1
|
Naveed M, Jabeen K, Aziz T, Mughual MS, Ul-Hassan J, Sheraz M, Rehman HM, Alharbi M, Albekairi TH, Alasmari AF. Whole proteome analysis of MDR Klebsiella pneumoniae to identify mRNA and multiple epitope based vaccine targets against emerging nosocomial and lungs associated infections. J Biomol Struct Dyn 2025; 43:1915-1928. [PMID: 38141172 DOI: 10.1080/07391102.2023.2293266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 11/29/2023] [Indexed: 12/25/2023]
Abstract
Klebsiella pneumonia is a Gram negative facultative anaerobic bacterium involved in various community-acquired pneumonia, nosocomial and lungs associated infections. Frequent usage of several antibiotics and acquired resistance mechanisms has made this bacterium multi-drug resistance (MDR), complicating the treatment of patients. To avoid the spread of this bacterium, there is an urgent need to develop a vaccine based on immuno-informatics approaches that is more efficient than conventional method of vaccine prediction or development. Initially, the complete proteomic sequence of K. pneumonia was picked over for specific and prospective vaccine targets. From the annotation of the whole proteome, eight immunogenic proteins were selected, and these shortlisted proteins were interpreted for CTL, B-cells, and HTL epitopes prediction, to construct mRNA and multi-epitope vaccines. The Antigenicity, allergenicity and toxicity analysis validate the vaccine's design, and its molecular docking was done with immuno-receptor the TLR-3. The docking interaction showed a stronger binding affinity with a minimum energy of -1153.2 kcal/mol and established 23 hydrogen bonds, 3 salt bridges, 1 disulfide bond, and 340 non-binding contacts. Further validation was done using In-silico cloning which shows the highest CAI score of 0.98 with higher GC contents of 72.25% which represents a vaccine construct with a high value of expression in E. coli. Immune Simulation shows that the antibodies (IgM, IgG1, and IgG2) production exceeded 650,000 in 2 to 3 days but the response was completely neutralized in the 5th day. In conclusion, the study provides the effective, safe and stable vaccine construct against Klebsiella pneumonia, which further needs in vitro and in vivo validations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhammad Naveed
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Khizra Jabeen
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Tariq Aziz
- Department of Agriculture, University of Ioannina, Arta, Greece
| | - Muhammad Saad Mughual
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Jawad Ul-Hassan
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Mohsin Sheraz
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamer H Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Ali A, Ali SL, Alamri A, Khatrawi EM, Baiduissenova A, Suleimenova F, Mishra VK, Khan A, Dusmagambetov M, Askarova G. Multi-epitope-based vaccine models prioritization against Astrovirus MLB1 using immunoinformatics and reverse vaccinology approaches. J Genet Eng Biotechnol 2025; 23:100451. [PMID: 40074425 PMCID: PMC11719404 DOI: 10.1016/j.jgeb.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/29/2024]
Abstract
Astrovirus MLB1 (HAstV-MLB1) is non-enveloped RNA virus that cause acute gastroenteritis infection. Despite research progress about infection and pathogenesis of HAstV-MLB1, Currently, no vaccine has been developed to effectively combat this pathogen. The current study is based on immunoinformatics and reverse vaccinology approaches to design next-generation, multi-epitope-based vaccine models against HAstV-MLB1. Genome-wide whole proteome data of HAstV-MLB1 strain was retrieved, and a series of analyses were conducted to explore effective B and T-cell epitopes that hold significant antigenic nature with no toxicity and allergenicity. A set of vaccine constructs were designed by different combination of lead B and T-cell epitopes with diverse linkers and adjuvants sequences. The model vaccine structures were analyzed via rigorous criteria of physiochemical properties, antigenicity, and molecular docking with HLA and TLR4 immune receptors to ensure their efficacy and safety. Based on the lowest binding energy of -82.48 kcal/mol against the HLA receptor, the MLB1-C2 vaccine model with β-definsin adjuvant was prioritized for molecular dynamic and immune simulations analyses to assess its stability and immunogenic potential. These analyses revealed that the MLB1-C2 construct has feasible molecular stability and potential to boost strong immune responses in the host cell. Besides, the model was predicted to be non-toxic, non-allergenic, and antigenic, ensuring broad population coverage and capable to elicit a robust immune response. The in-silico cloning analysis highlighted a possible gene expression potential of the MLB1-C2 construct in E.coli commercial recombinant vector molecule. The findings of the current study provide an essential template for the development of a advanced next-generation effective vaccine against HAstV-MLB1.
Collapse
Affiliation(s)
- Awais Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Syed Luqman Ali
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Abdulaziz Alamri
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Elham Mohammed Khatrawi
- Department of Medical Microbiology and Immunology, Taibah University, College of Medicine, Madinah 42353, Saudi Arabia.
| | - Aliya Baiduissenova
- Department of Microbiology and Virology, Astana Medical University, Astana city 010000, Kazakhstan.
| | - Fatima Suleimenova
- Department of Human Anatomy, Astana Medical University, Astana 010000, Kazakhstan.
| | - Vipin Kumar Mishra
- Chemistry Division, School of Advance Sciences and Languages, VIT Bhopal University Bhopal, India.
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan.
| | - Marat Dusmagambetov
- Department of Microbiology and Virology, Astana Medical University, Astana city 010000, Kazakhstan.
| | - Gulsum Askarova
- Department of Dermatovenereology, Kazakhstan Medical University, Almaty, Kazakhstan, 050016.
| |
Collapse
|
3
|
Ali A, Ali SL, Alamri A, Khatrawi EM, Baiduissenova A, Suleimenova F, Mishra VK, Khan A, Dusmagambetov M, Askarova G. Multi-epitope-based vaccine models prioritization against Astrovirus MLB1 using immunoinformatics and reverse vaccinology approaches. J Genet Eng Biotechnol 2025; 23:100451. [DOI: https:/doi.org/10.1016/j.jgeb.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Mandal S, Chanu WP, Natarajaseenivasan K. Development of a multi-epitope vaccine candidate to combat SARS-CoV-2 and dengue virus co-infection through an immunoinformatic approach. Front Immunol 2025; 16:1442101. [PMID: 40079004 PMCID: PMC11897530 DOI: 10.3389/fimmu.2025.1442101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025] Open
Abstract
Background Although the SARS-CoV-2 and dengue viruses seriously endanger human health, there is presently no vaccine that can stop a person from contracting both viruses at the same time. In this study, four antigens from SARS-CoV-2 and dengue virus were tested for immunogenicity, antigenicity, allergenicity, and toxicity and chosen to predict dominant T- and B-cell epitopes. Methods For designing a multi-epitope vaccine, the sequences were retrieved, and using bioinformatics and immunoinformatics, the physicochemical and immunological properties, as well as secondary structures, of the vaccine were predicted and studied. Additionally, the three-dimensional structure was estimated, improved upon, and confirmed using bioinformatics methods before being docked with TLR-2 and TLR-4. Eight helper T-cell lymphocyte (HTL) epitopes, ten cytotoxic T-cell lymphocyte (CTL) epitopes, nine B-cell epitopes, and TLR agonists were used to create a new multi-epitope vaccine. Furthermore, according to the immunological stimulation hypothesis, the vaccine could stimulate T and B cells to create large quantities of Th1 cytokines and antibodies. Results The study indicates that the developed vaccine is a favorable vaccine candidate with antigenicity, immunogenicity, non-toxicity, and non-allergenicity properties. The vaccine construct was made up of 460 amino acids, had an MW of 49391.51 Da, a theoretical pI of 9.86, and the formula C2203H3433N643O618S18, a lipid index of 39.84, a GRAVY of -0.473, an aliphatic index of 63.80, and an instability index of 39.84, which classifies the protein to be stable. Conclusion The acquired data showed that both vaccine designs had a considerable chance of preventing the co-infection of SARS-CoV-2 and dengue virus and that they demonstrate good results following in-silico testing. Furthermore, the vaccine may be an effective strategy in preventing SARS-CoV-2 and dengue since it can cause noticeably high levels of Th1 cytokines and antibodies.
Collapse
Affiliation(s)
- Saurav Mandal
- Division of Metabolomics, Proteomics & Imaging facility, Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| | - Waribam Pratibha Chanu
- Department of Applied Physics, School of Vocational Studies and Applied Sciences (SoVSAS), Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Kalimuthusamy Natarajaseenivasan
- Division of Metabolomics, Proteomics & Imaging facility, Regional Medical Research Centre, Indian Council of Medical Research (ICMR), Dibrugarh, Assam, India
| |
Collapse
|
5
|
Chavda VP. Vaccines reimagined: The peptide revolution in disease prevention. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 212:329-354. [PMID: 40122650 DOI: 10.1016/bs.pmbts.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Peptide-based vaccines have emerged as a promising avenue in the realm of immunization strategies. This chapter provides an overview of the key aspects and advancements in peptide-based vaccine development. Peptides, as fragments of larger proteins, hold the potential to induce targeted immune responses while minimizing off-target effects. We discuss the principles of peptide selection, epitope identification, and delivery platforms, underscoring the importance of rational design to optimize immunogenicity. The integration of computational tools and advanced analytical methods has enabled the refinement of peptide vaccine candidates. Studies on infectious diseases, cancers, and new pathogens showcase the versatility and efficacy of peptide vaccines. As the field progresses, collaborative efforts between researchers, industry, and healthcare systems are essential to bridge the gap from laboratory research to clinical application. The future holds promise for peptide-based vaccines to contribute significantly to disease prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India.
| |
Collapse
|
6
|
Justiz-Vaillant A, Soodeen S, Gopaul D, Arozarena-Fundora R, Thompson R, Unakal C, Akpaka PE. Tackling Infectious Diseases in the Caribbean and South America: Epidemiological Insights, Antibiotic Resistance, Associated Infectious Diseases in Immunological Disorders, Global Infection Response, and Experimental Anti-Idiotypic Vaccine Candidates Against Microorganisms of Public Health Importance. Microorganisms 2025; 13:282. [PMID: 40005649 PMCID: PMC11858333 DOI: 10.3390/microorganisms13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
This paper explores various aspects of microbiology and immunology, with a particular focus on the epidemiology and molecular characterisation of infectious diseases in the Caribbean and South America. Key areas of investigation include tuberculosis (TB), experimental vaccines, and bloodborne pathogens. A retrospective study conducted in Jamaica highlights the significance of early HIV screening, timely diagnosis, and inte-grated care. The paper also examines the challenges posed by nosocomial infections, particularly those caused by antibiotic-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA), emphasising the critical importance of infection control measures. Additionally, it explores the regional microbiome, the global response to infectious diseases, and immune responses in patients with immunodeficiency disorders such as severe combined immunodeficiency (SCID) and chronic granulomatous disease (CGD), underscoring their heightened susceptibility to a wide range of infections.
Collapse
Affiliation(s)
- Angel Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Darren Gopaul
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 330912, Trinidad and Tobago;
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 330912, Trinidad and Tobago
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Chandrashekhar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
| | - Patrick E. Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 330912, Trinidad and Tobago; (S.S.); (R.T.); (C.U.); (P.E.A.)
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs 330912, Trinidad and Tobago;
| |
Collapse
|
7
|
Khalid K, Ahmad F, Anwar A, Ong SK. A Bibliometric Analysis on Multi-epitope Vaccine Development Against SARS-CoV-2: Current Status, Development, and Future Directions. Mol Biotechnol 2025:10.1007/s12033-024-01358-5. [PMID: 39789401 DOI: 10.1007/s12033-024-01358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The etiological agent for the coronavirus disease 2019 (COVID-19), the SARS-CoV-2, caused a global pandemic. Although mRNA, viral-vectored, DNA, and recombinant protein vaccine candidates were effective against the SARS-CoV-2 Wuhan strain, the emergence of SARS-CoV-2 variants of concern (VOCs) reduced the protective efficacies of these vaccines. This necessitates the need for effective and accelerated vaccine development against mutated VOCs. The development of multi-epitope vaccines against SARS-CoV-2 based on in silico identification of highly conserved and immunogenic epitopes is a promising strategy for future SARS-CoV-2 vaccine development. Considering the evolving landscape of the COVID-19 pandemic, we have conducted a bibliometric analysis to consolidate current findings and research trends in multi-epitope vaccine development to provide insights for future vaccine development strategies. Analysis of 102 publications on multi-epitope vaccine development against SARS-CoV-2 revealed significant growth and global collaboration, with India leading in the number of publications, along with an identification of the most prolific authors. Key journals included the Journal of Biomolecular Structure and Dynamics, while top collaborations involved Pakistan-China and India-USA. Keyword analysis showed a prominent focus on immunoinformatics, epitope prediction, and spike glycoprotein. Advances in immunoinformatics, including AI-driven epitope prediction, offer promising avenues for the development of safe and effective multi-epitope vaccines. Immunogenicity may be further improved through nanoparticle-based systems or the use of adjuvants along with real-time genomic surveillance to tailor vaccines against emerging variants.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
| | - Fiaz Ahmad
- Department of Economics and Finance, Sunway Business School, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
8
|
Li X, Li Z, Ma M, Yang N, Du S, Liao M, Dai M. Revealing novel and conservative CD8 +T-cell epitopes with MHC B2 restriction on ALV-J. Vet Res 2024; 55:164. [PMID: 39696681 DOI: 10.1186/s13567-024-01426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/03/2024] [Indexed: 12/20/2024] Open
Abstract
MHC B2 haplotype chickens have been reported to induce strong immune response against various avian pathogens. However, little is known about the CD8+T-cell epitope with MHC B2-restricted on subgroup J avian leukosis virus (ALV-J). In this study, we explored the ALV-J-induced cellular immune response in B2 haplotype chickens in vivo. We found that ALV-J infection significantly increased the proportion of CD8+T cells in chickens and up-regulated the expression of cytotoxic genes like Granzyme A and antiviral genes like IFIT5 at 14 days post-infection (dpi). We selected 32 candidate peptides based on the peptide-binding motif and further identified three MHC B2-restricted CD8+T epitopes on ALV-J, including Pol652-660, Gag374-382, and Gag403-411 which induced significant levels of chicken IFN-γ production in splenocytes from ALV-J infected chickens using the ELISpot assay. In addition, we also verified that the three identified epitopes stimulated memory splenocytes elevating TNF-α and IL-2 protein expression. Importantly, we found that the three positive peptides were highly conserved among ALV-A, ALV-B, ALV-E, ALV-J, and ALV-K. Taken together, we identified three MHC B2-restricted CD8+T cell epitopes on ALV-J, providing a foundation for developing effective T cell epitope vaccines targeting conserved internal viral proteins.
Collapse
Affiliation(s)
- Xueqing Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ziwei Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Mulin Ma
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Na Yang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shanyao Du
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou, 510642, China.
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
- UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou, 510642, China.
| |
Collapse
|
9
|
Nafian F, Soleymani G, Pourmanouchehri Z, Kiyanjam M, Nafian S, Mohammadi SM, Jeyroudi H, Berenji Jalaei S, Sabzpoushan F. In Silico Design of a Trans-Amplifying RNA-Based Vaccine against SARS-CoV-2 Structural Proteins. Adv Virol 2024; 2024:3418062. [PMID: 39380944 PMCID: PMC11459942 DOI: 10.1155/2024/3418062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 10/10/2024] Open
Abstract
Nucleic acid-based vaccines allow scalable, rapid, and cell-free vaccine production in response to an emerging disease such as the current COVID-19 pandemic. Here, we objected to the design of a multiepitope mRNA vaccine against the structural proteins of SARS-CoV-2. Through an immunoinformatic approach, promising epitopes were predicted for the spike (S), envelope (E), membrane (M), and nucleocapsid (N) proteins. Fragments rich in overlapping epitopes were selected based on binding affinities with HLA classes I and II for the specific presentation to B and T lymphocytes. Two constructs were designed by fusing the fragments in different arrangements via GG linkers. Construct 1 showed better structural properties and interactions with toll-like receptor 2 (TLR-2), TLR-3, and TLR-4 during molecular docking and dynamic simulation. A 50S ribosomal L7/L12 adjuvant was added to its N-terminus to improve stability and immunogenicity. The final RNA sequence was used to design a trans-amplifying RNA (taRNA) vaccine in a split-vector system. It consists of two molecules: a nonreplicating RNA encoding a trans-acting replicase to amplify the second one, a trans-replicon (TR) RNA encoding the vaccine protein. Overall, the immune response simulation detected that activated B and T lymphocytes and increased memory cell formation. Macrophages and dendritic cells proliferated continuously, and IFN-γ and cytokines like IL-2 were released highly.
Collapse
Affiliation(s)
- Fatemeh Nafian
- Department of Medical Laboratory SciencesFaculty of ParamedicsTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Ghazal Soleymani
- Department of Biological SciencesVirginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zahra Pourmanouchehri
- Department of BiologyTechnical University of Kaiserslautern, Kaiserslautern Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Mahnaz Kiyanjam
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cell and Regenerative MedicineNational Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sayed Mohammad Mohammadi
- Department of BiotechnologyFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Hanie Jeyroudi
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| | - Sharareh Berenji Jalaei
- Department of BiochemistryFaculty of Converging Sciences and TechnologiesScience and Research BranchIslamic Azad University, Tehran, Iran
| | - Fatemeh Sabzpoushan
- Department of Cellular and Molecular BiologyFaculty of Advanced Sciences and TechnologyTehran Medical SciencesIslamic Azad University, Tehran, Iran
| |
Collapse
|
10
|
Macchia I, La Sorsa V, Ciervo A, Ruspantini I, Negri D, Borghi M, De Angelis ML, Luciani F, Martina A, Taglieri S, Durastanti V, Altavista MC, Urbani F, Mancini F. T Cell Peptide Prediction, Immune Response, and Host-Pathogen Relationship in Vaccinated and Recovered from Mild COVID-19 Subjects. Biomolecules 2024; 14:1217. [PMID: 39456150 PMCID: PMC11505848 DOI: 10.3390/biom14101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
COVID-19 remains a significant threat, particularly to vulnerable populations. The emergence of new variants necessitates the development of treatments and vaccines that induce both humoral and cellular immunity. This study aimed to identify potentially immunogenic SARS-CoV-2 peptides and to explore the intricate host-pathogen interactions involving peripheral immune responses, memory profiles, and various demographic, clinical, and lifestyle factors. Using in silico and experimental methods, we identified several CD8-restricted SARS-CoV-2 peptides that are either poorly studied or have previously unreported immunogenicity: fifteen from the Spike and three each from non-structural proteins Nsp1-2-3-16. A Spike peptide, LA-9, demonstrated a 57% response rate in ELISpot assays using PBMCs from 14 HLA-A*02:01 positive, vaccinated, and mild-COVID-19 recovered subjects, indicating its potential for diagnostics, research, and multi-epitope vaccine platforms. We also found that younger individuals, with fewer vaccine doses and longer intervals since infection, showed lower anti-Spike (ELISA) and anti-Wuhan neutralizing antibodies (pseudovirus assay), higher naïve T cells, and lower central memory, effector memory, and CD4hiCD8low T cells (flow cytometry) compared to older subjects. In our cohort, a higher prevalence of Vδ2-γδ and DN T cells, and fewer naïve CD8 T cells, seemed to correlate with strong cellular and lower anti-NP antibody responses and to associate with Omicron infection, absence of confusional state, and habitual sporting activity.
Collapse
Affiliation(s)
- Iole Macchia
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina La Sorsa
- Research Promotion and Coordination Service, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Alessandra Ciervo
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Irene Ruspantini
- Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Donatella Negri
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Martina Borghi
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| | - Maria Laura De Angelis
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Francesca Luciani
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Antonio Martina
- National Center for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.L.); (A.M.)
| | - Silvia Taglieri
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Valentina Durastanti
- Neurology Unit, San Filippo Neri Hospital, ASL RM1, 00135 Rome, Italy; (V.D.); (M.C.A.)
| | | | - Francesca Urbani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (I.M.); (M.L.D.A.); (S.T.)
| | - Fabiola Mancini
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.C.); (D.N.); (M.B.); (F.M.)
| |
Collapse
|
11
|
Zhao J, He J, Ding X, Zhou Y, Liu M, Chen X, Quan W, Hua D, Tong J, Li J. DENV Peptides Delivered as Spherical Nucleic Acid Constructs Enhance Antigen Presentation and Immunogenicity in vitro and in vivo. Int J Nanomedicine 2024; 19:9757-9770. [PMID: 39318604 PMCID: PMC11421446 DOI: 10.2147/ijn.s467427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Background The global prevalence of Dengue virus (DENV) infection poses a significant health risk, urging the need for effective vaccinations. Peptide vaccines, known for their capacity to induce comprehensive immunity against multiple virus serotypes, offer promise due to their stability, safety, and design flexibility. Spherical nucleic acid (SNA), particularly those with gold nanoparticle cores, present an attractive avenue for enhancing peptide vaccine efficacy due to their modularity and immunomodulatory properties. Methods The spherical nucleic acid-TBB (SNA-TBB), a novel nanovaccine construct, was fabricated through the co-functionalization process of SNA with epitope peptide, targeting all four serotypes of the DENV. This innovative approach aims to enhance immunogenicity and provide broad-spectrum protection against DENV infections. The physicochemical properties of SNA-TBB were characterized using dynamic light scattering, zeta potential measurement, and transmission electron microscopy. In vitro assessments included endocytosis studies, cytotoxicity evaluation, bone marrow-dendritic cells (BMDCs) maturation and activation analysis, cytokine detection, RNA sequencing, and transcript level analysis in BMDCs. In vivo immunization studies in mice involved evaluating IgG antibody titers, serum protection against DENV infection and safety assessment of nanovaccines. Results SNA-TBB demonstrated successful synthesis, enhanced endocytosis, and favorable physicochemical properties. In vitro assessments revealed no cytotoxicity and promoted BMDCs maturation. Cytokine analyses exhibited heightened IL-12p70, TNF-α, and IL-1β levels. Transcriptomic analysis highlighted genes linked to BMDCs maturation and immune responses. In vivo studies immunization with SNA-TBB resulted in elevated antigen-specific IgG antibody levels and conferred protection against DENV infection in neonatal mice. Evaluation of in vivo safety showed no signs of adverse effects in vital organs. Conclusion The study demonstrates the successful development of SNA-TBB as a promising nanovaccine platform against DENV infection and highlights the potential of SNA-based peptide vaccines as a strategy for developing safe and effective antiviral immunotherapy.
Collapse
Affiliation(s)
- Jing Zhao
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jiuxiang He
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaoyan Ding
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yuxin Zhou
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Minchi Liu
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Xiaozhong Chen
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Wenxuan Quan
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Dong Hua
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jun Tong
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| | - Jintao Li
- College of Basic Medicine, Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
12
|
Tan L, Li J, Duan Y, Liu J, Zheng S, Liang X, Fang C, Zuo M, Tian G, Yang Y. Current knowledge on the epidemiology and prevention of Avian leukosis virus in China. Poult Sci 2024; 103:104009. [PMID: 39002365 PMCID: PMC11298916 DOI: 10.1016/j.psj.2024.104009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 07/15/2024] Open
Abstract
Avian leukosis virus (ALV) is an enveloped retrovirus with a single-stranded RNA genome, belonging to the genus Alpharetrovirus within the family Retroviridae. The disease (Avian leukosis, AL) caused by ALV is mainly characterized by tumor development and immunosuppression in chickens, which increases susceptibility to other pathogens and leads to significant economic losses in the Chinese poultry industry. The government and poultry industry have made lots of efforts to eradicate ALV, but the threat of which remains not vanished. This review provides a summary of the updated understanding of ALV in China, which mainly focuses on genetic and molecular biology, epidemiology, and diagnostic methods. Additionally, promising antiviral agents and ALV eradication strategies performed in China are also included.
Collapse
Affiliation(s)
- Lei Tan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China; Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China
| | - Juan Li
- Yunnan Sino-Science Gene Technology Co. Ltd. Kunming, Yunnan, China; Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Yuqing Duan
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Jing Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Shiling Zheng
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Xiongyan Liang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Chun Fang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Mengting Zuo
- Hunan Provincial Key Laboratory of the TCM Agricultural Biogenomics, Changsha Medical University, Changsha, Hunan, China
| | - Guangming Tian
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| | - Yuying Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou, China.
| |
Collapse
|
13
|
Zheng K, Chong AY, Mentzer AJ. How could our genetics impact COVID-19 vaccine response? Expert Rev Clin Immunol 2024; 20:1027-1039. [PMID: 38676712 DOI: 10.1080/1744666x.2024.2346584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed unprecedented global health challenges since its emergence in December 2019. The rapid availability of vaccines has been estimated to save millions of lives, but there is variation in how individuals respond to vaccines, influencing their effectiveness at an individual, and population level. AREAS COVERED This review focuses on human genetic factors influencing the immune response and effectiveness of vaccines, highlighting the importance of associations across the HLA locus. Genome-Wide Association Studies (GWAS) and other genetic association analyses have identified statistically significant associations between specific HLA alleles including HLA-DRB1*13, DBQ1*06, and A*03 impacting antibody responses and the risk of breakthrough infections post-vaccination. Relationships between these associations and potential mechanisms and links with risks of natural infection or disease are explored, and this review concludes by emphasizing how understanding the mechanisms of these genetic determinants may inform the development of tailored vaccination strategies. EXPERT OPINION Although complex, we believe these findings from the SARS-CoV2 pandemic offer a unique opportunity to understand the relationships between HLA and infection and vaccine response, with a goal of optimizing individual protection against COVID-19 in the ongoing pandemic, and possibly influencing wider vaccine development in the future.
Collapse
Affiliation(s)
- Keyi Zheng
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Amanda Y Chong
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
14
|
Meira DD, Zetum ASS, Casotti MC, Campos da Silva DR, de Araújo BC, Vicente CR, Duque DDA, Campanharo BP, Garcia FM, Campanharo CV, Aguiar CC, Lapa CDA, Alvarenga FDS, Rosa HP, Merigueti LP, Sant’Ana MC, Koh CW, Braga RFR, Cruz RGCD, Salazar RE, Ventorim VDP, Santana GM, Louro TES, Louro LS, Errera FIV, Paula FD, Altoé LSC, Alves LNR, Trabach RSDR, Santos EDVWD, Carvalho EFD, Chan KR, Louro ID. Bioinformatics and molecular biology tools for diagnosis, prevention, treatment and prognosis of COVID-19. Heliyon 2024; 10:e34393. [PMID: 39816364 PMCID: PMC11734128 DOI: 10.1016/j.heliyon.2024.e34393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Since December 2019, a new form of Severe Acute Respiratory Syndrome (SARS) has emerged worldwide, caused by SARS coronavirus 2 (SARS-CoV-2). This disease was called COVID-19 and was declared a pandemic by the World Health Organization in March 2020. Symptoms can vary from a common cold to severe pneumonia, hypoxemia, respiratory distress, and death. During this period of world stress, the medical and scientific community were able to acquire information and generate scientific data at unprecedented speed, to better understand the disease and facilitate vaccines and therapeutics development. Notably, bioinformatics tools were instrumental in decoding the viral genome and identifying critical targets for COVID-19 diagnosis and therapeutics. Through the integration of omics data, bioinformatics has also improved our understanding of disease pathogenesis and virus-host interactions, facilitating the development of targeted treatments and vaccines. Furthermore, molecular biology techniques have accelerated the design of sensitive diagnostic tests and the characterization of immune responses, paving the way for precision medicine approaches in treating COVID-19. Our analysis highlights the indispensable contributions of bioinformatics and molecular biology to the global effort against COVID-19. In this review, we aim to revise the COVID-19 features, diagnostic, prevention, treatment options, and how molecular biology, modern bioinformatic tools, and collaborations have helped combat this pandemic. An integrative literature review was performed, searching articles on several sites, including PUBMED and Google Scholar indexed in referenced databases, prioritizing articles from the last 3 years. The lessons learned from this COVID-19 pandemic will place the world in a much better position to respond to future pandemics.
Collapse
Affiliation(s)
- Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Aléxia Stefani Siqueira Zetum
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Danielle Ribeiro Campos da Silva
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Bruno Cancian de Araújo
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Creuza Rachel Vicente
- Departamento de Medicina Social, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29090-040, Brazil
| | - Daniel de Almeida Duque
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Bianca Paulino Campanharo
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Fernanda Mariano Garcia
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Camilly Victória Campanharo
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Carla Carvalho Aguiar
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Carolina de Aquino Lapa
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Flávio dos Santos Alvarenga
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Henrique Perini Rosa
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Luiza Poppe Merigueti
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Marllon Cindra Sant’Ana
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Clara W.T. Koh
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Raquel Furlani Rocon Braga
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Rahna Gonçalves Coutinho da Cruz
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Rhana Evangelista Salazar
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Vinícius do Prado Ventorim
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Gabriel Mendonça Santana
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, 29090-040, Brazil
| | - Thomas Erik Santos Louro
- Escola Superior de Ciências da Santa Casa de Misericórdia de Vitória (EMESCAM), Espírito Santo, Vitória, 29027-502, Brazil
| | - Luana Santos Louro
- Centro de Ciências da Saúde, Curso de Medicina, Universidade Federal do Espírito Santo (UFES), Vitória, Espírito Santo, 29090-040, Brazil
| | - Flavia Imbroisi Valle Errera
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Flavia de Paula
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Raquel Silva dos Reis Trabach
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | | | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcantara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, 20551-030, Brazil
| | - Kuan Rong Chan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Departamento de Ciências Biológicas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| |
Collapse
|
15
|
Ezzemani W, Ouladlahsen A, Altawalah H, Saile R, Sarih M, Kettani A, Ezzikouri S. Identification of novel T-cell epitopes on monkeypox virus and development of multi-epitopes vaccine using immunoinformatics approaches. J Biomol Struct Dyn 2024; 42:5349-5364. [PMID: 37354141 DOI: 10.1080/07391102.2023.2226733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/10/2023] [Indexed: 06/26/2023]
Abstract
Monkeypox virus (MPV) is closely related to the smallpox virus, and previous data from Africa suggest that the smallpox vaccine (VARV) is at least 85% effective in preventing MPV. No multi-epitope vaccine has yet been developed to prevent MPV infection. In this work, we used in silico structural biology and advanced immunoinformatic strategies to design a multi-epitope subunit vaccine against MPV infection. The designed vaccine sequence is adjuvanted with CpG-ODN and includes HTL/CTL epitopes for similar proteins between vaccinia virus (VACV) that induced T-cell production in vaccinated volunteers and the first draft sequence of the MPV genome associated with the suspected outbreak in several countries, May 2022. In addition, the specific binding of the modified vaccine and the immune Toll-like receptor 9 (TLR9) was estimated by molecular interaction studies. Strong interaction in the binding groove as well as good docking scores confirmed the stringency of the modified vaccine. The stability of the interaction was confirmed by a classical molecular dynamics simulation and normal mode analysis. Then, the immune simulation also indicated the ability of this vaccine to induce an effective immune response against MPV. Codon optimization and in silico cloning of the vaccine into the pET-28a (+) vector also showed its expression potential in the E. coli K12 system. The promising data obtained from the various in silico studies indicate that this vaccine is effective against MPV. However, additional in vitro and in vivo studies are still needed to confirm its efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wahiba Ezzemani
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahd Ouladlahsen
- Faculté de médecine et de pharmacie, Université Hassan II, Casablanca, Morocco
- Service des maladies infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Haya Altawalah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
- Virology Unit, Yacoub Behbehani Center, Sabah Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Rachid Saile
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - M'hammed Sarih
- Service de Parasitologie et des Maladies Vectorielles, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Anass Kettani
- Laboratoire de Biologie et Santé (URAC34), Départment de Biologie, Faculté des Sciences Ben Msik, Hassan II University of Casablanca, Casablanca, Morocco
| | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
16
|
Jia Y, Wu Q, Li Y, Ma M, Song W, Chen R, Yao Y, Nair V, Zhang N, Liao M, Dai M. Revealing novel and conservative T-cell epitopes with MHC B2 restriction on H9N2 avian influenza virus (AIV). J Biol Chem 2024; 300:107395. [PMID: 38768812 PMCID: PMC11223079 DOI: 10.1016/j.jbc.2024.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
B2 haplotype major histocompatibility complex (MHC) has been extensively reported to confer resistance to various avian diseases. But its peptide-binding motif is unknown, and the presenting peptide is rarely identified. Here, we identified its peptide-binding motif (X-A/V/I/L/P/S/G-X-X-X-X-X-X-V/I/L) in vitro using Random Peptide Library-based MHC I LC-MS/MS analysis. To further clarify the structure basis of motif, we determined the crystal structure of the BF2∗02:01-PB2552-560 complex at 1.9 Å resolution. We found that BF2∗02:01 had a relatively wide antigen-binding groove, and the structural characterization of pockets was consistent with the characterization of peptide-binding motif. The wider features of the peptide-binding motif and increased number of peptides bound by BF2∗02:01 than BF2∗04:01 might resolve the puzzles for the presence of potential H9N2 resistance in B2 chickens. Afterward, we explored the H9N2 avian influenza virus (AIV)-induced cellular immune response in B2 haplotype chickens in vivo. We found that ratio of CD8+ T cell and kinetic expression of cytotoxicity genes including Granzyme K, interferon-γ, NK lysin, and poly-(ADP-ribose) polymerase in peripheral blood mononuclear cells were significantly increased in defending against H9N2 AIV infection. Especially, we selected 425 epitopes as candidate epitopes based on the peptide-binding motif and further identified four CD8+ T-cell epitopes on H9N2 AIV including NS198-106, PB2552-560, NP182-190, and NP455-463 via ELI-spot interferon-γ detections after stimulating memory lymphocytes with peptides. More importantly, these epitopes were found to be conserved in H7N9 AIV and H9N2 AIV. These findings provide direction for developing effective T cell epitope vaccines using well-conserved internal viral antigens in chickens.
Collapse
Affiliation(s)
- Yusheng Jia
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Qingxin Wu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Yilin Li
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Mulin Ma
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Wei Song
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Rongmao Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China
| | - Yongxiu Yao
- Viral Oncogenesis Group, The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Surrey, United Kingdom
| | - Venugopal Nair
- Viral Oncogenesis Group, The Pirbright Institute and UK-China Centre of Excellence for Research on Avian Diseases, Surrey, United Kingdom; Department of Zoology, Oxford University, Oxford, United Kingdom
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
17
|
Moges Eskeziyaw B, Waihenya R, Maina N, Muuo Nzou S. Immunoinformatics-Based Designing of Novel and Potent Multi-Epitope PSA D15 and Cag11 Immunogens for Helicobacter pylori Immunodiagnostic Assay Development. Helicobacter 2024; 29:e13104. [PMID: 38923222 DOI: 10.1111/hel.13104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Helicobacter pylori (H. pylori) strain is the most genetically diverse pathogenic bacterium and now alarming serious human health concern ranging from chronic gastritis to gastric cancer and human death all over the world. Currently, the majority of commercially available diagnostic assays for H. pylori is a challenging task due to the heterogeneity of virulence factors in various geographical regions. In this concern, designing of universal multi-epitope immunogenic biomarker targeted for all H. pylori strains would be crucial to successfully immunodiagnosis assay and vaccine development for H. pylori infection. Hence, the present study aimed to explore the potential immunogenic epitopes of PSA D15 and Cag11 proteins of H. pylori, using immunoinformatics web tools in order to design novel immune-reactive multi-epitope antigens for enhanced immunodiagnosis in humans. Through an in silico immunoinformatics approach, high-ranked B-cell, MHC-I, and MHC-II epitopes of PSA D15 and Cag11 proteins were predicted, screened, and selected. Subsequently, a novel multi-epitope PSA D15 and Cag11 antigens were designed by fused the high-ranked B-cell, MHC-I, and MHC-II epitopes and 50S ribosomal protein L7/L12 adjuvant using linkers. The antigenicity, solubility, physicochemical properties, secondary and tertiary structures, 3D model refinement, and validations were carried. Furthermore, the designed multi-epitope antigens were subjected to codon adaptation and in silico cloning, immune response simulation, and molecular docking with receptor molecules. A novel, stable multi-epitope PSA D15 and Cag11 H. pylori antigens were developed and immune simulation of the designed antigens showed desirable levels of immunological response. Molecular docking of designed antigens with immune receptors (B-cell, MHC-I, MHC-II, and TLR-2/4) revealed robust interactions and stable binding affinity to the receptors. The codon optimized and in silico cloned showed that the designed antigens were successfully expressed (CAI value of 0.95 for PSA D15 and 1.0 for Cag11) after inserted into pET-32ba (+) plasmid of the E. coli K12 strain. In conclusion, this study revealed that the designed multi-epitope antigens have a huge immunological potential candidate biomarker and useful in developing immunodiagnostic assays and vaccines for H. pylori infection.
Collapse
Affiliation(s)
- Biniam Moges Eskeziyaw
- Department of Molecular Biology & Biotechnology, Pan African University Institute for Basic Science, Technology and Innovation, Nairobi, Kenya
- Department of Biotechnology, Debre Berhan University, Debre Berhan, Ethiopia
| | - Rebecca Waihenya
- Zoology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Naomi Maina
- Biochemistry Department, College of Health Science, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Samson Muuo Nzou
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
18
|
Khalid K, Lim HX, Anwar A, Tan SH, Hwang JS, Ong SK, Poh CL. Preclinical Development of a Novel Epitope-based DNA Vaccine Candidate against SARS-CoV-2 and Evaluation of Immunogenicity in BALB/c Mice. AAPS PharmSciTech 2024; 25:60. [PMID: 38472523 DOI: 10.1208/s12249-024-02778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
The protective efficacies of current licensed vaccines against COVID-19 have significantly reduced as a result of SARS-CoV-2 variants of concern (VOCs) which carried multiple mutations in the Spike (S) protein. Considering that these vaccines were developed based on the S protein of the original SARS-CoV-2 Wuhan strain, we designed a recombinant plasmid DNA vaccine based on highly conserved and immunogenic B and T cell epitopes against SARS-CoV-2 Wuhan strain and the Omicron VOC. Literature mining and bioinformatics were used to identify 6 immunogenic peptides from conserved regions of the SARS-CoV-2 S and membrane (M) proteins. Nucleotide sequences encoding these peptides representing highly conserved B and T cell epitopes were cloned into a pVAX1 vector to form the pVAX1/S2-6EHGFP recombinant DNA plasmid vaccine. The DNA vaccine was intranasally or intramuscularly administered to BALB/c mice and evaluations of humoral and cellular immune responses were performed. The intramuscular administration of pVAX1/S2-6EHGFP was associated with a significantly higher percentage of CD8+ T cells expressing IFN-γ when compared with the empty vector and PBS controls. Intramuscular or intranasal administrations of pVAX1/S2-6EHGFP resulted in robust IgG antibody responses. Sera from mice intramuscularly immunized with pVAX1/S2-6EHGFP were found to elicit neutralizing antibodies capable of SARS-CoV-2 Omicron variant with the ACE2 cell surface receptor. This study demonstrated that the DNA vaccine construct encoding highly conserved immunogenic B and T cell epitopes was capable of eliciting potent humoral and cellular immune responses in mice.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Hui Xuan Lim
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
- Sunway Microbiome Centre, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Seng-Kai Ong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, 47500, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
19
|
Shahab M, Iqbal MW, Ahmad A, Alshabrmi FM, Wei DQ, Khan A, Zheng G. Immunoinformatics-driven In silico vaccine design for Nipah virus (NPV): Integrating machine learning and computational epitope prediction. Comput Biol Med 2024; 170:108056. [PMID: 38301512 DOI: 10.1016/j.compbiomed.2024.108056] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
The Nipah virus (NPV) is a highly lethal virus, known for its significant fatality rate. The virus initially originated in Malaysia in 1998 and later led to outbreaks in nearby countries such as Bangladesh, Singapore, and India. Currently, there are no specific vaccines available for this virus. The current work employed the reverse vaccinology method to conduct a comprehensive analysis of the entire proteome of the NPV virus. The aim was to identify and choose the most promising antigenic proteins that could serve as potential candidates for vaccine development. We have also designed B and T cell epitopes-based vaccine candidate using immunoinformatics approach. We have identified a total of 5 novel Cytotoxic T Lymphocytes (CTL), 5 Helper T Lymphocytes (HTL), and 6 linear B-cell potential antigenic epitopes which are novel and can be used for further vaccine development against Nipah virus. Then we performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidate against NPV. Further, Computational analysis indicated that these epitopes possessed highly antigenic properties and were capable of interacting with immune receptors. The designed vaccine were then docked with the human immune receptors, namely TLR-2 and TLR-4 showed robust interaction with the immune receptor. Molecular dynamics simulations demonstrated robust binding and good dynamics. After numerous dosages at varied intervals, computational immune response modeling showed that the immunogenic construct might elicit a significant immune response. In conclusion, the immunogenic construct shows promise in providing protection against NPV, However, further experimental validation is required before moving to clinical trials.
Collapse
Affiliation(s)
- Muhammad Shahab
- State key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Muhammad Waleed Iqbal
- State key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Abbas Ahmad
- Department of Biotechnology Abdul Wali Khan University Mardan, Pakistan
| | - Fahad M Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 51452, Saudi Arabia.
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen, Guangdong, 518055, China
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, 473006, China; Center for Microbiome Research, School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia.
| | - Guojun Zheng
- State key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
20
|
Abstract
In order to improve bioavailability, stability, control release, and target delivery of active pharmaceutical ingredients (APIs), as well as to mask their bitter taste, to increase their efficacy, and to minimize their side effects, a variety of microencapsulation (including nanoencapsulation, particle size <100 nm) technologies have been widely used in the pharmaceutical industry. Commonly used microencapsulation technologies are emulsion, coacervation, extrusion, spray drying, freeze-drying, molecular inclusion, microbubbles and microsponge, fluidized bed coating, supercritical fluid encapsulation, electro spinning/spray, and polymerization. In this review, APIs are categorized by their molecular complexity: small APIs (compounds with low molecular weight, like Aspirin, Ibuprofen, and Cannabidiol), medium APIs (compounds with medium molecular weight like insulin, peptides, and nucleic acids), and living microorganisms (such as probiotics, bacteria, and bacteriophages). This article provides an overview of these microencapsulation technologies including their processes, matrix, and their recent applications in microencapsulation of APIs. Furthermore, the advantages and disadvantages of these common microencapsulation technologies in terms of improving the efficacy of APIs for pharmaceutical treatments are comprehensively analyzed. The objective is to summarize the most recent progresses on microencapsulation of APIs for enhancing their bioavailability, control release, target delivery, masking their bitter taste and stability, and thus increasing their efficacy and minimizing their side effects. At the end, future perspectives on microencapsulation for pharmaceutical applications are highlighted.
Collapse
Affiliation(s)
- Cuie Yan
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| | - Sang-Ryoung Kim
- Division of Encapsulation, Blue California, Rancho Santa Margarita, California 92688, United States
| |
Collapse
|
21
|
Yılmaz Çolak Ç. In silico analysis of virulence factors of Streptococcus uberis for a chimeric vaccine design. In Silico Pharmacol 2024; 12:7. [PMID: 38187875 PMCID: PMC10771410 DOI: 10.1007/s40203-023-00181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Streptococcus uberis is one of the causative agents of bovine mastitis, which has detrimental effects on animal health and the dairy industry. Despite decades of research, the requirement for effective vaccines against the disease remains unmet. The goal of this study was to create a multi-epitope vaccine using five virulence factors of S. uberis through the reverse vaccinology approach, which has been employed due to its high efficiency and applicability. Plasminogen activator A (PauA), glyceraldehyde-3-phosphate dehydrogenase C (GapC), C5a peptidase, S. uberis adhesion molecule (SUAM), and sortase A (SrtA) were selected for the T cytotoxic (CTL) and B cell epitope analyses as they were extensively studied in S. uberis or other pathogens. Eighteen CTL and ten B cell epitopes that were antigenic, non-toxic, and non-allergenic were selected in order to design a chimeric vaccine candidate that in silico analysis revealed to be potentially immunogenic, non-allergenic, and stable. Molecular docking analysis of the vaccine candidate with Toll-like receptor (TLR) 2 and TLR 4 revealed stable interactions between the candidate and the immune receptors. Meanwhile, the stability of the docked complexes was confirmed using normal mode analysis. Additionally, in silico immune simulation of the vaccine candidate demonstrated the stimulation of primary immune responses, indicating that the chimeric protein can hold promise as a viable vaccine candidate for preventing S. uberis mastitis. Moreover, the current study can provide a background for designing epitope-based vaccines based on the explored epitopes.
Collapse
|
22
|
Ramprasadh SV, Rajakumar S, Srinivasan S, Susha D, Sharma S, Chourasiya R. Computer-Aided Multi-Epitope Based Vaccine Design Against Monkeypox Virus Surface Protein A30L: An Immunoinformatics Approach. Protein J 2023; 42:645-663. [PMID: 37615828 DOI: 10.1007/s10930-023-10150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 08/25/2023]
Abstract
Monkeypox, a viral zoonotic disease resembling smallpox, has emerged as a significant national epidemic primarily in Africa. Nevertheless, the recent global dissemination of this pathogen has engendered apprehension regarding its capacity to metamorphose into a sweeping pandemic. To effectively combat this menace, a multi-epitope vaccine has been meticulously engineered with the specific aim of targeting the cell envelope protein of Monkeypox virus (MPXV), thereby stimulating a potent immunological response while mitigating untoward effects. This new vaccine uses T-cell and B-cell epitopes from a highly antigenic, non-allergenic, non-toxic, conserved, and non-homologous A30L protein to provide protection against the virus. In order to ascertain the vaccine design with the utmost efficacy, protein-protein docking methodologies were employed to anticipate the intricate interactions with Toll-like receptors (TLR) 2, 3, 4, 6, and 8. This meticulous approach led the researchers to discern an optimal vaccine architecture, bolstered by affirmative prognostications derived from both molecular dynamics (MD) simulations and immune simulations. The current research findings indicate that the peptides ATHAAFEYSK, FFIVVATAAV, and MNSLSIFFV exhibited antigenic properties and were determined to be non-allergenic and non-toxic. Through the utilization of codon optimization and in-silico cloning techniques, our investigation revealed that the prospective vaccine exhibited a remarkable expression level within Escherichia coli. Moreover, upon conducting immune simulations, we observed the induction of a robust immune response characterized by elevated levels of both B-cell and T-cell mediated immunity. Moreover, as the initial prediction with in-silico techniques has yielded promising results these epitope-based vaccines can be recommended to in vitro and in silico studies to validate their immunogenic properties.
Collapse
Affiliation(s)
- S V Ramprasadh
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | | | - S Srinivasan
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - D Susha
- Department of Bioinformatics, BioNome, Bangalore, 560043, India
| | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bangalore, 560043, India.
| | | |
Collapse
|
23
|
Farzan M, Farzan M, Mirzaei Y, Aiman S, Azadegan-Dehkordi F, Bagheri N. Immunoinformatics-based multi-epitope vaccine design for the re-emerging monkeypox virus. Int Immunopharmacol 2023; 123:110725. [PMID: 37556996 DOI: 10.1016/j.intimp.2023.110725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND On May 7, 2022, WHO reported a new monkeypox case. By May 2023 over 80,000 cases had been reported worldwide outside previously endemic nations. (This primarily affected the men who have sex with men (MSM) community in rich nations). The present research aims to develop a multi-epitope vaccine for the monkeypox virus (MPXV) using structural and cell surface proteins. METHODS The first part of the research involved retrieving protein sequences. The Immune Epitope Database (IEDB) was then used to analyze the B and T lymphocyte epitopes. After analyzing the sensitizing properties, toxicity, antigenicity, and molecular binding, appropriate linkers were utilizedto connect selected epitopes to adjuvants, and the structure of the vaccine was formulated. Algorithms from the field of immunoinformatics predicted the secondary and tertiary structures of vaccines. The physical, chemical, and structural properties were refined and validated to achieve maximum stability. Molecular docking and molecular dynamic simulations were subsequently employed to assess the vaccine's efficacy. Afterward, the ability of the vaccine to interact with toll-like receptors 3 and 4 (TLR3 and TLR4) was evaluated. Finally, the optimized sequence was then introduced into the Escherichia coli (E. coli) PET30A + vector. RESULTS An immunoinformatics evaluation suggested that such a vaccine might be safe revealed that this vaccine is safe, hydrophilic, temperature- and condition-stable, and can stimulate innate immunity by binding to TLR3 and TLR4. CONCLUSION Our findings suggest that the first step in MPXV pathogenesis is structural and cell surface epitopes. In this study, the most effective and promising epitopes were selected and designed throughprecision servers. Furthermore,through the utilization of multi-epitope structures and a combination of two established adjuvants, this research has the potential to be a landmarkin developing an antiviralvaccine against MPXV. However, additional in vitro and in vivo tests are required to confirm these results.
Collapse
Affiliation(s)
- Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahan Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
24
|
Frische A, Gunalan V, Krogfelt KA, Fomsgaard A, Lassaunière R. A Candidate DNA Vaccine Encoding the Native SARS-CoV-2 Spike Protein Induces Anti-Subdomain 1 Antibodies. Vaccines (Basel) 2023; 11:1451. [PMID: 37766128 PMCID: PMC10535225 DOI: 10.3390/vaccines11091451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The ideal vaccine against viral infections should elicit antibody responses that protect against divergent strains. Designing broadly protective vaccines against SARS-CoV-2 and other divergent viruses requires insight into the specific targets of cross-protective antibodies on the viral surface protein(s). However, unlike therapeutic monoclonal antibodies, the B-cell epitopes of vaccine-induced polyclonal antibody responses remain poorly defined. Here we show that, through the combination of neutralizing antibody functional responses with B-cell epitope mapping, it is possible to identify unique antibody targets associated with neutralization breadth. The polyclonal antibody profiles of SARS-CoV-2 index-strain-vaccinated rabbits that demonstrated a low, intermediate, or high neutralization efficiency of different SARS-CoV-2 variants of concern (VOCs) were distinctly different. Animals with an intermediate and high cross-neutralization of VOCs targeted fewer antigenic sites on the spike protein and targeted one particular epitope, subdomain 1 (SD1), situated outside the receptor binding domain (RBD). Our results indicate that a targeted functional antibody response and an additional focus on non-RBD epitopes could be effective for broad protection against different SARS-CoV-2 variants. We anticipate that the approach taken in this study can be applied to other viral vaccines for identifying future epitopes that confer cross-neutralizing antibody responses, and that our findings will inform a rational vaccine design for SARS-CoV-2.
Collapse
Affiliation(s)
- Anders Frische
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Section of Molecular and Medicinal Biology, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Vithiagaran Gunalan
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
| | - Karen Angeliki Krogfelt
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Section of Molecular and Medicinal Biology, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Infectious Diseases Unit, Clinical Institute, University of Southern Denmark, 5230 Odense, Denmark
| | - Ria Lassaunière
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
| |
Collapse
|
25
|
Mishra SK, Priya P, Rai GP, Haque R, Shanker A. Coevolution based immunoinformatics approach considering variability of epitopes to combat different strains: A case study using spike protein of SARS-CoV-2. Comput Biol Med 2023; 163:107233. [PMID: 37422941 DOI: 10.1016/j.compbiomed.2023.107233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/03/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
In the recent past several vaccines were developed to combat the COVID-19 disease. Unfortunately, the protective efficacy of the current vaccines has been reduced due to the high mutation rate in SARS-CoV-2. Here, we successfully implemented a coevolution based immunoinformatics approach to design an epitope-based peptide vaccine considering variability in spike protein of SARS-CoV-2. The spike glycoprotein was investigated for B- and T-cell epitope prediction. Identified T-cell epitopes were mapped on previously reported coevolving amino acids in the spike protein to introduce mutation. The non-mutated and mutated vaccine components were constructed by selecting epitopes showing overlapping with the predicted B-cell epitopes and highest antigenicity. Selected epitopes were linked with the help of a linker to construct a single vaccine component. Non-mutated and mutated vaccine component sequences were modelled and validated. The in-silico expression level of the vaccine constructs (non-mutated and mutated) in E. coli K12 shows promising results. The molecular docking analysis of vaccine components with toll-like receptor 5 (TLR5) demonstrated strong binding affinity. The time series calculations including root mean square deviation (RMSD), radius of gyration (RGYR), and energy of the system over 100 ns trajectory obtained from all atom molecular dynamics simulation showed stability of the system. The combined coevolutionary and immunoinformatics approach used in this study will certainly help to design an effective peptide vaccine that may work against different strains of SARS-CoV-2. Moreover, the strategy used in this study can be implemented on other pathogens.
Collapse
Affiliation(s)
- Saurav Kumar Mishra
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Prerna Priya
- Department of Botany, Purnea Mahila College, Purnia, Bihar, India
| | - Gyan Prakash Rai
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Asheesh Shanker
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
26
|
Haq IU, Krukiewicz K, Tayyab H, Khan I, Khan M, Yahya G, Cavalu S. Molecular Understanding of ACE-2 and HLA-Conferred Differential Susceptibility to COVID-19: Host-Directed Insights Opening New Windows in COVID-19 Therapeutics. J Clin Med 2023; 12:jcm12072645. [PMID: 37048725 PMCID: PMC10095019 DOI: 10.3390/jcm12072645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
The genetic variants of HLAs (human leukocyte antigens) play a crucial role in the virus–host interaction and pathology of COVID-19. The genetic variants of HLAs not only influence T cell immune responses but also B cell immune responses by presenting a variety of peptide fragments of invading pathogens. Peptide cocktail vaccines produced by using various conserved HLA-A2 epitopes provoke substantial specific CD8+ T cell responses in experimental animals. The HLA profiles vary among individuals and trigger different T cell-mediated immune responses in COVID-19 infections. Those with HLA-C*01 and HLA-B*44 are highly susceptible to the disease. However, HLA-A*02:01, HLA-DR*03:01, and HLA-Cw*15:02 alleles show resistance to SARS infection. Understanding the genetic association of HLA with COVID-19 susceptibility and severity is important because it can help in studying the transmission of COVID-19 and its physiopathogenesis. The HLA-C*01 and B*44 allele pathways can be studied to gain insight into disease transmission and physiopathogenesis. Therefore, integrating HLA testing is suggested in the ongoing pandemic, which will help in the rapid identification of highly susceptible populations worldwide and possibly acclimate vaccine development. Therefore, understanding the correlation between HLA and SARS-CoV-2 is critical in opening new insights into COVID-19 therapeutics, based on previous studies conducted.
Collapse
Affiliation(s)
- Ihtisham Ul Haq
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Hamnah Tayyab
- Department of Internal Medicine, King Edward Medical College, Lahore 54000, Pakistan
| | - Imran Khan
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, 06120 Halle, Germany
| | - Mehtab Khan
- Department of Biology, University of Moncton, Moncton, NB E1A 3E9, Canada
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
27
|
Immunoinformatic-Based Multi-Epitope Vaccine Design for Co-Infection of Mycobacterium tuberculosis and SARS-CoV-2. J Pers Med 2023; 13:jpm13010116. [PMID: 36675777 PMCID: PMC9863242 DOI: 10.3390/jpm13010116] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
(1) Background: Many co-infections of Mycobacterium tuberculosis (MTB) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have emerged since the occurrence of the SARS-CoV-2 pandemic. This study aims to design an effective preventive multi-epitope vaccine against the co-infection of MTB and SARS-CoV-2. (2) Methods: The three selected proteins (spike protein, diacylglycerol acyltransferase, and low molecular weight T-cell antigen TB8.4) were predicted using bioinformatics, and 16 epitopes with the highest ranks (10 helper T lymphocyte epitopes, 2 CD8+ T lymphocytes epitopes, and 4 B-cell epitopes) were selected and assembled into the candidate vaccine referred to as S7D5L4. The toxicity, sensitization, stability, solubility, antigenicity, and immunogenicity of the S7D5L4 vaccine were evaluated using bioinformatics tools. Subsequently, toll-like receptor 4 docking simulation and discontinuous B-cell epitope prediction were performed. Immune simulation and codon optimization were carried out using immunoinformatics and molecular biology tools. (3) Results: The S7D5L4 vaccine showed good physical properties, such as solubility, stability, non-sensitization, and non-toxicity. This vaccine had excellent antigenicity and immunogenicity and could successfully simulate immune responses in silico. Furthermore, the normal mode analysis of the S7D5L4 vaccine and toll-like receptor 4 docking simulation demonstrated that the vaccine had docking potential and a stable reaction. (4) Conclusions: The S7D5L4 vaccine designed to fight against the co-infection of MTB and SARS-CoV-2 may be safe and effective. The protective efficacy of this promising vaccine should be further verified using in vitro and in vivo experiments.
Collapse
|
28
|
Zhou L, Mo C, Yang Y, Zhou Z, You A, Fan Y, Liu W, Li X, Zhou R, Tian X. Characterization and application of a series of monoclonal antibodies against SARS-CoV-2 nucleocapsid protein. J Med Virol 2023; 95:e28225. [PMID: 36238992 PMCID: PMC9874425 DOI: 10.1002/jmv.28225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 01/27/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has a significant global social and economic impact, and the emergence of new and more destructive mutant strains highlights the need for accurate virus detection. Here, 90 monoclonal antibodies (MAbs) that exclusively reacted with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (NP) were generated. These MAbs did not cross-react with NPs of common human coronaviruses (HCoVs, i.e., 229E, OC43, HKU1, and NL63) and Middle East Respiratory Syndrome Coronavirus. Subsequently, overlapped peptides in individual fragments (N1-N4) of NP were synthesized. N1-3 (25-GSNQNGERSGARSKQ-39), N3-1 (217-AALALLLLDRLNQL-230), and N4-8 (393-TLLPAADLDDFSKQL-407) were identified as major epitopes using enzyme-linked immunoassay (ELISA) and recognized by 47, 1, and 18 MAbs, respectively. The 24 remaining MAbs exhibited no reactivity with all synthetic peptides. Among MAb-epitope pairs, only MAbs targeting epitope N1-3 displayed no cross-reaction with NPs of SARS-CoV-1 and other SARS-related CoVs. All Omicron variants contained a three-amino acid deletion (31ERS33) in the N1-3 region. Thus, MAbs targeting N1-3 failed to recognize these variants. Furthermore, a double-antibody sandwich ELISA for antigen detection was established using the optimal MAbs. Overall, a series of MAbs targeting SARS-CoV-2 NP was prepared, characterized with epitope mapping, and applied for the detection of SARS-CoV-2 antigens, and some novel B-cell epitopes of the viral NP were identified.
Collapse
Affiliation(s)
- Liling Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Chuncong Mo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina,Guangzhou LaboratoryGuangzhouChina
| | - Yujie Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Zhichao Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Aiping You
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Ye Fan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Wenkuan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina,Guangzhou LaboratoryGuangzhouChina
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical UniversityGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
29
|
Iqbal R, Khan S, Ali HM, Khan M, Wahab S, Khan T. Application of nanomaterials against SARS-CoV-2: An emphasis on their usefulness against emerging variants of concern. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researchers are now looking to nanomaterials to fight serious infectious diseases that cause outbreaks and even pandemics. SARS-CoV-2 brought chaos to almost every walk of life in the past 2 years and has challenged every available treatment method. Although vaccines were developed in no time against it, the most pressing issue was the emergence of variants of concern arising because of the rapidly evolving viral strains. The higher pathogenicity and, in turn, the higher mortality rate of infections caused by these variants renders the existing vaccines less effective and the effort to produce further vaccines a costly endeavor. While several techniques, such as immunotherapy and repurposed pharmaceutical research, are being studied to minimize viral infection, the fundamentals of nanotechnology must also be considered to enhance the anti-SARS-CoV-2 efforts. For instance, silver nanoparticles (AgNPs) have been applied against SARS-CoV-2 effectively. Similarly, nanomaterials have been tested in masks, gloves, and disinfectants to aid in controlling SARS-CoV-2. Nanotechnology has also contributed to diagnoses such as rapid and accurate detection and treatment such as the delivery of mRNA vaccines and other antiviral agents into the body. The development of polymeric nanoparticles has been dubbed a strategy of choice over traditional drugs because of their tunable release kinetics, specificity, and multimodal drug composition. Our article explores the potential of nanomaterials in managing the variants of concern. This will be achieved by highlighting the inherent ability of nanomaterials to act against the virus on fronts such as inhibition of SARS-CoV-2 entry, inhibition of RNA replication in SARS-CoV-2, and finally, inhibition of their release. In this review, a detailed discussion on the potential of nanomaterials in these areas will be tallied with their potential against the current and emerging future variants of concern.
Collapse
|
30
|
Bhattacharya K, Shamkh IM, Khan MS, Lotfy MM, Nzeyimana JB, Abutayeh RF, Hamdy NM, Hamza D, Chanu NR, Khanal P, Bhattacharjee A, Basalious EB. Multi-Epitope Vaccine Design against Monkeypox Virus via Reverse Vaccinology Method Exploiting Immunoinformatic and Bioinformatic Approaches. Vaccines (Basel) 2022; 10:2010. [PMID: 36560421 PMCID: PMC9786588 DOI: 10.3390/vaccines10122010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: The monkeypox virus is a zoonotic orthopox DNA virus that is closely linked to the virus. In light of the growing concern about this virus, the current research set out to use bioinformatics and immunoinformatics to develop a potential vaccine against the virus. (2) Methods: A multiepitope vaccine was constructed from the B-cell and T-cell epitopes of the MPXVgp181 strain using adjuvant and different linkers. The constructed vaccine was predicted for antigenicity, allergenicity, toxicity, and population coverage. In silico immune simulation studies were also carried out. Expression analysis and cloning of the constructed vaccine was carried out in the pET-28a(+) vector using snapgene. (3) Results: The constructed vaccine was predicted to be antigenic, non-allergenic, and non-toxic. It was predicted to have excellent global population coverage and produced satisfactory immune response. The in silico expression and cloning studies were successful in E. coli, which makes the vaccine construct suitable for mass production in the pharmaceutical industry. (4) Conclusion: The constructed vaccine is based on the B-cell and T-cell epitopes obtained from the MPXVgp181 strain. This research can be useful in developing a vaccine to combat the monkeypox virus globally after performing in-depth in vitro and in vivo studies.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati 781026, Assam, India
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781035, Assam, India
| | - Israa M. Shamkh
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Chemo and Bioinformatics Lab, Bio Search Research Institution, BSRI, Giza 12613, Egypt
| | | | - Marwa M. Lotfy
- Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt
| | - Jean Bosco Nzeyimana
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Reem Fawaz Abutayeh
- Department of Pharmaceutical Chemistry and Pharmacognosy, Applied Science Private University, Amman 11931, Jordan
| | - Nadia M. Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Dalia Hamza
- Zoonoses Department, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | | | - Pukar Khanal
- Department of Pharmacology, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed-to-be University, Mangalore 575018, Karnataka, India
| | - Atanu Bhattacharjee
- Royal School of Pharmacy, The Assam Royal Global University, Guwahati 781035, Assam, India
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Al Kasr El-Aini, Cairo 11562, Egypt
| |
Collapse
|
31
|
Genome-Based Multi-Antigenic Epitopes Vaccine Construct Designing against Staphylococcus hominis Using Reverse Vaccinology and Biophysical Approaches. Vaccines (Basel) 2022; 10:vaccines10101729. [PMID: 36298594 PMCID: PMC9611379 DOI: 10.3390/vaccines10101729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Staphylococcus hominis is a Gram-positive bacterium from the staphylococcus genus; it is also a member of coagulase-negative staphylococci because of its opportunistic nature and ability to cause life-threatening bloodstream infections in immunocompromised patients. Gram-positive and opportunistic bacteria have become a major concern for the medical community. It has also drawn the attention of scientists due to the evaluation of immune evasion tactics and the development of multidrug-resistant strains. This prompted the need to explore novel therapeutic approaches as an alternative to antibiotics. The current study aimed to develop a broad-spectrum, multi-epitope vaccine to control bacterial infections and reduce the burden on healthcare systems. A computational framework was designed to filter the immunogenic potent vaccine candidate. This framework consists of pan-genomics, subtractive proteomics, and immunoinformatics approaches to prioritize vaccine candidates. A total of 12,285 core proteins were obtained using a pan-genome analysis of all strains. The screening of the core proteins resulted in the selection of only two proteins for the next epitope prediction phase. Eleven B-cell derived T-cell epitopes were selected that met the criteria of different immunoinformatics approaches such as allergenicity, antigenicity, immunogenicity, and toxicity. A vaccine construct was formulated using EAAAK and GPGPG linkers and a cholera toxin B subunit. This formulated vaccine construct was further used for downward analysis. The vaccine was loop refined and improved for structure stability through disulfide engineering. For an efficient expression, the codons were optimized as per the usage pattern of the E coli (K12) expression system. The top three refined docked complexes of the vaccine that docked with the MHC-I, MHC-II, and TLR-4 receptors were selected, which proved the best binding potential of the vaccine with immune receptors; this was followed by molecular dynamic simulations. The results indicate the best intermolecular bonding between immune receptors and vaccine epitopes and that they are exposed to the host’s immune system. Finally, the binding energies were calculated to confirm the binding stability of the docked complexes. This work aimed to provide a manageable list of immunogenic and antigenic epitopes that could be used as potent vaccine candidates for experimental in vivo and in vitro studies.
Collapse
|
32
|
Yasamineh S, Kalajahi HG, Yasamineh P, Yazdani Y, Gholizadeh O, Tabatabaie R, Afkhami H, Davodabadi F, Farkhad AK, Pahlevan D, Firouzi-Amandi A, Nejati-Koshki K, Dadashpour M. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J Nanobiotechnology 2022; 20:440. [PMID: 36209089 PMCID: PMC9547679 DOI: 10.1186/s12951-022-01625-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to COVID-19 and has become a pandemic worldwide with mortality of millions. Nanotechnology can be used to deliver antiviral medicines or other types of viral reproduction-inhibiting medications. At various steps of viral infection, nanotechnology could suggest practical solutions for usage in the fight against viral infection. Nanotechnology-based approaches can help in the fight against SARS-CoV-2 infection. Nanoparticles can play an essential role in progressing SARS-CoV-2 treatment and vaccine production in efficacy and safety. Nanocarriers have increased the speed of vaccine development and the efficiency of vaccines. As a result, the increased investigation into nanoparticles as nano-delivery systems and nanotherapeutics in viral infection, and the development of new and effective methods are essential for inhibiting SARS-CoV-2 infection. In this article, we compare the attributes of several nanoparticles and evaluate their capability to create novel vaccines and treatment methods against different types of viral diseases, especially the SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Medical Biotechnology, Institute of Higher Education Rab-Rashid, Tabriz, Iran
| | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Tabatabaie
- Department of Medical Immunology, Faculty of Medical Sciences, Hamadan University, Hamadan, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | | | - Daryoush Pahlevan
- Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Akram Firouzi-Amandi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
33
|
Mir SA, Alaidarous M, Alshehri B, Bin Dukhyil AA, Banawas S, Madkhali Y, Alsagaby SA, Al Othaim A. Immunoinformatics-Based Identification of B and T Cell Epitopes in RNA-Dependent RNA Polymerase of SARS-CoV-2. Vaccines (Basel) 2022; 10:vaccines10101660. [PMID: 36298525 PMCID: PMC9611076 DOI: 10.3390/vaccines10101660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION The ongoing coronavirus disease 2019 (COVID-19), which emerged in December 2019, is a serious health concern throughout the world. Despite massive COVID-19 vaccination on a global scale, there is a rising need to develop more effective vaccines and drugs to curb the spread of coronavirus. METHODOLOGY In this study, we screened the amino acid sequence of the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 (the causative agent of COVID-19) for the identification of B and T cell epitopes using various immunoinformatic tools. These identified potent B and T cell epitopes with high antigenicity scores were linked together to design the multi-epitope vaccine construct. The physicochemical properties, overall quality, and stability of the designed vaccine construct were confirmed by suitable bioinformatic tools. RESULTS After proper in silico prediction and screening, we identified 3 B cell, 18 CTL, and 10 HTL epitopes from the RdRp protein sequence. The screened epitopes were non-toxic, non-allergenic, and highly antigenic in nature as revealed by appropriate servers. Molecular docking revealed stable interactions of the designed multi-epitope vaccine with human TLR3. Moreover, in silico immune simulations showed a substantial immunogenic response of the designed vaccine. CONCLUSIONS These findings suggest that our designed multi-epitope vaccine possessing intrinsic T cell and B cell epitopes with high antigenicity scores could be considered for the ongoing development of peptide-based novel vaccines against COVID-19. However, further in vitro and in vivo studies need to be performed to confirm our in silico observations.
Collapse
Affiliation(s)
- Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Correspondence: ; Tel.: +966-536300645
| | - Mohammed Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Abdul Aziz Bin Dukhyil
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saeed Banawas
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Yahya Madkhali
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah 11952, Saudi Arabia
| |
Collapse
|
34
|
Aiman S, Alhamhoom Y, Ali F, Rahman N, Rastrelli L, Khan A, Farooq QUA, Ahmed A, Khan A, Li C. Multi-epitope chimeric vaccine design against emerging Monkeypox virus via reverse vaccinology techniques- a bioinformatics and immunoinformatics approach. Front Immunol 2022; 13:985450. [PMID: 36091024 PMCID: PMC9452969 DOI: 10.3389/fimmu.2022.985450] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 07/29/2022] [Indexed: 12/15/2022] Open
Abstract
The emerging monkeypox virus (MPXV) is a zoonotic orthopoxvirus that causes infections in humans similar to smallpox. Since May 2022, cases of monkeypox (MPX) have been increasingly reported by the World Health Organization (WHO) worldwide. Currently, there are no clinically validated treatments for MPX infections. In this study, an immunoinformatics approach was used to identify potential vaccine targets against MPXV. A total of 190 MPXV-2022 proteins were retrieved from the ViPR database and subjected to various analyses including antigenicity, allergenicity, toxicity, solubility, IFN-γ, and virulence. Three outer membrane and extracellular proteins were selected based on their respective parameters to predict B-cell and T-cell epitopes. The epitopes are conserved among different strains of MPXV and the population coverage is 100% worldwide, which will provide broader protection against various strains of the virus globally. Nine overlapping MHC-I, MHC-II, and B-cell epitopes were selected to design multi-epitope vaccine constructs linked with suitable linkers in combination with different adjuvants to enhance the immune responses of the vaccine constructs. Molecular modeling and structural validation ensured high-quality 3D structures of vaccine constructs. Based on various immunological and physiochemical properties and docking scores, MPXV-V2 was selected for further investigation. In silico cloning revealed a high level of gene expression for the MPXV-V2 vaccine within the bacterial expression system. Immune and MD simulations confirmed the molecular stability of the MPXV-V2 construct, with high immune responses within the host cell. These results may aid in the development of experimental vaccines against MPXV with increased potency and improved safety.
Collapse
Affiliation(s)
- Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fawad Ali
- Department of Biochemistry, Hazara University, Mansehra, Pakistan
| | - Noor Rahman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
- *Correspondence: Noor Rahman, ; Chunhua Li,
| | - Luca Rastrelli
- Dipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, Fisciano, SA, Italy
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan
| | - Qurat ul Ain Farooq
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Abbas Ahmed
- Department of Biotechnology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asif Khan
- Education department, Qurtaba University of Science and Information Technology (QUSIT) Peshawar, Peshawar, Pakistan
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
- *Correspondence: Noor Rahman, ; Chunhua Li,
| |
Collapse
|
35
|
Pitaloka DAE, Izzati A, Amirah SR, Syakuran LA. Multi Epitope-Based Vaccine Design for Protection Against Mycobacterium tuberculosis and SARS-CoV-2 Coinfection. ADVANCES AND APPLICATIONS IN BIOINFORMATICS AND CHEMISTRY 2022; 15:43-57. [PMID: 35941993 PMCID: PMC9356608 DOI: 10.2147/aabc.s366431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
Abstract
Background A prophylactic and immunotherapeutic vaccine for Mycobacterium tuberculosis (MTB) and SARS-CoV-2 coinfection needs to be developed for a proactive and effective therapeutic approach. Therefore, this study aims to use immunoinformatics to design a multi-epitope vaccine for protection against MTB and SARS-CoV-2 coinfection. Methods The bioinformatic techniques were used to screen and construct potential epitopes from outer membrane protein A Rv0899 of MTB and spike glycoprotein of SARS-CoV-2 for B and T cells. The antigenicity, allergenicity, and several physiochemical properties of the developed multi-epitope vaccination were then evaluated. Additionally, molecular docking and normal mode analysis (NMA) were utilized in evaluating the vaccine’s immunogenicity and complex stability. Results Selected proteins and predicted epitopes suggest that the vaccine prediction can be helpful in the protection against both SARS-CoV-2 and MTB coinfection. Through docking molecular and NMA, the vaccine-TLR4 protein interaction was predicted to be efficient with a high level of IgG, T-helper cells, T-cytotoxic cells, andIFN-γ. Conclusion This epitope-based vaccine is a potentially attractive tool for SARS-CoV-2 and MTB coinfection vaccine development.
Collapse
Affiliation(s)
- Dian Ayu Eka Pitaloka
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Correspondence: Dian Ayu Eka Pitaloka, Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia, Tel +62-22-84288812, Email
| | - Afifah Izzati
- Pharmacy Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Siti Rafa Amirah
- Pharmacy Program, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Luqman Abdan Syakuran
- Faculty of Biology, Jenderal Soedirman University, Grendeng Purwokerto, 53122, Indonesia
| |
Collapse
|
36
|
Oberemok VV, Andreeva OA, Laikova KV, Novikov IA, Puzanova YV, Kubyshkin AV. Anti-coronavirus vaccines will not accelerate the transition of humanity to a non-pandemic period, but the pandemic will take fewer victims. Inflamm Res 2022; 71:521-536. [PMID: 35397666 PMCID: PMC8994861 DOI: 10.1007/s00011-022-01567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/05/2022] Open
Abstract
The vaccination rate worldwide has reached enormous proportions, and it is likely that at least 75% of the world's population will be vaccinated. The controversy is that, while people aged 65 and older suffer a significantly higher mortality rate from COVID-19, plans are being made to vaccinate young people under the age of 20. Equally thorny is the question of vaccinating people who already have antibodies to SARS-CoV-2, as well as B and T memory cells, because they contracted and survived the virus. The possible consequences of large-scale vaccination are difficult to predict, when some people do not have access to the vaccine at all and others have already received 3 doses of the vaccine. SARS-CoV-2 will circulate through the human population forever and continue to mutate, as viruses do. Therefore, in the coming years, the need to develop and use effective vaccines and medicines for the prevention and treatment of COVID-19 will remain urgent in view of the high mortality rate from this disease. To date, three vaccine platforms have been most used: adenoviral vector, inactivated, and mRNA. There is some concern about the side effects that occur after vaccination. Whether modern anti-coronavirus vaccines can raise the safety threshold, only time will answer. It is obvious that the pandemic will end, but the virus will remain in the human population, leaving behind invaluable experience and tens of millions of victims. This article is based on search retrieves in research articles devoted to COVID-19 mainly published in 2020-2021 and examines the possible consequences of the worldwide vaccination against SARS-CoV-2 and suggests that, while anti-coronavirus vaccines will not magically transport humanity to a non-pandemic world, they may greatly reduce the number of victims of the pandemic and help us learn how to live with COVID-19.
Collapse
Affiliation(s)
- V V Oberemok
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea.
- Department of DNA Technologies of Engineering Center, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea.
| | - O A Andreeva
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- Department of DNA Technologies of Engineering Center, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - K V Laikova
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- Department of DNA Technologies of Engineering Center, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - I A Novikov
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - Y V Puzanova
- Department of Molecular Genetics and Biotechnologies, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
- Department of DNA Technologies of Engineering Center, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| | - A V Kubyshkin
- Department of DNA Technologies of Engineering Center, V.I. Vernadsky Crimean Federal University, Simferopol, Crimea
| |
Collapse
|
37
|
Chourasia R, Padhi S, Phukon LC, Abedin MM, Sirohi R, Singh SP, Rai AK. Peptide candidates for the development of therapeutics and vaccines against β-coronavirus infection. Bioengineered 2022; 13:9435-9454. [PMID: 35387556 PMCID: PMC9161909 DOI: 10.1080/21655979.2022.2060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Betacoronaviruses (β-CoVs) have caused major viral outbreaks in the last two decades in the world. The mutation and recombination abilities in β-CoVs resulted in zoonotic diseases in humans. Proteins responsible for viral attachment and replication are highly conserved in β-CoVs. These conserved proteins have been extensively studied as targets for preventing infection and the spread of β-CoVs. Peptides are among the most promising candidates for developing vaccines and therapeutics against viral pathogens. The immunostimulatory and viral inhibitory potential of natural and synthetic peptides has been extensively studied since the SARS-CoV outbreak. Food-derived peptides demonstrating high antiviral activity can be used to develop effective therapeutics against β-CoVs. Specificity, tolerability, and customizability of peptides can be explored to develop potent drugs against β-CoVs. However, the proteolytic susceptibility and low bioavailability of peptides pose challenges for the development of therapeutics. This review illustrates the potential role of peptides in eliciting an adaptive immune response and inhibiting different stages of the β-CoV life cycle. Further, the challenges and future directions associated with developing peptide-based therapeutics and vaccines against existing and future β-CoV pathogens have been discussed.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Ranjana Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Republic of Korea
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81, S.A.S. Nagar, Mohali- 140306, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Mizoram Node, Aizawl, India
| |
Collapse
|
38
|
Abstract
This review discusses peptide epitopes used as antigens in the development of vaccines in clinical trials as well as future vaccine candidates. It covers peptides used in potential immunotherapies for infectious diseases including SARS-CoV-2, influenza, hepatitis B and C, HIV, malaria, and others. In addition, peptides for cancer vaccines that target examples of overexpressed proteins are summarized, including human epidermal growth factor receptor 2 (HER-2), mucin 1 (MUC1), folate receptor, and others. The uses of peptides to target cancers caused by infective agents, for example, cervical cancer caused by human papilloma virus (HPV), are also discussed. This review also provides an overview of model peptide epitopes used to stimulate non-specific immune responses, and of self-adjuvanting peptides, as well as the influence of other adjuvants on peptide formulations. As highlighted in this review, several peptide immunotherapies are in advanced clinical trials as vaccines, and there is great potential for future therapies due the specificity of the response that can be achieved using peptide epitopes.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K
| |
Collapse
|
39
|
Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther 2022; 7:48. [PMID: 35165272 PMCID: PMC8844085 DOI: 10.1038/s41392-022-00904-4] [Citation(s) in RCA: 722] [Impact Index Per Article: 240.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 02/08/2023] Open
Abstract
Peptide drug development has made great progress in the last decade thanks to new production, modification, and analytic technologies. Peptides have been produced and modified using both chemical and biological methods, together with novel design and delivery strategies, which have helped to overcome the inherent drawbacks of peptides and have allowed the continued advancement of this field. A wide variety of natural and modified peptides have been obtained and studied, covering multiple therapeutic areas. This review summarizes the efforts and achievements in peptide drug discovery, production, and modification, and their current applications. We also discuss the value and challenges associated with future developments in therapeutic peptides.
Collapse
|
40
|
Immunoinformatics guided design of a next generation epitope-based vaccine against Kaposi Sarcoma. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Ferreira CS, Martins YC, Souza RC, Vasconcelos ATR. EpiCurator: an immunoinformatic workflow to predict and prioritize SARS-CoV-2 epitopes. PeerJ 2021; 9:e12548. [PMID: 34909278 PMCID: PMC8641484 DOI: 10.7717/peerj.12548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/04/2021] [Indexed: 12/12/2022] Open
Abstract
The ongoing coronavirus 2019 (COVID-19) pandemic, triggered by the emerging SARS-CoV-2 virus, represents a global public health challenge. Therefore, the development of effective vaccines is an urgent need to prevent and control virus spread. One of the vaccine production strategies uses the in silico epitope prediction from the virus genome by immunoinformatic approaches, which assist in selecting candidate epitopes for in vitro and clinical trials research. This study introduces the EpiCurator workflow to predict and prioritize epitopes from SARS-CoV-2 genomes by combining a series of computational filtering tools. To validate the workflow effectiveness, SARS-CoV-2 genomes retrieved from the GISAID database were analyzed. We identified 11 epitopes in the receptor-binding domain (RBD) of Spike glycoprotein, an important antigenic determinant, not previously described in the literature or published on the Immune Epitope Database (IEDB). Interestingly, these epitopes have a combination of important properties: recognized in sequences of the current variants of concern, present high antigenicity, conservancy, and broad population coverage. The RBD epitopes were the source for a multi-epitope design to in silico validation of their immunogenic potential. The multi-epitope overall quality was computationally validated, endorsing its efficiency to trigger an effective immune response since it has stability, high antigenicity and strong interactions with Toll-Like Receptors (TLR). Taken together, the findings in the current study demonstrated the efficacy of the workflow for epitopes discovery, providing target candidates for immunogen development.
Collapse
Affiliation(s)
- Cristina S. Ferreira
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis, Rio de Janeiro, Brazil
| | - Yasmmin C. Martins
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis, Rio de Janeiro, Brazil
| | - Rangel Celso Souza
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis, Rio de Janeiro, Brazil
| | - Ana Tereza R. Vasconcelos
- Bioinformatics Laboratory, National Laboratory of Scientific Computation, Petrópolis, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Ren M, Wang Y, Luo Y, Yao X, Yang Z, Zhang P, Zhao W, Jiang D. Functionalized Nanoparticles in Prevention and Targeted Therapy of Viral Diseases With Neurotropism Properties, Special Insight on COVID-19. Front Microbiol 2021; 12:767104. [PMID: 34867899 PMCID: PMC8634613 DOI: 10.3389/fmicb.2021.767104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022] Open
Abstract
Neurotropic viruses have neural-invasive and neurovirulent properties to damage the central nervous system (CNS), leading to humans' fatal symptoms. Neurotropic viruses comprise a lot of viruses, such as Zika virus (ZIKV), herpes simplex virus (HSV), rabies virus (RABV), and severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). Effective therapy is needed to prevent infection by these viruses in vivo and in vitro. However, the blood-brain barrier (BBB) usually prevents macromolecules from entering the CNS, which challenges the usage of the traditional probes, antiviral drugs, or neutralizing antibodies in the CNS. Functionalized nanoparticles (NPs) have been increasingly reported in the targeted therapy of neurotropic viruses due to their sensitivity and targeting characteristics. Therefore, the present review outlines efficient functionalized NPs to further understand the recent trends, challenges, and prospects of these materials.
Collapse
Affiliation(s)
| | - Yin Wang
- Animal Quarantine Laboratory, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Fadaka AO, Sibuyi NRS, Martin DR, Goboza M, Klein A, Madiehe AM, Meyer M. Immunoinformatics design of a novel epitope-based vaccine candidate against dengue virus. Sci Rep 2021; 11:19707. [PMID: 34611250 PMCID: PMC8492693 DOI: 10.1038/s41598-021-99227-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/22/2021] [Indexed: 02/08/2023] Open
Abstract
Dengue poses a global health threat, which will persist without therapeutic intervention. Immunity induced by exposure to one serotype does not confer long-term protection against secondary infection with other serotypes and is potentially capable of enhancing this infection. Although vaccination is believed to induce durable and protective responses against all the dengue virus (DENV) serotypes in order to reduce the burden posed by this virus, the development of a safe and efficacious vaccine remains a challenge. Immunoinformatics and computational vaccinology have been utilized in studies of infectious diseases to provide insight into the host-pathogen interactions thus justifying their use in vaccine development. Since vaccination is the best bet to reduce the burden posed by DENV, this study is aimed at developing a multi-epitope based vaccines for dengue control. Combined approaches of reverse vaccinology and immunoinformatics were utilized to design multi-epitope based vaccine from the sequence of DENV. Specifically, BCPreds and IEDB servers were used to predict the B-cell and T-cell epitopes, respectively. Molecular docking was carried out using Schrödinger, PATCHDOCK and FIREDOCK. Codon optimization and in silico cloning were done using JCAT and SnapGene respectively. Finally, the efficiency and stability of the designed vaccines were assessed by an in silico immune simulation and molecular dynamic simulation, respectively. The predicted epitopes were prioritized using in-house criteria. Four candidate vaccines (DV-1-4) were designed using suitable adjuvant and linkers in addition to the shortlisted epitopes. The binding interactions of these vaccines against the receptors TLR-2, TLR-4, MHC-1 and MHC-2 show that these candidate vaccines perfectly fit into the binding domains of the receptors. In addition, DV-1 has a better binding energies of - 60.07, - 63.40, - 69.89 kcal/mol against MHC-1, TLR-2, and TLR-4, with respect to the other vaccines. All the designed vaccines were highly antigenic, soluble, non-allergenic, non-toxic, flexible, and topologically assessable. The immune simulation analysis showed that DV-1 may elicit specific immune response against dengue virus. Moreover, codon optimization and in silico cloning validated the expressions of all the designed vaccines in E. coli. Finally, the molecular dynamic study shows that DV-1 is stable with minimum RMSF against TLR4. Immunoinformatics tools are now applied to screen genomes of interest for possible vaccine target. The designed vaccine candidates may be further experimentally investigated as potential vaccines capable of providing definitive preventive measure against dengue virus infection.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Darius Riziki Martin
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mediline Goboza
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
- Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.
| |
Collapse
|
44
|
Montes-Grajales D, Olivero-Verbel J. Bioinformatics Prediction of SARS-CoV-2 Epitopes as Vaccine Candidates for the Colombian Population. Vaccines (Basel) 2021; 9:vaccines9070797. [PMID: 34358213 PMCID: PMC8310250 DOI: 10.3390/vaccines9070797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease (COVID-19) pandemic caused by the coronavirus SARS-CoV-2 represents an enormous challenge to global public health, with thousands of infections and deaths in over 200 countries worldwide. The purpose of this study was to identify SARS-CoV-2 epitopes with potential to interact in silico with the alleles of the human leukocyte antigen class I (HLA I) and class II (HLA II) commonly found in the Colombian population to promote both CD4 and CD8 immune responses against this virus. The generation and evaluation of the peptides in terms of HLA I and HLA II binding, immune response, toxicity and allergenicity were performed by using computer-aided tools, such as NetMHCpan 4.1, NetMHCIIpan 4.0, VaxiJem, ToxinPred and AllerTop. Furthermore, the interaction between the predicted epitopes with HLA I and HLA II proteins frequently found in the Colombian population was studied through molecular docking simulations in AutoDock Vina and interaction analysis in LigPlot+. One of the promising peptides proposed in this study is the HLA I epitope YQPYRVVVL, which displayed an estimated coverage of over 82% and 96% for the Colombian and worldwide population, respectively. These findings could be useful for the design of new epitope-vaccines that include Colombia among their population target.
Collapse
|
45
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. Lessons Learned from Cutting-Edge Immunoinformatics on Next-Generation COVID-19 Vaccine Research. Int J Pept Res Ther 2021; 27:2303-2311. [PMID: 34276266 PMCID: PMC8272614 DOI: 10.1007/s10989-021-10254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 12/23/2022]
Abstract
Presently, immunoinformatics and bioinformatics approaches are contributing actively to COVID-19 vaccine research. The first immunoinformatics-based vaccine construct against SARS-CoV-2 was published in February 2020. Following this, immunoinformatics and bioinformatics approaches have created a new direction in COVID-19 vaccine research. Several researchers have designed the next-generation COVID-19 vaccines using these approaches. Presently, immunoinformatics has accelerated immunology research immensely in the area of COVID-19. Hence, we have tried to depict the current scenario of immunoinformatics and bioinformatics in COVID-19 vaccine research.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Jagannathpur, Kolkata, West Bengal 700126 India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, Odisha 756020 India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
46
|
Raoufi E, Bahramimeimandi B, Salehi-Shadkami M, Chaosri P, Mozafari MR. Methodical Design of Viral Vaccines Based on Avant-Garde Nanocarriers: A Multi-Domain Narrative Review. Biomedicines 2021; 9:520. [PMID: 34066608 PMCID: PMC8148582 DOI: 10.3390/biomedicines9050520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
The current health crisis caused by coronavirus 2019 (COVID-19) and associated pathogens emphasize the urgent need for vaccine systems that can generate protective and long-lasting immune responses. Vaccination, employing peptides, nucleic acids, and other molecules, or using pathogen-based strategies, in fact, is one of the most potent approaches in the management of viral diseases. However, the vaccine candidate requires protection from degradation and precise delivery to the target cells. This can be achieved by employing different types of drug and vaccine delivery strategies, among which, nanotechnology-based systems seem to be more promising. This entry aims to provide insight into major aspects of vaccine design and formulation to address different diseases, including the recent outbreak of SARS-CoV-2. Special emphasis of this review is on the technical and practical aspects of vaccine construction and theranostic approaches to precisely target and localize the active compounds.
Collapse
Affiliation(s)
- Ehsan Raoufi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - Bahar Bahramimeimandi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (E.R.); (B.B.)
| | - M. Salehi-Shadkami
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran;
| | - Patcharida Chaosri
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
| | - M. R. Mozafari
- Supreme NanoBiotics Co. Ltd. and Supreme Pharmatech Co. Ltd., 399/90-95 Moo 13 Kingkaew Rd. Soi 25/1, T. Rachateva, A. Bangplee, Samutprakan 10540, Thailand;
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
47
|
Di Vona ML, Rossolini GM, Sette M. A Strategy Based on Loop Analysis to Develop Peptide Epitopes: Application to SARS-CoV-2 Spike Protein. Front Mol Biosci 2021; 8:658687. [PMID: 34026833 PMCID: PMC8131536 DOI: 10.3389/fmolb.2021.658687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Many current strategies for inducing an immune response rely on the production of an antigenic protein. Such methods can be problematic if the folding of the antigenic protein is incorrect. To avoid this problem, we propose a method based on grafting specific regions of the chosen antigenic protein onto biocompatible polymeric matrices, so that they can mimic portions of the antigenic protein. These regions are selected following the criterion according to which they are not folded, are exposed to the solvent and are not already present in the human body, so that they are not recognized by the immune system as self. Regions are selected using the primary sequence of the protein and, where possible, its tertiary structure. The application of this strategy to the Spike protein of SARS-CoV-2 is presented.
Collapse
Affiliation(s)
- Maria Luisa Di Vona
- Department of Industrial Engineering and International Associated Laboratory: Ionomer Materials for Energy, University of Rome Tor Vergata, Rome, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.,Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Marco Sette
- Department of Chemical Sciences and Technology, University of Rome Tor Vergata, Rome, Italy.,Sorbonne Paris Cité, CSPBAT Laboratory, University of Paris 13, UMR 7244, CNRS, Bobigny, France
| |
Collapse
|
48
|
Hernández AF, Calina D, Poulas K, Docea AO, Tsatsakis AM. Safety of COVID-19 vaccines administered in the EU: Should we be concerned? Toxicol Rep 2021; 8:871-879. [PMID: 33898273 PMCID: PMC8055532 DOI: 10.1016/j.toxrep.2021.04.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022] Open
Abstract
mRNA and viral vector vaccines are currently used in the EU for COVID-19 prophylaxis. EMA has assessed the safety of the three vaccines currently used in the EU. Local and systemic reactions are reported during vaccinations campaigns. Vaccine-induced immune thrombotic thrombocytopenia has been linked to Vaxzevria. Follow-up and surveillance studies for vaccines’ safety monitoring will be needed.
The COVID-19 pandemic has had an unprecedented and devastating impact on public health, society and economics around the world. As a result, the development of vaccines to protect individuals from symptomatic COVID-19 infections has represented the only feasible health tool to combat the spread of the disease. However, at the same time the development and regulatory assessment of different vaccines has challenged pharmaceutical industries and regulatory agencies as this process has occurred in the shorter time ever though. So far, two mRNA and two adenovirus-vectored vaccines have received a conditional marketing authorisation in the EU and other countries. This review summarized and discusses the assessment reports of the European Medicine Agency (EMA) concerning the safety of the 3 vaccines currently used in the EU (Pfizer, Moderna and Astra-Zeneca). A particular focus has been paid to safety information from pre-clinical (animal) and clinical (phase 3 trials) studies. Overall, the most frequent adverse effects reported after the administration of these vaccines consisted of local reactions at the injection site (sore arm and erythema) followed by non-specific systemic effects (myalgia, chills, fatigue, headache, and fever), which occurred soon after vaccination and resolved shortly. Rare cases of vaccine-induced immune thrombotic thrombocytopenia have been reported for Vaxzevria. Data on long-term studies, interaction with other vaccines, use in pregnancy/breast-feeding, use in immunocompromised subjects, and in subjects with comorbidities, autoimmune or inflammatory disorders are still missing for these vaccines. Therefore, careful follow-up and surveillance studies for continued vaccine safety monitoring will be needed to ascertain the potential risks of such adverse events or diseases. In conclusion, the benefits and risks of current COVID-19 vaccines must be weighed against the real possibility of contract the disease and develop complications and long-term sequels; all this on the basis of the available scientific evidence and in the absence of unmotivated biases.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain.,Instituto de Investigación Biosanitaria, Granada (ibs.GRANADA), Spain
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Konstantinos Poulas
- Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, Panepistimiopolis, 26500 Rio-Patras, Greece
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| |
Collapse
|
49
|
Bayat M, Asemani Y, Najafi S. Essential considerations during vaccine design against COVID-19 and review of pioneering vaccine candidate platforms. Int Immunopharmacol 2021; 97:107679. [PMID: 33930707 PMCID: PMC8049400 DOI: 10.1016/j.intimp.2021.107679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
The calamity of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), COVID-19, is still a global human tragedy. To date, no specific antiviral drug or therapy has been able to break the widespread of SARS-CoV2. It has been generally believed that stimulating protective immunity via universal vaccination is the individual strategy to manage this pandemic. Achieving an effective COVID-19 vaccine requires attention to the immunological and non-immunological standpoints mentioned in this article. Here, we try to introduce the considerable immunological aspects, potential antigen targets, appropriate adjuvants as well as key points in the various stages of COVID-19 vaccine development. Also, the principal features of the preclinical and clinical studies of pioneering COVID-19 vaccine candidates were pointed out by reviewing the available information. Finally, we discuss the key challenges in the successful design of the COVID-19 vaccine and address the most fundamental strengths and weaknesses of common vaccine platforms.
Collapse
Affiliation(s)
- Maryam Bayat
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yahya Asemani
- Department of Immunology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Häfner SJ. Level up for culture models - How 3D cell culture models benefit SARS-CoV-2 research. Biomed J 2021; 44:1-6. [PMID: 33741318 PMCID: PMC7871102 DOI: 10.1016/j.bj.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
Welcome to a new decade and a new issue of the Biomedical Journal - casting a sorrowful look onto a year that will go down in history as a tombstone etched by the COVID-19 pandemic, but also a hopeful glance into the future, now that multiple vaccination programs against the SARS-CoV-2 virus have started. This issue is dedicated to the continuous effort by researchers all around the globe to understand and counter the pathogen, as well as to be better prepared for future threats. Therefore, we learn about the advantages of complex 3D cell culture models for studying host-virus interactions, and the disease course of COVID-19 in children. Moreover, we discover how neutralising monoclonal antibodies and peptide-based vaccines against SARS-CoV-2 are developed, and the therapeutic potentials of lopinavir/ritonavir, mesenchymal stem cells, as well as plant and algae extracts. Finally, we ponder over the lessons to be learnt from SARS-CoV and MERS, and hear about differences between nucleotide-based SARS-CoV-2 detection methods.
Collapse
Affiliation(s)
- Sophia Julia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Anders Lund Group, Copenhagen, Denmark.
| |
Collapse
|