1
|
Roghani-Shahraki H, Karimian M, Valipour S, Behjati M, Arefnezhad R, Mousavi A. Herbal therapy as a promising approach for regulation on lipid profiles: A review of molecular aspects. J Cell Physiol 2021; 236:5533-5546. [PMID: 33469926 DOI: 10.1002/jcp.30282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/24/2020] [Accepted: 01/04/2021] [Indexed: 01/18/2023]
Abstract
Impaired lipid profile is defined as abnormal plasma levels of low-density lipoprotein, triglycerides, and total cholesterol. This disease state is associated with the development and progression of various disorders, such as diabetes mellitus, cardiovascular diseases, and acute myocardial infarction. Globally, all of these disorders are related to a significant rate of death. Therefore, finding a suitable approach for the prevention and treatment of lipid profile-related disorders is in the spotlight. Recently, herbal therapy has been considered a promising therapeutic approach for the treatment of hyperlipidemia or its related disorders due to its safety and efficacy. Hereby, we address the potential benefits of some of these herbal compounds on different aspects of lipid profile and its abnormalities with a special focus on their underlying mechanisms. Using herbal products, such as teas and mushrooms, or their derivatives, Rosmarinus officinalis Linn, Curcuma longa, Green tea, Lippia triphylla, Lippia citriodora, Plantago asiatica L, Vine tea, and Grifola frondosa have been proved to exert several therapeutic impacts on lipid profile and its related disorders, and we would provide a brief review on them in this literature.
Collapse
Affiliation(s)
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Saboora Valipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohaddeseh Behjati
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Arefnezhad
- Halal Research Center of IRI, FDA, Tehran, Iran.,Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Mousavi
- Department of Basic Sciences, School of Veterinary Medicine, Semnan University, Iran
| |
Collapse
|
2
|
Alamgeer, Asif H, Sandhu MZA, Aziz M, Irfan HM, Moreno KGT, Junior AG. Ameliorative Effects and Cellular Aspects of Phytoconstituents in Atherosclerosis. Curr Pharm Des 2020; 26:2574-2582. [PMID: 32056518 DOI: 10.2174/1381612826666200214161139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/17/2020] [Indexed: 11/22/2022]
Abstract
Atherosclerosis is a cardiovascular disease that involves vessels through the development of fatty streaks and plaques. Plant-based compounds can help treat or prevent atherosclerosis by affecting various factors that are involved in the disease. The present review discusses our current knowledge of the major cellular and molecular mechanisms of phytotherapeutics for the treatment of atherosclerosis. Numerous studies have evaluated the antiatherosclerotic activity of phytoconstituents to provide preliminary evidence of efficacy, but only a few studies have delineated the underlying molecular mechanisms. Plant-derived phytotherapeutics primarily targets abnormal levels of lipoproteins, endothelial dysfunction, smooth muscle cell migration, foam cell development, and atheromatous plaque formation. Nonetheless, the principal mechanisms that are responsible for their therapeutic actions remain unclear. Further pharmacological studies are needed to elucidate the underlying molecular mechanisms of the antiatherosclerotic response to these phytoconstituents.
Collapse
Affiliation(s)
- Alamgeer
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hira Asif
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan,Department of Pharmacy, University of Lahore, Gujrat Campus, Gujrat, Pakistan
| | - Muhammad Z A Sandhu
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Madiha Aziz
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Hafiz M Irfan
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Karyne G T Moreno
- Laboratory of Cardiovascular Research and Integrative Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Arquimedes Gasparotto Junior
- Laboratory of Electrophysiology and Cardiovascular Pharmacology, Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| |
Collapse
|
3
|
Ram H, Jaipal N, Charan J, Kashyap P, Kumar S, Tripathi R, Singh BP, Siddaiah CN, Hashem A, Tabassum B, Abd Allah EF. Phytoconstituents of an ethanolic pod extract of Prosopis cineraria triggers the inhibition of HMG-CoA reductase and the regression of atherosclerotic plaque in hypercholesterolemic rabbits. Lipids Health Dis 2020; 19:6. [PMID: 31931807 PMCID: PMC6958682 DOI: 10.1186/s12944-020-1188-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The HMG-CoA reductase is key enzyme of cholesterol biosynthesis which potentially contributes in management of hypercholesterolemia. The present study was designed to assess the inhibitory effect of phytoconstituents of an ethanolic extract of Prosopis cineraria pods on HMG - CoA reductase and regression potential of atherosclerotic plaque. METHODS Healthy, adult male, albino rabbits in which hypercholesterolemia was induced by supplying the high fat diet and a supplement of cholesterol powder with coconut oil (500 mg/5 ml/Day/kg body weight) for 15 days, were used as a disease model. Phytochemical analysis of an ethanolic extract Prosopis cineraria pods was conducted using LCMS, GCMS and FTIR analysis. Further, in-vitro, in-vivo and in-silico assessments were performed. RESULTS The in-vitro assessment of HMG -CoA reductase activity indicated a 67.1 and 97.3% inhibition by the extract and a standard drug (Pravastatin), respectively. Additionally, an in-silico evaluation was made using appropriate docking software and results also indicated as significant interactions of the identified compounds with the target enzyme. Treatment of rabbits with the ethanolic extract of P. cineraria pod resulted in significant (P ≤ 0.001) reductions in total cholesterol, LDL cholesterol, VLDL cholesterol, and triglyceride. Accordingly, reductions were occurred in atherosclerotic plaque, intima and media of aortal wall along with lumen volume of the aorta significantly increased (P ≤ 0.001). CONCLUSION It can be illustrating that the ethanolic extract of Prosopis cineraria pod contains potent bioactive phytocompounds might be inhibit HMG - CoA reductase and have regression potential of atherosclerotic plaque.
Collapse
Affiliation(s)
- Heera Ram
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India.
| | - Noopur Jaipal
- Department of Zoology, Jai Narain Vyas University, Jodhpur, Rajasthan, 342001, India
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342001, India
| | - Priya Kashyap
- UniversitySchool of Biotechnology, GGS Indraprastha University, Dwarka, Sector 16C, New Delhi, 110075, India
| | - Suresh Kumar
- UniversitySchool of Biotechnology, GGS Indraprastha University, Dwarka, Sector 16C, New Delhi, 110075, India
| | - Rashmi Tripathi
- Department of Bioscience and Biotechnology, Banasthali University, Banasthali, Rajasthan, 304022, India
| | - Bhim Pratap Singh
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, 796004, India
| | | | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
- Mycology and Plant Disease Survey Department, Plant Pathology Research Institute, ARC, Giza, 12511, Egypt
| | - Baby Tabassum
- Toxicology Laboratory, Department of Zoology, Govt. Raza P.G. College, Rampur, U.P, 244901, India
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Lans C. Do recent research studies validate the medicinal plants used in British Columbia, Canada for pet diseases and wild animals taken into temporary care? JOURNAL OF ETHNOPHARMACOLOGY 2019; 236:366-392. [PMID: 30772483 DOI: 10.1016/j.jep.2019.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE There are insufficient safe and effective treatments for chronic pain in pets. In cases such as osteoarthritis there is no commercially available cure and veterinarians use NSAIDs to manage pain. Pet owners may have to plan for a lifetime of plant-based treatment for the conditions that lead to chronic pain in pets. Phytopharmacotherapies have the advantage of being less toxic, cheap or free, readily available, are more likely to be safe for long-term use and have the potential to reset the immune system to normal functioning. AIM OF THE STUDY To examine the recently published medicinal plant research that matches unpublished data on ethnoveterinary medicines (EVM) used for pets in Canada (British Columbia) to see if the EVM data can provide a lead to the development of necessary drugs. MATERIALS AND METHODS In 2003 semi-structured interviews were conducted with 60 participants who were organic farmers or holisitic medicinal/veterinary practitioners obtained using a purposive sample. A draft manual prepared from the data was then evaluated by participants at a participatory workshop that discussed the plant-based treatments. A copy of the final version of the manual was given to all research participants. In 2018, the recently published research matching the EVM data was reviewed to see if the EVM practices could serve as a lead for further research. RESULTS AND CONCLUSION Medicinal plants are used to treat a range of conditions. The injuries treated in pets in British Columbia included abscesses (resulting from an initial injury), sprains and abrasions. Dogs were also treated with medicinal plants for rheumatoid arthritis, joint pain and articular cartilage injuries. More than 40 plants were used. Anal gland problems were treated with Allium sativum L., Aloe vera L., Calendula officinalis L., Plantago major L., Ulmus fulva Michx., Urtica dioica L. and Usnea longissima Ach. Arctium lappa, Hydrangea arborescens and Lactuca muralis were used for rheumatoid arthritis and joint pain in pets. Asthma was treated with: Linum usitatissimum L., Borago officinalis L., Verbascum thapsus L., Cucurbita pepo L., Lobelia inflata L., and Zingiber officinale Roscoe. Pets with heart problems were treated with Crataegus oxyacantha L., Cedronella canariensis (L.) Willd. ex Webb & Berth, Equisetum palustre L., Cypripedium calceolus L., Pinus ponderosa Douglas ex Lawson, Humulus lupulus L., Valeriana officinalis L., Lobelia inflata L., Stachys officinalis (L.) Trev., and Viscum album L. The following plants were used for epilepsy, motion sickness and anxiety- Avena sativa L., Valeriana officinalis, Lactuca muralis (L.) Fresen., Scutellaria lateriflora L., Satureja hortensis L., and Passiflora incarnata L. Plants used for cancer treatment included Phytolacca decandra, Ganoderma lucidum, Lentinula edodes, Rumex acetosella, Arctium lappa, Ulmus fulva, Rheum palmatum, Frangula purshiana, Zingiber officinale, Glycyrrhiza glabra, Ulmus fulva, Althea officinalis, Rheum palmatum, Rumex crispus and Plantago psyllium. Trifolium pratense was used for tumours in the prostate gland. Also used were Artemisia annua, Taraxacum officinale and Rumex crispus. This review of plants used in EVM was possible because phytotherapy research of the plants described in this paper has continued because few new pharmaceutical drugs have been developed for chronic pain and because treatments like glucocorticoid therapy do not heal. Phytotherapuetic products are also being investigated to address the overuse of antibiotics. There have also been recent studies conducted on plant-based functional foods and health supplements for pets, however there are still gaps in the knowledge base for the plants Stillingia sylvatica, Verbascum thapsus, Yucca schidigera and Iris versicolor and these need further investigation.
Collapse
Affiliation(s)
- Cheryl Lans
- Institute for Ethnobotany and Zoopharmacognosy (IEZ), Rijksstraatweg 158A, 6573 DG Beek, the Netherlands.
| |
Collapse
|
5
|
Zhou Q, Han X, Li R, Zhao W, Bai B, Yan C, Dong X. Anti-atherosclerosis of oligomeric proanthocyanidins from Rhodiola rosea on rat model via hypolipemic, antioxidant, anti-inflammatory activities together with regulation of endothelial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 51:171-180. [PMID: 30466614 DOI: 10.1016/j.phymed.2018.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Rhodiola rosea has been used as a traditional medicine for a long history. Previous studies on oligomeric proanthocyanidins from Rhodiola rosea (OPCRR) have showed that it exhibited significant free radical-scavenging activities, antioxidant activities in aging mice and lipid lowering effects. HYPOTHESIS/PURPOSE We hypothesized that OPCRR can improve the atherosclerosis pathological in rats. In the present study, we investigated the effects of OPCRR on the serum lipid profiles, oxidant stress status, inflammatory cytokines and atherosclerotic mediators, and endothelial dysfunction as well as changes in abdominal aorta of atherosclerosis rats. METHODS The major components of OPCRR were analyzed by using infrared spectrum and HPLC-ESI-MS. The atherosclerosis rat model was induced by high fat and vitamin D3 feeding for 9 weeks and two OPCRR doses (60 and 120 mg/kg b.w.) were orally administered daily for 9 weeks. The rats were then sacrificed and the blood was collected via abdominal aorta and serum was separated by centrifugated for biochemical analysis. Part of the aorta tissues were excised immediately for histopathological examination and western blotting. RESULTS Compared to model group, OPCRR treatments significantly decreased the serum lipid profiles including total cholesterol, total triglycerides, low-density lipoprotein cholesterol (LDL-C) and ox-LDL and increased the high-density lipoprotein cholesterol (HDL-C); significant increased serum antioxidant enzymes (SOD and GSH-Px) and decrease of MDA content as a product of lipid peroxidation; lowered serum levels of TNF-α, IL-1β, IL-6, ICAM-1 and VCAM-1 and enhanced IL-10 level; increased the serum release of nitric oxide and expression of iNOS in aortic, whereas decreased the expression of eNOS. CONCLUSION OPCRR can improve the progress of atherosclerosis by regulation of lipid metabolism, restoring of the antioxidant capacities, and attenuation of pro-inflammatory cytokines and chemcytokines release, and improving the endothelial dysfunction indicated by nitric oxide system.
Collapse
Affiliation(s)
- Qian Zhou
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China; Engineering Technology Research Center for Agricultural Product Processing of Hebei, Baoding 071001, PR China
| | - Xue Han
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Rongbin Li
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Wen Zhao
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China; Engineering Technology Research Center for Agricultural Product Processing of Hebei, Baoding 071001, PR China.
| | - Bingyao Bai
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Chenjing Yan
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| | - Xiaohan Dong
- College of Food Science and Technology, Agricultural University of Hebei, Baoding 071001, PR China
| |
Collapse
|
6
|
Paramita S, Aminyoto M, Ismail S, Arung ET. Anti-hypercholesterolemic effect of Zingiber montanum extract. F1000Res 2018; 7:1798. [PMID: 34290859 PMCID: PMC8210691 DOI: 10.12688/f1000research.16417.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2018] [Indexed: 04/04/2024] Open
Abstract
Background: Hypercholesterolemia, high cholesterol levels in the blood, can contribute to many forms of disease, most notably cardiovascular disease. Anti-hypercholesterolemic agents generally used for those conditions have several side effects for patients. Zingiber montanum , known locally as "bangle", belongs to the family Zingiberaceae and is a potential plants for alternative anti-hypercholesterolemic agents. This plant, from East Kalimantan, is used in traditional medicine for health problems caused by high cholesterol levels. The aim of this research was to find alternatives to anti-hypercholesterolemic agents, especially from natural sources. Methods: This study was an experimental study using 30 Wistar male white rats. Subjects were randomly divided into 6 groups (n=5): (1) normal control group; (2) high fat diet control group; (3) high fat diet with simvastatin; (4-6) high fat diet with Zingiber montanum extracts 100, 200, and 400 mg/kg. After 4 weeks of treatment, blood was collected from all groups, and plasma concentrations of triglycerides, total cholesterol, high density lipoproteins (HDL), and low density lipoproteins (LDL) were measured. Results: The results showed significant differences in total cholesterol (p=0.000), LDL (p=0.000) and triglycerides (p=0.001) in the high-fat diet group with Z. montanum extract, as compared to the high-fat diet control. Meanwhile, there were no significant differences in HDL levels (p=0.830) between the high-fat diet group and other groups. The results also showed significant differences in total cholesterol and LDLs for rats treated with Z. montanum extract, 100 mg/kg (p=0.000), 200 mg/kg (p=0.000), and 400 mg/kg (p=0.000) compared to the high-fat diet group. The result of Z. montanum 400 mg/kg also showed a significant reduction, not only for total cholesterol and LDLs, but also for triglycerides (p=0.030). Conclusion: It could be concluded that Z. montanum extracts have the potency to be further developed as a new natural source of the anti-hypercholesterolemic agents.
Collapse
Affiliation(s)
- Swandari Paramita
- Research Center for Medicine and Cosmetics from Tropical Rainforest Resources, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
- Laboratory of Community Medicine, Faculty of Medicine, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
| | - Meiliati Aminyoto
- Research Center for Medicine and Cosmetics from Tropical Rainforest Resources, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
- Laboratory of Community Medicine, Faculty of Medicine, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
| | - Sjarif Ismail
- Research Center for Medicine and Cosmetics from Tropical Rainforest Resources, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
- Laboratory of Pharmacology, Faculty of Medicine, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
| | - Enos Tangke Arung
- Laboratory of Forest Product Chemistry, Faculty of Forestry, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
| |
Collapse
|
7
|
Paramita S, Aminyoto M, Ismail S, Arung ET. Anti-hypercholesterolemic effect of Zingiber montanum extract. F1000Res 2018; 7:1798. [PMID: 34290859 PMCID: PMC8210691 DOI: 10.12688/f1000research.16417.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 11/20/2022] Open
Abstract
Background: High cholesterol levels (hypercholesterolemia) has been recognized to cause various disease, most notably the cardiovascular disease. Unfortunately, most anti-hypercholesterolemic drugs deliver several side effects for patients, by which medicinal plants have begun to attract attention for treating hypercholesterolemia. Among others, Zingiber montanum (J.König) Link ex A.Dietr. has traditionally been taken for treating health problems caused by high cholesterol levels. Hence, this work aimed at investigating anti-hypercholesterolemic effects offered by the plant. Methods: This study was conducted on 30 male Wistar rats. During experiments, the subjects were divided into 6 groups (n=5), i.e. no treatment (Group 1, control); high-fat diet (Group 2, control); high-fat diet with simvastatin (Group 3); high-fat diet with plant extracts (Group 4-6 with 100, 200, and 400 mg/kg BW, respectively). After 4 weeks of treatments, blood samples were collected from each group. Then, plasma concentrations of triglycerides, total cholesterol, high density lipoproteins (HDL), and low density lipoproteins (LDL) were measured. Results: There were significant differences in total cholesterol (p=0.000), LDL (p=0.000) and triglycerides (p=0.001) for Groups 4-6 (high-fat diet treated with different plant extract doses) in comparison with Group 2 (high-fat diet, control). Meanwhile, there were no significant differences in HDL levels (p=0.830) between Group 2 (high-fat diet, control) and other groups. The results also showed significant differences in total cholesterol and LDL for subjects treated with plant extracts (Group 4, 100 mg/kg BW, p=0.000; Group 5, 200 mg/kg BW, p=0.000; Group 6, 400 mg/kg BW, p=0.000) compared to Group 2 (high-fat diet, control). Then, treatments with 400 mg/kg BW (Group 6) discovered significant reductions in total cholesterol, LDL, and triglycerides (p=0.030). Conclusion: Therefore, Z. montanum has been discovered to deliver anti-hypercholesterolemic effects to experimental subjects, making it potential to act as a natural source of anti-hypercholesterolemic agents.
Collapse
Affiliation(s)
- Swandari Paramita
- Research Center for Medicine and Cosmetics from Tropical Rainforest Resources, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
- Laboratory of Community Medicine, Faculty of Medicine, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
| | - Meiliati Aminyoto
- Research Center for Medicine and Cosmetics from Tropical Rainforest Resources, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
- Laboratory of Community Medicine, Faculty of Medicine, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
| | - Sjarif Ismail
- Research Center for Medicine and Cosmetics from Tropical Rainforest Resources, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
- Laboratory of Pharmacology, Faculty of Medicine, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
| | - Enos Tangke Arung
- Laboratory of Forest Product Chemistry, Faculty of Forestry, Mulawarman University, Samarinda, East Kalimantan, 75119, Indonesia
| |
Collapse
|