns. Recycling represents a convincing solution, avoiding the necessity to separate low-value or coexisting radioactive elements when REEs are recovered from raw ore. Despite these advantages, only 1 % of REEs are usually recycled. This review overreached strategies for recycling REEs from secondary resources, emphasizing their pivotal role. The predominant approach for recycling REEs involves hydrometallurgical processing by leaching REEs from their origins using acidic solutions and then separating them from dissolved impurities using techniques like liquid-liquid extraction, membrane separation, chromatography, adsorption, flotation, and electrochemical methods. However, these methods have notable disadvantages, particularly their over requirements for water, reagents, and energy. Biohydrometallurgy introduces an innovative alternative using microorganisms and their metabolites to extract REEs through bioleaching. Other investigations are carried out to recover REEs through biological strategies, including biosorption, affinity chromatography with biological ligands, bioflotation employing biological surfactants, and bioelectrochemical methods. However, biohydrometallurgical processes can also be relatively slow and less suitable for large-scale applications, often lacking specificity for targeted REEs recovery. Overcoming these challenges necessitates ongoing research and development efforts to advance recycling technologies.
Collapse
Affiliation(s)
- M Danouche
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - A Bounaga
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - A Oulkhir
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France
| | - R Boulif
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Y Zeroual
- Situation Innovation, OCP Group BP 118, Jorf Lasfar, El Jadida 24000, Morocco
| | - R Benhida
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France.
| | - K Lyamlouli
- College of Sustainable Agriculture and Environmental Sciences, AgroBioScience Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| |
Collapse
|
2
|
Fathima A, Ilankoon IMSK, Zhang Y, Chong MN. Scaling up of dual-chamber microbial electrochemical systems - An appraisal using systems design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169186. [PMID: 38086487 DOI: 10.1016/j.scitotenv.2023.169186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.
Collapse
Affiliation(s)
- Arshia Fathima
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - I M S K Ilankoon
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Meng Nan Chong
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
3
|
Liu K, Ma Z, Li X, Qiu Y, Liu D, Liu S. N-Doped Carbon Nanowire-Modified Macroporous Carbon Foam Microbial Fuel Cell Anode: Enrichment of Exoelectrogens and Enhancement of Extracellular Electron Transfer. MATERIALS (BASEL, SWITZERLAND) 2023; 17:69. [PMID: 38203925 PMCID: PMC10779606 DOI: 10.3390/ma17010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Microbial fuel cell (MFC) performance is affected by the metabolic activity of bacteria and the extracellular electron transfer (EET) process. The deficiency of nanostructures on macroporous anode obstructs the enrichment of exoelectrogens and the EET. Herein, a N-doped carbon nanowire-modified macroporous carbon foam was prepared and served as an anode in MFCs. The anode has a hierarchical porous structure, which can solve the problem of biofilm blockage, ensure mass transport, favor exoelectrogen enrichment, and enhance the metabolic activity of bacteria. The microscopic morphology, spectroscopy, and electrochemical characterization of the anode confirm that carbon nanowires can penetrate biofilm, decrease charge resistance, and enhance long-distance electron transfer efficiency. In addition, pyrrolic N can effectively reduce the binding energy and electron transfer distance of bacterial outer membrane hemin. With this hierarchical anode, a maximum power density of 5.32 W/m3 was obtained, about 2.5-fold that of bare carbon cloth. The one-dimensional nanomaterial-modified macroporous anodes in this study are a promising strategy to improve the exoelectrogen enrichment and EET for MFCs.
Collapse
Affiliation(s)
- Ke Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Zhuo Ma
- Harbin Institute of Technology, School of Life Science and Technology, Harbin 150001, China
| | - Xinyi Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, School of Medicine and Health, Harbin 150080, China
| | - Yunfeng Qiu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, School of Medicine and Health, Harbin 150080, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China
| | - Shaoqin Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, School of Medicine and Health, Harbin 150080, China
| |
Collapse
|
4
|
Michalska K, Brown RK, Schröder U. Carbon source priority and availability limit bidirectional electron transfer in freshwater mixed culture electrochemically active bacterial biofilms. BIORESOUR BIOPROCESS 2023; 10:64. [PMID: 38647932 PMCID: PMC10991894 DOI: 10.1186/s40643-023-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/02/2023] [Indexed: 04/25/2024] Open
Abstract
This study investigated, if a mixed electroactive bacterial (EAB) culture cultivated heterotrophically at a positive applied potential could be adapted from oxidative to reductive or bidirectional extracellular electron transfer (EET). To this end, a periodic potential reversal regime between - 0.5 and 0.2 V vs. Ag/AgCl was applied. This yielded biofilm detachment and mediated electroautotrophic EET in combination with carbonate, i.e., dissolved CO2, as the sole carbon source, whereby the emerged mixed culture (S1) contained previously unknown EAB. Using acetate (S2) as well as a mixture of acetate and carbonate (S3) as the main carbon sources yielded primarily alternating electrogenic organoheterotropic metabolism with the higher maximum oxidation current densities recorded for mixed carbon media, exceeding on average 1 mA cm-2. More frequent periodic polarization reversal resulted in the increase of maximum oxidative current densities by about 50% for S2-BES and 80% for S3-BES, in comparison to half-batch polarization. The EAB mixed cultures developed accordingly, with S1 represented by mostly aerobes (84.8%) and being very different in composition to S2 and S3, dominated by anaerobes (96.9 and 96.5%, respectively). S2 and S3 biofilms remained attached to the electrodes. There was only minor evidence of fully reversible bidirectional EET. In conclusion the three triplicates fed with organic and/or inorganic carbon sources demonstrated two forms of diauxie: Firstly, S1-BES showed a preference for the electrode as the electron donor via mediated EET. Secondly, S2-BES and S3-BES showed a preference for acetate as electron donor and c-source, as long as this was available, switching to CO2 reduction, when acetate was depleted.
Collapse
Affiliation(s)
- Karina Michalska
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Robert Keith Brown
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Uwe Schröder
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany.
| |
Collapse
|
5
|
Rabiço F, Pedrino M, Narcizo JP, de Andrade AR, Reginatto V, Guazzaroni ME. Synthetic Biology Toolkit for a New Species of Pseudomonas Promissory for Electricity Generation in Microbial Fuel Cells. Microorganisms 2023; 11:2044. [PMID: 37630604 PMCID: PMC10458277 DOI: 10.3390/microorganisms11082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Microbial fuel cells (MFCs) offer sustainable solutions for various biotechnological applications and are a crucial area of research in biotechnology. MFCs can effectively treat various refuse, such as wastewater and biodiesel waste by decomposing organic matter and generating electricity. Certain Pseudomonas species possess extracellular electron transfer (EET) pathways, enabling them to transfer electrons from organic compounds to the MFC's anode. Moreover, Pseudomonas species can grow under low-oxygen conditions, which is advantageous considering that the electron transfer process in an MFC typically leads to reduced oxygen levels at the anode. This study focuses on evaluating MFCs inoculated with a new Pseudomonas species grown with 1 g.L-1 glycerol, a common byproduct of biodiesel production. Pseudomonas sp. BJa5 exhibited a maximum power density of 39 mW.m-2. Also, the observed voltammograms and genome analysis indicate the potential production of novel redox mediators by BJa5. Additionally, we investigated the bacterium's potential as a synthetic biology non-model chassis. Through testing various genetic parts, including constitutive promoters, replication origins and cargos using pSEVA vectors as a scaffold, we assessed the bacterium's suitability. Overall, our findings offer valuable insights into utilizing Pseudomonas spp. BJa5 as a novel chassis for MFCs. Synthetic biology approaches can further enhance the performance of this bacterium in MFCs, providing avenues for improvement.
Collapse
Affiliation(s)
- Franciene Rabiço
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (F.R.); (M.P.)
| | - Matheus Pedrino
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (F.R.); (M.P.)
| | - Julia Pereira Narcizo
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.P.N.); (A.R.d.A.); (V.R.)
| | - Adalgisa Rodrigues de Andrade
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.P.N.); (A.R.d.A.); (V.R.)
| | - Valeria Reginatto
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.P.N.); (A.R.d.A.); (V.R.)
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (F.R.); (M.P.)
| |
Collapse
|
6
|
Palanisamy G, Im YM, Muhammed AP, Palanisamy K, Thangarasu S, Oh TH. Fabrication of Cellulose Acetate-Based Proton Exchange Membrane with Sulfonated SiO 2 and Plasticizers for Microbial Fuel Cell Applications. MEMBRANES 2023; 13:581. [PMID: 37367785 DOI: 10.3390/membranes13060581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Developing a hybrid composite polymer membrane with desired functional and intrinsic properties has gained significant consideration in the fabrication of proton exchange membranes for microbial fuel cell applications. Among the different polymers, a naturally derived cellulose biopolymer has excellent benefits over synthetic polymers derived from petrochemical byproducts. However, the inferior physicochemical, thermal, and mechanical properties of biopolymers limit their benefits. In this study, we developed a new hybrid polymer composite of a semi-synthetic cellulose acetate (CA) polymer derivate incorporated with inorganic silica (SiO2) nanoparticles, with or without a sulfonation (-SO3H) functional group (sSiO2). The excellent composite membrane formation was further improved by adding a plasticizer (glycerol (G)) and optimized by varying the SiO2 concentration in the polymer membrane matrix. The composite membrane's effectively improved physicochemical properties (water uptake, swelling ratio, proton conductivity, and ion exchange capacity) were identified because of the intramolecular bonding between the cellulose acetate, SiO2, and plasticizer. The proton (H+) transfer properties were exhibited in the composite membrane by incorporating sSiO2. The composite CAG-2% sSiO2 membrane exhibited a higher proton conductivity (6.4 mS/cm) than the pristine CA membrane. The homogeneous incorporation of SiO2 inorganic additives in the polymer matrix provided excellent mechanical properties. Due to the enhancement of the physicochemical, thermal, and mechanical properties, CAG-sSiO2 can effectively be considered an eco-friendly, low-cost, and efficient proton exchange membrane for enhancing MFC performance.
Collapse
Affiliation(s)
- Gowthami Palanisamy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Yeong Min Im
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ajmal P Muhammed
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Karvembu Palanisamy
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Sadhasivam Thangarasu
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
7
|
Shi X, Duan Z, Zhou W, Jiang M, Li T, Ma H, Zhu X. Simultaneous removal of multiple heavy metals using single chamber microbial electrolysis cells with biocathode in the micro-aerobic environment. CHEMOSPHERE 2023; 318:137982. [PMID: 36716938 DOI: 10.1016/j.chemosphere.2023.137982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/09/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The simultaneous and efficient removal of various heavy metals from wastewater to satisfy the requirements of zero discharge has been a research hotspot and difficult point. In the laboratory scale (0.5 L), the biocathode microbial electrolytic cells (BCMECs) were constructed with the pre-screened heavy metal-tolerant electroactive bacterial, mainly of the Sphingomonas, Azospira and Cupriavidus. The BCMECs system showed a more satisfactory removal effect for multiple heavy metals and organic pollutants. At the auxiliary voltage of 0.9 V and initial concentration of 20 mg L-1, the removal efficiency of Cu, Pb, Zn, Cd and COD were 98.76 ± 0.32%, 98.01 ± 0.76%, 73.58 ± 4.83%, 84.39 ± 5.95%, 77.55 ± 1.51%, respectively. It was found by various characterization techniques (CV, EIS, XPS et al.) that the constructed biocathode has the function of electrocatalytic reduction of heavy metal ions in a micro-aerobic, film-free environment. The positive shift (0.030-0.229 V) of the initial potential for heavy metal reduction and the absence of a significant increase (< 10 Ω) in the interfacial resistance indicated a reduction in the total free energy of the reduction reaction, which promotes the reaction and improves the efficiency of heavy metal removal. Bacterial community analysis revealed that the Proteobacteria has been dominant in different heavy metal environments. With the increase of heavy metal concentration, Sphingomonas, Azospira and Cupriavidus showed stronger tolerance and became the dominant genus. This study emphasized the important performance of biocathodes and the effective treatment of heavy metal wastewaters by BCMECs and provided a reasonable way for industrial and mining enterprises to innovate the water treatment process.
Collapse
Affiliation(s)
- Xiuding Shi
- College of Architecture and Engineering, Yunnan Agricultural University, Kunming 650201, PR China
| | - Zhengyang Duan
- College of Resources, Environment and Chemistry, Chuxiong Normal University, Chuxiong 675000, PR China
| | - Wenyi Zhou
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Ming Jiang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Tianguo Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China.
| | - Hongyan Ma
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| | - Xuan Zhu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, PR China
| |
Collapse
|
8
|
Performance of bioelectrochemical systems in treating exhaust gas with power generation: Effects of shock-load, shut-down episodes and microbial community. Bioelectrochemistry 2022; 148:108260. [PMID: 36096073 DOI: 10.1016/j.bioelechem.2022.108260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 11/22/2022]
Abstract
A diffusive packed anode-bioelectrochemical (Dpa-Bes) system was constructed by feeding waste gas from the cathode to the anode tank in DPa-Bes through a proton exchange membrane (PEM). The high removal of oxygen by the PEM and the effective combination of the two packing materials reduced the electron loss and enhanced the proton transfer capacity, promoting the removal of acetone from the exhaust gas and increasing the output power. The maximum acetone removal efficiency of the modified Dpa-Bes reached ∼99 % after seven days of closed-circuit operation, with a 3.2-fold increase in maximum power density and a 2.27-fold increase in closed-circuit voltage relative to those of the unmodified Dpa-Bes. When the acetone concentration was 2400 ppm, the removal efficiency was 73.22 % and the elimination capacity was at its highest value of 290.21 g/m3/h. Microbial analysis revealed that the conductive filter contained abundant facultative and anaerobic bacteria, whereas the non-conductive filter was rich in aerobic bacteria. The abundance of anaerobic and facultative microorganisms in Dpa-Bes was much higher than in the unmodified Dpa-Bes, and the dominant bacteria were Flavobacterium and Ferruginibacter.
Collapse
|
9
|
Matabosch Coromina H, Antonio Cuffaro G, Tommasi T, Puig S, Virdis B. A slurry electrode based on reduced graphene oxide and poly(sodium 4-styrenesulfonate) for applications in microbial electrochemical technologies. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Buscemi G, Vona D, Stufano P, Labarile R, Cosma P, Agostiano A, Trotta M, Farinola GM, Grattieri M. Bio-Inspired Redox-Adhesive Polydopamine Matrix for Intact Bacteria Biohybrid Photoanodes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26631-26641. [PMID: 35639658 PMCID: PMC9204692 DOI: 10.1021/acsami.2c02410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 05/24/2023]
Abstract
Interfacing intact and metabolically active photosynthetic bacteria with abiotic electrodes requires both establishing extracellular electron transfer and immobilizing the biocatalyst on electrode surfaces. Artificial approaches for photoinduced electron harvesting through redox polymers reported in literature require the separate synthesis of artificial polymeric matrices and their subsequent combination with bacterial cells, making the development of biophotoanodes complex and less sustainable. Herein, we report a one-pot biocompatible and sustainable approach, inspired by the byssus of mussels, that provides bacterial cells adhesion on multiple surfaces under wet conditions to obtain biohybrid photoanodes with facilitated photoinduced electron harvesting. Purple bacteria were utilized as a model organism, as they are of great interest for the development of photobioelectrochemical systems for H2 and NH3 synthesis, biosensing, and bioremediation purposes. The polydopamine matrix preparation strategy allowed the entrapment of active purple bacteria cells by initial oxygenic polymerization followed by electrochemical polymerization. Our results unveil that the deposition of bacterial cells with simultaneous polymerization of polydopamine on the electrode surface enables a 5-fold enhancement in extracellular electron transfer at the biotic/abiotic interface while maintaining the viability of the cells. The presented approach paves the way for a more sustainable development of biohybrid photoelectrodes.
Collapse
Affiliation(s)
- Gabriella Buscemi
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Danilo Vona
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
| | - Paolo Stufano
- CNR-NANOTEC,
Institute of Nanotechnology, Consiglio Nazionale
delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Rossella Labarile
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Pinalysa Cosma
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Angela Agostiano
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Massimo Trotta
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| | - Gianluca M. Farinola
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
| | - Matteo Grattieri
- Dipartimento
di Chimica, Università degli Studi
di Bari “Aldo Moro”, via E. Orabona 4, Bari 70125, Italy
- IPCF-CNR
Istituto per i Processi Chimico Fisici, Consiglio Nazionale delle Ricerche, via E. Orabona 4, Bari 70125, Italy
| |
Collapse
|
11
|
From Waste to Watts: Updates on Key Applications of Microbial Fuel Cells in Wastewater Treatment and Energy Production. SUSTAINABILITY 2022. [DOI: 10.3390/su14020955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to fossil fuel depletion and the rapid growth of industry, it is critical to develop environmentally friendly and long-term alternative energy technologies. Microbial fuel cells (MFCs) are a powerful platform for extracting energy from various sources and converting it to electricity. As no intermediate steps are required to harness the electricity from the organic substrate’s stored chemical energy, MFC technology offers a sustainable alternative source of energy production. The generation of electricity from the organic substances contained in waste using MFC technology could provide a cost-effective solution to the issue of environmental pollution and energy shortages in the near future. Thus, technical advancements in bioelectricity production from wastewater are becoming commercially viable. Due to practical limitations, and although promising prospects have been reported in recent investigations, MFCs are incapable of upscaling and of high-energy production. In this review paper, intensive research has been conducted on MFCs’ applications in the treatment of wastewater. Several types of waste have been extensively studied, including municipal or domestic waste, industrial waste, brewery wastewater, and urine waste. Furthermore, the applications of MFCs in the removal of nutrients (nitrogen and sulphates) and precious metals from wastewater were also intensively reviewed. As a result, the efficacy of various MFCs in achieving sustainable power generation from wastewater has been critically addressed in this study.
Collapse
|
12
|
Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial electrocatalysis reckons on microbes as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well-known in this context; both prefer the oxidation of organic and inorganic matter for producing electricity. Notably, the synthesis of high energy-density chemicals (fuels) or their precursors by microorganisms using bio-cathode to yield electrical energy is called Microbial Electrosynthesis (MES), giving an exceptionally appealing novel way for producing beneficial products from electricity and wastewater. This review accentuates the concept, importance and opportunities of MES, as an emerging discipline at the nexus of microbiology and electrochemistry. Production of organic compounds from MES is considered as an effective technique for the generation of various beneficial reduced end-products (like acetate and butyrate) as well as in reducing the load of CO2 from the atmosphere to mitigate the harmful effect of greenhouse gases in global warming. Although MES is still an emerging technology, this method is not thoroughly known. The authors have focused on MES, as it is the next transformative, viable alternative technology to decrease the repercussions of surplus carbon dioxide in the environment along with conserving energy.
Collapse
|
13
|
Hoareau M, Etcheverry L, Erable B, Bergel A. Oxygen supply management to intensify wastewater treatment by a microbial electrochemical snorkel. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Potential of Utilization of Renewable Energy Technologies in Gulf Countries. SUSTAINABILITY 2021. [DOI: 10.3390/su131810261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This critical review report highlights the enormous potentiality and availability of renewable energy sources in the Gulf region. The earth suffers from extreme air pollution, climate changes, and extreme problems due to the enormous usage of underground carbon resources applications materialized in industrial, transport, and domestic sectors. The countries under Gulf Cooperation Council, i.e., Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, and the United Arab Emirates, mainly explore those underground carbon resources for crude oil extraction and natural gas production. As a nonrenewable resource, these are bound to be exhausted in the near future. Hence, this review discusses the importance and feasibility of renewable sources in the Gulf region to persuade the scientific community to launch and explore renewable sources to obtain the maximum benefit in electric power generation. In most parts of the Gulf region, solar and wind energy sources are abundantly available. However, attempts to harness those resources are very limited. Furthermore, in this review report, innovative areas of advanced research (such as bioenergy, biomass) were proposed for the Gulf region to extract those resources at a higher magnitude to generate surplus power generation. Overall, this report clearly depicts the current scenario, current power demand, currently installed capacities, and the future strategies of power production from renewable power sources (viz., solar, wind, tidal, biomass, and bioenergy) in each and every part of the Gulf region.
Collapse
|
15
|
Pankratova G, Bollella P, Pankratov D, Gorton L. Supercapacitive biofuel cells. Curr Opin Biotechnol 2021; 73:179-187. [PMID: 34481244 DOI: 10.1016/j.copbio.2021.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 01/03/2023]
Abstract
Supercapacitive biofuel cells' (SBFCs) most recent advancements are herein disclosed. In conventional SBFCs the biocomponent is employed as the pseudocapacitive component, while in self-charging biodevices it also works as the biocatalyst. The performance of different types of SBFCs are summarized according to the categorization based on the biocatalyst employed: supercapacitive microbial fuel cells (s-MFCs), supercapacitive biophotovoltaics (SBPV) and supercapacitive enzymatic fuel cells (s-EFCs). SBFCs could be considered as promising 'alternative' energy devices (low-cost, environmentally friendly, and technically undemanding electric power sources etc.) being suitable for powering a new generation of miniaturized electronic applications.
Collapse
Affiliation(s)
- Galina Pankratova
- National Centre for Nano Fabrication and Characterization, Technical University of Denmark (DTU), 2800, Kongens Lyngby, Denmark
| | - Paolo Bollella
- Department of Chemistry, University of Bari A. Moro, Via E. Orabona 4, 70125 Bari, Italy.
| | - Dmitry Pankratov
- Department of Bioengineering, University of Antwerp, B-2020 Antwerp, Belgium
| | - Lo Gorton
- Department of Analytical Chemistry/Biochemistry and Structural Biology, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.
| |
Collapse
|
16
|
Jose V, Jose V, Freeda Christy CE, Nesaraj AS. Spinel-based electrode materials for application in electrochemical supercapacitors – present status and future prospects. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1956968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vismaya Jose
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Vinaya Jose
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Clementz Edwardraj Freeda Christy
- Department of Civil Engineering, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| | - Arputharaj Samson Nesaraj
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed to be University), Coimbatore, Tamil Nadu, India
| |
Collapse
|
17
|
Santoro C, Babanova S, Cristiani P, Artyushkova K, Atanassov P, Bergel A, Bretschger O, Brown RK, Carpenter K, Colombo A, Cortese R, Erable B, Harnisch F, Kodali M, Phadke S, Riedl S, Rosa LFM, Schröder U. How Comparable are Microbial Electrochemical Systems around the Globe? An Electrochemical and Microbiological Cross-Laboratory Study. CHEMSUSCHEM 2021; 14:2313-2330. [PMID: 33755321 PMCID: PMC8252665 DOI: 10.1002/cssc.202100294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Indexed: 05/05/2023]
Abstract
A cross-laboratory study on microbial fuel cells (MFC) which involved different institutions around the world is presented. The study aims to assess the development of autochthone microbial pools enriched from domestic wastewater, cultivated in identical single-chamber MFCs, operated in the same way, thereby approaching the idea of developing common standards for MFCs. The MFCs are inoculated with domestic wastewater in different geographic locations. The acclimation stage and, consequently, the startup time are longer or shorter depending on the inoculum, but all MFCs reach similar maximum power outputs (55±22 μW cm-2 ) and COD removal efficiencies (87±9 %), despite the diversity of the bacterial communities. It is inferred that the MFC performance starts when the syntrophic interaction of fermentative and electrogenic bacteria stabilizes under anaerobic conditions at the anode. The generated power is mostly limited by electrolytic conductivity, electrode overpotentials, and an unbalanced external resistance. The enriched microbial consortia, although composed of different bacterial groups, share similar functions both on the anode and the cathode of the different MFCs, resulting in similar electrochemical output.
Collapse
Affiliation(s)
- Carlo Santoro
- Department of Material ScienceUniversity of Milan BicoccaU5 Via Cozzi 55Milan20125Italy
| | - Sofia Babanova
- Aquacycl LLC2180 Chablis Court, Suite 102EscondidoCA 92029USA
| | - Pierangela Cristiani
- Department of Sustainable Development and Energy ResourcesRicerca sul Sistema Energetico S.p.A.Via Rubattino 54Milan20134Italy
| | | | - Plamen Atanassov
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Alain Bergel
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | | | - Robert K. Brown
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Kayla Carpenter
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Alessandra Colombo
- Department of ChemistryUniversità degli Studi di MilanoVia Golgi 19Milan20133Italy
| | - Rachel Cortese
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Benjamin Erable
- Laboratoire de Génie ChimiqueUniversité de Toulouse, CNRS-INPT-UPS4 allée Emile Monso31432ToulouseFrance
| | - Falk Harnisch
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Mounika Kodali
- Department of Chemical & Biomolecular Engineering National Fuel Cell Research Center (NFCRC)University of CaliforniaIrvineCA 92697USA
| | - Sujal Phadke
- J. Craig Venter Institute4120 Capricorn LaneLa JollaCA 92037USA
| | - Sebastian Riedl
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| | - Luis F. M. Rosa
- Department of Environmental MicrobiologyHelmholtz-Centre for Environmental Research – UFZPermoserstr. 1504318LeipzigGermany
| | - Uwe Schröder
- Institute of Environmental and Sustainable ChemistryTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
18
|
Vishwanathan AS. Microbial fuel cells: a comprehensive review for beginners. 3 Biotech 2021; 11:248. [PMID: 33968591 PMCID: PMC8088421 DOI: 10.1007/s13205-021-02802-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Microbial fuel cells (MFCs) have shown immense potential as a one-stop solution for three major sustainability issues confronting the world today-energy security, global warming and wastewater management. MFCs represent a cross-disciplinary platform for research at the confluence of the natural and engineering sciences. The diversity of variables influencing performance of MFCs has garnered research interest across varied scientific disciplines since the beginning of this century. The increasing number of research publications has made it necessary to keep track of work being carried out by research groups across the globe and consolidate significant findings on a regular basis. Review articles are often the nodal points for beginners who are required to undertake an exploratory survey of literature to identify a suitable research problem. This 'review of reviews' is a ready-reckoner that directs readers to relevant reviews and research articles reporting significant developments in MFC research in the last two decades. The article also highlights the areas needing research attention which when addressed could take this technology a few more steps closer to practical implementation.
Collapse
Affiliation(s)
- A. S. Vishwanathan
- WATER Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi, 515134 Andhra Pradesh India
| |
Collapse
|
19
|
Gunaseelan K, Jadhav DA, Gajalakshmi S, Pant D. Blending of microbial inocula: An effective strategy for performance enhancement of clayware Biophotovoltaics microbial fuel cells. BIORESOURCE TECHNOLOGY 2021; 323:124564. [PMID: 33360719 DOI: 10.1016/j.biortech.2020.124564] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Performance of clayware Biophotovoltaics (BPVs) with three variants of inocula namely anoxygenic photosynthetic bacteria (APB) rich Effective microbes (EM), Up-flow anaerobic sludge blanket reactor (UASB) sludge, SUPER-MIX the blend of EM and UASB inoculum were evaluated on the basis of electrical output and pollutant removal. SUPER-MIX inocula with microbial community comprising of 28.42% APB and 71.58% of other microbes resulted in peak power density of 275 mW/m2, 69.3 ± 1.74% Coulombic efficiency and 91 ± 3.96% organic matter removal. The higher performance of the SUPER-MIX than EM and UASB inocula was due to the syntrophic associations of the various APBs and other heterogenous microorganisms in perfect blend which improved biocatalytic electron transfer, electro-kinetic activities with higher redox current and bio-capacitance. The promising performance of clayware BPVs with SUPER-MIX inocula indicate the possibility of BPVs to move towards the scale-up process to minimize the investment towards pure culture by effective blending strategies of inocula.
Collapse
Affiliation(s)
- K Gunaseelan
- Sustainable Fuel Cells Technology Lab, Centre for Pollution Control & Environmental Engineering, Pondicherry University, Puducherry 605 014, India
| | - Dipak A Jadhav
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad 431010, India
| | - S Gajalakshmi
- Sustainable Fuel Cells Technology Lab, Centre for Pollution Control & Environmental Engineering, Pondicherry University, Puducherry 605 014, India.
| | - Deepak Pant
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
20
|
Walter XA, Santoro C, Greenman J, Ieropoulos I. Scaling up self-stratifying supercapacitive microbial fuel cell. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020; 45:25240-25248. [PMID: 32982026 PMCID: PMC7491701 DOI: 10.1016/j.ijhydene.2020.06.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Self-stratifying microbial fuel cells with three different electrodes sizes and volumes were operated in supercapacitive mode. As the electrodes size increased, the equivalent series resistance decreased, and the overall power was enhanced (small: ESR = 7.2 Ω and P max = 13 mW; large: ESR = 4.2 Ω and P max = 22 mW). Power density referred to cathode geometric surface area and displacement volume of the electrolyte in the reactors. With regards to the electrode wet surface area, the large size electrodes (L-MFC) displayed the lowest power density (460 μW cm-2) whilst the small and medium size electrodes (S-MFC, M-MFC) showed higher densities (668 μW cm-2 and 633 μW cm-2, respectively). With regard to the volumetric power densities the S-MFC, the M-MFC and the L-MFC had similar values (264 μW mL-1, 265 μW mL-1 and 249 μW cm-1, respectively). Power density normalised in terms of carbon weight utilised for fabricating MFC cathodes-electrodes showed high output for smaller electrode size MFC (5811 μW g-1-C- and 3270 μW g-1-C- for the S-MFC and L-MFC, respectively) due to the fact that electrodes were optimised for MFC operations and not supercapacitive discharges. Apparent capacitance was high at lower current pulses suggesting high faradaic contribution. The electrostatic contribution detected at high current pulses was quite low. The results obtained give rise to important possibilities of performance improvements by optimising the device design and the electrode fabrication.
Collapse
Affiliation(s)
- Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, UWE, T-Block Coldharbour Lane, Bristol, BS16 1QY, UK
- Corresponding author.
| | - Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, UWE, T-Block Coldharbour Lane, Bristol, BS16 1QY, UK
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, UWE, T-Block Coldharbour Lane, Bristol, BS16 1QY, UK
- Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, UWE, T-Block Coldharbour Lane, Bristol, BS16 1QY, UK
- Corresponding author.
| |
Collapse
|
21
|
Santoro C, Walter XA, Soavi F, Greenman J, Ieropoulos I. Air-breathing cathode self-powered supercapacitive microbial fuel cell with human urine as electrolyte. Electrochim Acta 2020; 353:136530. [PMID: 32884155 PMCID: PMC7430050 DOI: 10.1016/j.electacta.2020.136530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work, a membraneless microbial fuel cell (MFC) with an empty volume of 1.5 mL, fed continuously with hydrolysed urine, was tested in supercapacitive mode (SC-MFC). In order to enhance the power output, a double strategy was used: i) a double cathode was added leading to a decrease in the equivalent series resistance (ESR); ii) the apparent capacitance was boosted up by adding capacitive features on the anode electrode. Galvanostatic (GLV) discharges were performed at different discharge currents. The results showed that both strategies were successful obtaining a maximum power output of 1.59 ± 0.01 mW (1.06 ± 0.01 mW mL−1) at pulse time of 0.01 s and 0.57 ± 0.01 mW (0.38 ± 0.01 mW mL−1) at pulse time of 2 s. The highest energy delivered at ipulse equal to 2 mA was 3.3 ± 0.1 mJ. The best performing SC-MFCs were then connected in series and parallel and tested through GLV discharges. As the power output was similar, the connection in parallel allowed to roughly doubling the current produced. Durability tests over ≈5.6 days showed certain stability despite a light overall decrease. Air-breathing microbial fuel cell was tested in supercapacitive mode. A double cathode addition lead to a decrease in ohmic resistance. Apparent capacitance was boosted up by adding capacitive features. Maximum power output of 1.59 mW (1.06 mW mL−1) was reached at tpulse 0.01s. Series and parallel connections improved the galvanostatic discharges.
Collapse
Affiliation(s)
- Carlo Santoro
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Xavier Alexis Walter
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Francesca Soavi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum - Università̀; di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - John Greenman
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK.,Biological, Biomedical and Analytical Sciences, UWE, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Ioannis Ieropoulos
- Bristol BioEnergy Centre, Bristol Robotics Laboratory, T-Block, UWE, Coldharbour Lane, Bristol BS16 1QY, UK
| |
Collapse
|
22
|
Liu Y, Sun X, Yin D, Cai L, Zhang L. Suspended anode-type microbial fuel cells for enhanced electricity generation. RSC Adv 2020; 10:9868-9877. [PMID: 35498583 PMCID: PMC9050365 DOI: 10.1039/c9ra08288c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/08/2020] [Indexed: 11/21/2022] Open
Abstract
Electricity generation in microbial fuel cells can be restricted by a few factors, such as the effective area of the anode for biofilm attachment, diffusion limitation of substrates and internal resistance. In this paper, a suspended anode (carbon-based felt granule)-type microbial fuel cell was developed to make full use of the volume of the anode chamber and provide a larger surface area of the anode for the growth of exoelectrogenic bacteria. The current collector was rotated in the anodic chamber to contact with the suspended granules intermittently and achieve better mixing. The open-circuit voltage reached steady state at around 0.83 V. The maximum power density obtained from each scenario increased steadily with the increase in mixing rate. The internal resistance decreased when the rotational rate and the content of the carbon granules were increased. The maximum power density reached 951 ± 14 mW m-3 with a corresponding minimum internal resistance of 162.9 ± 3.5 Ω when the mass of carbon granules was 50 g and the rotational rate was 300 rpm. The suspended microbes made negligible contribution to the power density. The microbial fuel cell with a higher content of carbon granules had lower coulombic efficiency and lower relative abundance of exoelectrogenic bacteria.
Collapse
Affiliation(s)
- Yiyang Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 6425 3321 +86 21 6425 3321
| | - Xiaoyan Sun
- Institute of Hydrobiology, Chinese Academy of Sciences Wuhan 430072 China
| | - Di Yin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 6425 3321 +86 21 6425 3321
| | - Lankun Cai
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 6425 3321 +86 21 6425 3321
| | - Lehua Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology Shanghai 200237 China +86 21 6425 3321 +86 21 6425 3321
- Shanghai Institute of Pollution Control and Ecological Security Shanghai 200092 P. R. China
| |
Collapse
|
23
|
Poli F, Seri J, Santoro C, Soavi F. Boosting Microbial Fuel Cell Performance by Combining with an External Supercapacitor: An Electrochemical Study. ChemElectroChem 2020. [DOI: 10.1002/celc.201901876] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Federico Poli
- Department of Chemistry “Giacomo Ciamician” Alma Mater StudiorumUniversita di Bologna Via Selmi, 2 40126 Bologna Italy
| | - Jacopo Seri
- Department of Chemistry “Giacomo Ciamician” Alma Mater StudiorumUniversita di Bologna Via Selmi, 2 40126 Bologna Italy
| | - Carlo Santoro
- Bristol BioEnergy Centre Bristol Robotics Laboratory T-BlockUniversity West of England Coldharbour Lane Bristol BS16 1QY UK
| | - Francesca Soavi
- Department of Chemistry “Giacomo Ciamician” Alma Mater StudiorumUniversita di Bologna Via Selmi, 2 40126 Bologna Italy
| |
Collapse
|