1
|
Alamzeb M, Shah SWA, Hussain H, Zahoor M, Ahmad S, Mughal EU, Ahmad S, Ullah I, Khan S, Ullah A, Ghias M, Ullah R, Ali EA. Beneficial Effects of Natural Alkaloids from Berberis glaucocarpa as Antidiabetic Agents: An In Vitro, In Silico, and In Vivo Approach. ACS OMEGA 2024; 9:9813-9822. [PMID: 38434828 PMCID: PMC10905588 DOI: 10.1021/acsomega.3c10232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Diabetes, also known as diabetes mellitus (DM), is a metabolic disorder characterized by an abnormal rise in blood sugar (glucose) levels brought on by a complete or partial lack of insulin secretion along with corresponding changes in the metabolism of lipids, proteins, and carbohydrates. It has been reported that medicinal plants play a pivotal role in the treatment of various ailments such as diabetes mellitus, dyslipidemia, and hypertension. The current study involved exploring the acute toxicity and in vivo antidiabetic activity of berberine (WA1), palmatine (WA2), and 8-trichloromethyl dihydroberberine (WA3) previously isolated from Berberis glaucocarpa Stapf using a streptozotocin (STZ)-induced diabetic rat model. Body weight and blood glucose level were assessed on a day interval for 4 weeks. Biochemical parameters, antioxidant enzymes, and oxidative stress markers were also determined. In an acute toxicity profile, the WA1, WA2, and WA3 were determined to be nontoxic up to 500 mg/kg (b.w). After the second and third weeks of treatment (14 and 21 days), the blood glucose levels in the WA1-, WA2-, and WA3-treated groups were significantly lower than those in the diabetic control group (476.81 ± 8.65 mg/dL, n = 8, P < 0.001). On the 21st day, there was a decrease in the blood glucose level and the results obtained were 176.33 ± 4.69, 197.21 ± 4.80, and 161.99 ± 4.75 mg/dL (n = 8, P < 0.001) for WA1, WA2, and WA3 at 12 mg/kg, respectively, as opposed to the diabetic control group (482.87 ± 7.11 mg/dL, n = 8, P < 0.001). Upon comparison with the diabetic group at the end of the study (28 days), a substantial drop in the glucose level of WA3 at 12 mg/kg (110.56 ± 4.11 mg/dL, n = 8, P < 0.001) was observed that was almost near the values of the normal control group. The treated groups (WA1, WA2, and WA3) treated with the samples displayed a significant decline in the levels of HbA1c. Treatment of the samples dramatically lowered the lipid level profile. In groups treated with samples, plasma levels of triglycerides, total cholesterol, and LDL were significantly lowered [F (5, 42) = 100.6, n = 8, P < 0.001]; these levels were also significantly decreased [F (5, 42) = 129.6 and 91.17, n = 8, P < 0.001]. In contrast to the diabetes group, all treated groups had significantly higher HDL levels [F (5, 42) = 15.46, n = 8, P < 0.001]. As a result, hypolipidemic activity was anticipated in the samples. In addition to that, the activity of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) was considerably elevated in the groups treated with the sample compared to the diabetic control group (n = 8, P < 0.001).
Collapse
Affiliation(s)
- Muhammad Alamzeb
- Department
of Chemistry, University of Kotli Azad Jammu
and Kashmir, Kotli 11100, Pakistan
| | - Syed Wadood Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Haya Hussain
- Department
of Pharmacy, Shaheed Benazir Bhutto University
Sheringal, Dir (Upper) 18000, Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Zahoor
- Department
of Biochemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Shujaat Ahmad
- Department
of Pharmacy, Shaheed Benazir Bhutto University
Sheringal, Dir (Upper) 18000, Khyber Pakhtunkhwa , Pakistan
| | | | - Saeed Ahmad
- Department
of Zoology, University of Malakand, Chakdara 18800, Pakistan
| | - Ihsan Ullah
- Institute
of Chemical Sciences, University of Swat, Swat 01923, Pakistan
| | - Shahzeb Khan
- Center
for Pharmaceutical Engineering Science, School of Pharmacy and Medical
Sciences, Faculty of Life Sciences, University
of Bradford, Bradford BD7 1DP, U.K.
| | - Abid Ullah
- Department
of Pharmacy, Shaheed Benazir Bhutto University
Sheringal, Dir (Upper) 18000, Khyber Pakhtunkhwa , Pakistan
| | - Mehreen Ghias
- Department
of Pharmacy, University of Malakand, Chakdara, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University, Riyadh 11362, Saudi Arabia
| | - Essam A. Ali
- Department
of Pharmaceutical Chemistry, College of
Pharmacy King Saud University Riyadh, Riyadh 12371, Saudi Arabia
| |
Collapse
|
2
|
Al-Ghulikah HA, Mughal EU, Elkaeed EB, Naeem N, Nazir Y, Alzahrani AYA, Sadiq A, Shah SWA. Discovery of Chalcone Derivatives as Potential α-Glucosidase and Cholinesterase Inhibitors: Effect of Hyperglycemia in Paving a Path to Dementia. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Mehmood R, Mughal EU, Elkaeed EB, Obaid RJ, Nazir Y, Al-Ghulikah HA, Naeem N, Al-Rooqi MM, Ahmed SA, Shah SWA, Sadiq A. Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as α-Glucosidase Inhibitors: In Vitro, In Vivo, Kinetic, SAR, Molecular Docking, and QSAR Studies. ACS OMEGA 2022; 7:30215-30232. [PMID: 36061741 PMCID: PMC9435035 DOI: 10.1021/acsomega.2c03328] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/08/2022] [Indexed: 05/29/2023]
Abstract
In the present study, a series of 2,3-dihydro-1,5-benzothiazepine derivatives 1B-14B has been synthesized sand characterized by various spectroscopic techniques. The enzyme inhibitory activities of the target analogues were assessed using in vitro and in vivo mechanism-based assays. The tested compounds 1B-14B exhibited in vitro inhibitory potential against α-glucosidase with IC50 = 2.62 ± 0.16 to 10.11 ± 0.32 μM as compared to the standard drug acarbose (IC50 = 37.38 ± 1.37 μM). Kinetic studies of the most active derivatives 2B and 3B illustrated competitive inhibitions. Based on the α-glucosidase inhibitory effect, the compounds 2B, 3B, 6B, 7B, 12B, 13B, and 14B were chosen in vivo for further evaluation of antidiabetic activity in streptozotocin-induced diabetic Wistar rats. All these evaluated compounds demonstrated significant antidiabetic activity and were found to be nontoxic in nature. Moreover, the molecular docking study was performed to elucidate the binding interactions of most active analogues with the various sites of the α-glucosidase enzyme (PDB ID 3AJ7). Additionally, quantitative structure-activity relationship (QSAR) studies were performed based on the α-glucosidase inhibitory assay. The value of correlation coefficient (r) 0.9553 shows that there was a good correlation between the 1B-14B structures and selected properties. There is a correlation between the experimental and theoretical results. Thus, these novel compounds could serve as potential candidates to become leads for the development of new drugs provoking an anti-hyperglycemic effect.
Collapse
Affiliation(s)
- Rabia Mehmood
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| | | | - Eslam B. Elkaeed
- Department
of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Rami J. Obaid
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Yasir Nazir
- Department
of Chemistry, Allama Iqbal Open University, Islamabad 44000, Pakistan
- Department
of Chemistry, University of Sialkot, Sialkot 51300, Pakistan
| | - Hanan A. Al-Ghulikah
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Nafeesa Naeem
- Department
of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | - Munirah M. Al-Rooqi
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Saleh A. Ahmed
- Department
of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Assiut
University, Assiut 71516, Egypt
| | - Syed Wadood Ali Shah
- Department
of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa 18800, Pakistan
| | - Amina Sadiq
- Department
of Chemistry, Govt. College Women University, Sialkot 51300, Pakistan
| |
Collapse
|
4
|
Chen F, Zhang HY, He D, Rao CM, Xu B. Cardioprotective Effect of Gynostemma pentaphyllum against Streptozotocin Induced Cardiac Toxicity in Rats via Alteration of AMPK/Nrf2/HO-1 Pathway. J Oleo Sci 2022; 71:991-1002. [PMID: 35781259 DOI: 10.5650/jos.ess21281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gynostemma pentaphyllum (GP) is a plant commonly used in diabetic therapy in China. GP having potent antioxidant effect against various free radicals. The purpose of the current investigation to identify the cardioprotective effect of GP against streptozotocin (STZ)/ high fat diet (HFD) induced cardiac dysfunction in rats via alteration of AMPK/Nrf2/HO-1 pathway. Wistar rats were used for the current protocol. The rats were received the intraperitoneal injection of STZ and HFD to induce the cardiac remodelling. Blood glucose level, insulin and lipid parameters were estimated. Blood pressure and heart rate were also estimated. Cardiac parameters, antioxidant, cytokines, total protein and inflammatory mediators were analysed. The mRNA expression was detected using the RT-qPCR, respectively. GP significantly (p < 0.001) decreased the BGL and improved the insulin level. GP altered the ratio of heart/BW, liver/BW, and lung/BW. GP treatment significantly (p < 0.001) suppressed the heart rate and blood pressure (diastolic, systolic and mean pressure). GP significantly (p < 0.001) reduced the level of TC, LDL, TG, VLDL and increased the level of HDL. DCM induced rats received the GP administration exhibited reduction in the level of CK and LDH. GP significantly (p < 0.001) reduced the levels of MDA, hydrogen peroxide, peroxynitrite, ROS and increased the level of GSH, SOD, CAT and GPx. GP significantly (p < 0.001) reduced the levels of cytokines (TNF-α, IL-6, IL-1β) and inflammatory parameters (COX-2 and NFκB). GP significantly (p < 0.001) suppressed the NLRP3 and NF-κB expression. GP also boosted mitochondrial biogenesis by boosting the PGC-1α, HO-1 and Nrf2 expression in cardiac tissue. GP treatment showed the cardioprotective effects against STZ induced diabetic cardiac dysfunction via alteration of AMPK/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Fang Chen
- Department of Cardiology, Affiliated Hospital of Yunnan University
| | - Huan-Yu Zhang
- Department of Ultrasound, Affiliated Hospital of Yunnan University
| | - Di He
- Department of Hematology, Affiliated Hospital of Yunnan University
| | - Chun-Mei Rao
- Diabetes, Pu'er Hospital of Traditional Chinese Medicine
| | - Bo Xu
- Department of Endocrinology, Affiliated Hospital of Yunnan University
| |
Collapse
|
5
|
Sakamula R, Yata T, Thong-Asa W. Nanostructure lipid carriers enhance alpha-mangostin neuroprotective efficacy in mice with rotenone-induced neurodegeneration. Metab Brain Dis 2022; 37:1465-1476. [PMID: 35353275 DOI: 10.1007/s11011-022-00967-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Neurodegenerative disease, for instance, Parkinson's disease (PD), is associated with substantia nigra dopaminergic neuronal loss with subsequent striatal dopamine reduction, leading to motor deficits. Currently, there is no available effective therapy for PD; thus, novel therapeutic agents such as natural antioxidants with neuroprotective effects are emerging. Alpha-mangostin (αM) is a xanthone derivative compound from mangosteen peel with a cytoprotective effect depicted in neurodegenerative disease models. However, αM has low aqueous solubility and low biodistribution in the brain. Nanostructured lipid carriers (NLC) have been used to encapsulate bioactive compounds delivered to target organs to improve the oral bioavailability and effectiveness. This study aimed to investigate the effect of αM and αM encapsulated in NLC (αM-NLC) in mice with rotenone-induced PD-like neurodegeneration. Forty male ICR mice were divided into normal, PD, PD + αM, and PD + αM-NLC groups. Vehicle, αM (25 mg/kg/48 h), and αM-NLC (25 mg/kg/48 h) were orally administered, along with PD induction by intraperitoneal injection of rotenone (2.5 mg/kg/48 h) for 4 consecutive weeks. Motor abilities were assessed once a week using rotarod and hanging wire tests. Biochemical analysis of brain oxidative status was conducted, and neuronal populations in substantia nigra par compacta (SNc), striatum, and motor cortex were evaluated using Nissl staining. Tyrosine hydroxylase (TH) immunostaining of SNc and striatum was also evaluated. Results showed that rotenone significantly induced motor deficits concurrent with significant SNc, striatum, and motor cortex neuronal reduction and significantly decreased TH intensity in SNc (p < 0.05). The significant reduction of brain superoxide dismutase activity (p < 0.05) was also detected. Administrations of αM and αM-NLC significantly reduced motor deficits, prevented the reduction of TH intensity in SNc and striatum, and prevented the reduction of neurons in SNc (p < 0.05). Only αM-NLC significantly prevented the reduction of neurons in both striatum and motor cortex (p < 0.05). These were found concurrent with significantly reduced malondialdehyde level and increased catalase and superoxide dismutase activities (p < 0.05). Therefore, this study depicted the neuroprotective effect of αM and αM-NLC against rotenone-induced PD-like neurodegeneration in mice. We indicated an involvement of NLC, emphasizing the protective effect of αM against oxidative stress. Moreover, αM-NLC exhibited broad protection against rotenone-induced neurodegeneration that was not limited to nigrostriatal structures and emphasized the benefit of NLC in enhancing αM neuroprotective effects.
Collapse
Affiliation(s)
- Romgase Sakamula
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan road, Jatuchak, 10900, Bangkok Bangkok, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Wachiryah Thong-Asa
- Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Physiology Division, Department of Zoology, Faculty of Science, Kasetsart University, 50 Ngamwongwan road, Jatuchak, 10900, Bangkok Bangkok, Thailand.
| |
Collapse
|
6
|
Liu Y, Huang B, Zhu Z, Zheng T. Curcumae Ameliorates Diabetic Neuropathy in Streptozotocin Induced Diabetic Rats via Alteration of Gut Microbiota. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.374.387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Anti-α-Glucosidase and Antiglycation Activities of α-Mangostin and New Xanthenone Derivatives: Enzymatic Kinetics and Mechanistic Insights through In Vitro Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020547. [PMID: 35056861 PMCID: PMC8777799 DOI: 10.3390/molecules27020547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/26/2022]
Abstract
Diabetes mellitus is characterized by chronic hyperglycemia that promotes ROS formation, causing severe oxidative stress. Furthermore, prolonged hyperglycemia leads to glycation reactions with formation of AGEs that contribute to a chronic inflammatory state. This research aims to evaluate the inhibitory activity of α-mangostin and four synthetic xanthenone derivatives against glycation and oxidative processes and on α-glucosidase, an intestinal hydrolase that catalyzes the cleavage of oligosaccharides into glucose molecules, promoting the postprandial glycemic peak. Antiglycation activity was evaluated using the BSA assay, while antioxidant capacity was detected with the ORAC assay. The inhibition of α-glucosidase activity was studied with multispectroscopic methods along with inhibitory kinetic analysis. α-Mangostin and synthetic compounds at 25 µM reduced the production of AGEs, whereas the α-glucosidase activity was inhibited only by the natural compound. α-Mangostin decreased enzymatic activity in a concentration-dependent manner in the micromolar range by a reversible mixed-type antagonism. Circular dichroism revealed a rearrangement of the secondary structure of α-glucosidase with an increase in the contents of α-helix and random coils and a decrease in β-sheet and β-turn components. The data highlighted the anti-α-glucosidase activity of α-mangostin together with its protective effects on protein glycation and oxidation damage.
Collapse
|
8
|
Li Y, Xie H, Zhang H. Protective effect of sinomenine against inflammation and oxidative stress in gestational diabetes mellitus in female rats via TLR4/MyD88/NF-κB signaling pathway. J Food Biochem 2021; 45:e13952. [PMID: 34636046 DOI: 10.1111/jfbc.13952] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/08/2021] [Accepted: 08/15/2021] [Indexed: 01/15/2023]
Abstract
Gestational diabetes mellitus (GDM) is a dangerous complication of pregnancy which is induced via dysfunction in glucose metabolism during pregnancy. Sinomenine (SM) has already proved an antidiabetic effect against streptozotocin (STZ)-induced diabetes mellitus (DM) in rats. In this protocol, we examined the protective effect of SM against STZ-induced GDM in rats. Wistar rats were divided into three groups and STZ (40 mg/kg) was used to induce GDM. At the end of the experimental protocol, bodyweight, pub weight, and survival rate were estimated. Blood glucose level (BGL), fasting insulin (FINS), free fatty acid (FFA), Hemoglobin A1C (HbA1c), and C-peptide were measured. Lipid, antioxidant, inflammatory cytokines, and inflammatory mediators were also determined. RT-PCR was used for estimation of the role of TLR4/MyD88/NF-κB signaling pathway. SM treatment significantly (p < .001) reduced BGL, hepatic glycogen, and improved the levels of FINS, C-peptide, FFA, and HbA1c. SM significantly (p < .001) suppressed the levels of total cholesterol (TC), low-density lipoprotein (LDL), triglycerides (TG), coronary artery index (CAI), very low-density lipoprotein (VLDL), atherogenic index (AI), and boosted high-density lipoprotein (HDL) levels. SM significantly (p < .001) decreased the lipid peroxidation (LPO) level and enhanced glutathione peroxidase (GPx), total antioxidant capacity (TAC), glutathione S-transferase (GST), superoxide dismutase (SOD), respectively. It reduced the levels of inflammatory cytokines including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and inflammatory mediators viz., nuclear kappa B factors (NF-κB). SM significantly (p < .001) reduced the mRNA expression of Myd88, NLRP3, TLR4, and NF-κB, which were boosted in the GDM group rats. These findings suggest that SM could be a probable drug to be used for treating GDM via inhibition of the TLR4 signaling pathway. PRACTICAL APPLICATIONS: It is well known that gestational diabetes mellitus (GDM) is a dangerous health problem during the pregnancy. SM reduced the glucose level; boosted the level of fasting insulin (FINS) and bodyweight. SM significantly improved the number of pubs and their survival rates. SM suppressed oxidative stress and inflammation via activation of TLR4/MyD88/NF-κB signaling pathway. According to our research, SM can be used as a preventive drug in the treatment of GDM during pregnancy.
Collapse
Affiliation(s)
- Yanbing Li
- Department of obstetrics, The Third Hospital of Jinan, Jinan, China
| | - Hongqin Xie
- Department of obstetrics, The Third Hospital of Jinan, Jinan, China
| | - Huiya Zhang
- Department of Obstetrics and Gynecology, Xian XD Group Hospital, Xi'an, China
| |
Collapse
|
9
|
Abstract
α-Mangostin is a xanthone natural product isolated as a secondary metabolite from the mangosteen tree. It has attracted a great deal of attention due to its wide-ranging effects on certain biological activity, such as apoptosis, tumorigenesis, proliferation, metastasis, inflammation, oxidation, bacterial growth and metabolism. This review focuses on the key pathways directly affected by α-mangostin and how this varies between disease states. Insight is also provided, where investigated, into the key structural features of α-mangostin that produce these biological effects. The review then sheds light on the utility of α-mangostin as a investigational tool for certain diseases and demonstrate how future derivatives may increase selectivity and potency for specific disease states.
Collapse
|
10
|
Zheng Y, Zhu N, Wang J, Zhao N, Yuan C. Crocetin suppresses gestational diabetes in streptozotocin-induced diabetes mellitus rats via suppression of inflammatory reaction. J Food Biochem 2021; 45:e13857. [PMID: 34309046 DOI: 10.1111/jfbc.13857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
Gestational diabetes mellitus (GDM) is the serious complication of pregnancy induced via dysfunction in glucose metabolism during the pregnancy. Crocetin already proved antidiabetic effect in streptozotocin (STZ)-induced diabetes mellitus in rats. In this protocol, we have investigated the potential effect of crocetin against STZ-induced GDM in rats. Wistar rats were used for the current protocol; STZ was used for the induction for DM and finally caused the GDM. Body weight and serum advanced glycation end products level were estimated at regular time intervals. We also estimated the fetus weight and placental weight. Biochemical, antioxidant, pro-inflammatory cytokines, inflammatory mediators, and apoptosis parameters were estimated. mRNA expression of NOX2, RAGE, MCP-1, VCAM-1, EGFR, and p65 were also estimated. Crocetin treatment significantly (p < .001) reduced the fetus weight and increased the placental weight and index. Crocetin significantly (p < .001) reduced the blood glucose level and increased the body weight. Crocetin significantly (p < .001) boosted the level of antioxidant enzymes and includes superoxide dismutase, glutathione peroxidase, glutathione, and catalase. Crocetin significantly (p < .001) altered the level of lipid parameters and pro-inflammatory cytokines. Crocetin significantly (p < .001) reduced the level of intercellular adhesion molecule 1, cyclooxygenase-2, and nuclear factor kappa B and increased the level of visfatin against GDM rats. Crocetin significantly (p < .001) altered the level of mRNA expression. Based on the result, we can say that crocetin is a protective drug against the GDM in pregnant rats via antioxidant, inflammatory, and apoptosis parameters. PRACTICAL APPLICATIONS: As we all know, gestational diabetes mellitus (GDM) cases rise all over the world. The current investigation showed the protective effect of crocetin on GDM in experimental rats. The current finding exhibited the protective effect of crocetin against STZ-induced GDM via suppression of inflammatory, oxidative, and apoptosis parameters. The result suggests the antioxidant and anti-inflammatory effect of crocetin. Crocetin can be used as a preventive medication in the treatment of gestational diabetes mellitus, according to the latest findings.
Collapse
Affiliation(s)
- Yadi Zheng
- Department of General Medicine, Yantaishan Hospital, Yantai City, China
| | - Na Zhu
- Department of Outpatient, Tengzhou Maternal and Child Health Hospital, Tengzhou, China
| | - Jing Wang
- Department of Gynaecology, Harbin Medical University Tumor Hospital, Haerbin, China
| | - Na Zhao
- Department of Endocrinology, The First Hospital of Handan City, Handan, China
| | - Chun Yuan
- Department of Obstetrics, Disinfection Supply Center, The First Hospital of WuHan, Wuhan, China
| |
Collapse
|
11
|
Sharma S, Wadhwa K, Choudhary M, Budhwar V. Ethnopharmacological perspectives of glucokinase activators in the treatment of diabetes mellitus. Nat Prod Res 2021; 36:2962-2976. [PMID: 34044681 DOI: 10.1080/14786419.2021.1931187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Traditional medicinal plants have wide-reaching utilisation in the treatment of diabetes especially in developing countries where medical resources are meagre. Traditionally used anti-diabetic plants act by numerous mechanisms, however, only a few of them act through activation of the glucokinase enzyme. Glucokinase is a key regulatory enzyme in glucose metabolism thereby controls glucose homeostasis and insulin secretion. The present review significantly analyses the knowledge about various plant-based glucokinase activators including numerous phytochemicals which modulate the activity and gene expression of glucokinase and would provide data support and perspective regarding future research in the discovery and development of different plant-derived glucokinase activators.
Collapse
Affiliation(s)
- Sachin Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Karan Wadhwa
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Manjusha Choudhary
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vikas Budhwar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
12
|
Dai S, Meng X, Cai X, Yuan C, Zhao Z, Zhong L, Shi Y, Yin F. Therapeutic effect of ursolic acid on fetal development in pregnant rats with gestational diabetes mellitus via AGEs-RAGE signaling pathway. J Food Biochem 2021; 45:e13651. [PMID: 33586798 DOI: 10.1111/jfbc.13651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
To investigate the effect of ursolic acid on the fetal development of gestational diabetes mellitus (GDM) caused by streptozotocin (STZ) and explore the potential mechanism for it. For the current experimental research, SD rats (pregnant animal) were used. STZ has been used to cause the diabetes mellitus in pregnant rats. Rats with evolved GDM were randomly divided and ursolic acid was given to pregnant rats in the experimental period up to 19 days in a dose-dependent manner. Blood samples and fetal rats of all group rats were collected at 19 days (pregnant rats), fetal rats and placental rats were weighted and the blood glucose, plasma insulin, C-peptide, and lipid parameters of pregnant women were estimated prior to delivery. Advanced serum glycation end-products (AGEs) were estimated at regular intervals in the heart and brain of pregnant rats. Monocyte Chemoattractant Protein-1 (MCP-1), NADPH oxidase 2 (Nox2), Role of advanced glycation end product (RAGE), Vascular endothelial growth factor (VEGF), p65, and vascular cell adhesion molecule 1 (VCAM-1) mRNA expression were estimated in the placenta. STZ-induced GDM pregnant rats showed significantly decreased placental weight and weight of fetal rats and dose-dependent ursolic acid treatment (p < .001) improved placental weight and weight of fetal rats at dose-dependent levels. After the ursolic acid treatment, serum blood glucose and lipid level were improved especially fasting blood glucose (FBG), high density lipoprotein (HDL), hepatic glycogen, fasting insulin (FINS), and serum insulin level and reached near to the normal control group rats. The antioxidant level of pancreas and liver were significantly (p < .001) reduced by the dose-dependent treatment of ursolic acid. Treatment with Ursolic acid moderately but not significantly decreases the risk of fetal development defects relative to the GDM group. The potential effect on fetal development in Pregnant Rats with Gestational Diabetes Mellitus via AGEs-RAGE signaling pathway was shown by Ursolic acid. PRACTICAL APPLICATIONS: As we know that the gestational diabetes mellitus increases worldwide day by day. In the current experimental study, we try to examine the gestational diabetic effect of ursolic acid. The finding of the current study showed the gestational diabetic protective effect in the female rats via AGEs-RAGE signaling pathway. The result showed the antioxidant, anti-inflammatory, and biochemical parameters. On the basis of the result, we can say that the ursolic acid can be the protective drug for treatment of gestational diabetes mellitus.
Collapse
Affiliation(s)
- Senge Dai
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiaoyan Meng
- Department of Obstetrics and Gynecology, Suzhou Wuzhong People's Hospital, Suzhou, China
| | - Xiaqin Cai
- Department of Obstetrics and Gynecology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chun Yuan
- Disinfection Supply Center, The First Hospital of HuBei WuHan, Wuhan, China
| | - Zhongmei Zhao
- Department of Gynecology, Yantai Municipal Laiyang Central Hospital, Laiyang, China
| | - Li Zhong
- Department of Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yongmei Shi
- Department of Obstetrics and Gynecology, Tongzhou Maternal & Child Health Hospital of Beijing, Beijing, China
| | - Fengling Yin
- Department of Gynecology, Xuzhou Central Hospital, XuZhou Clinical School of Xuzhou Medical University, The Xuzhou School of Clinical Medicine of Nanjing Medical University, XuZhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Affiliated Hospital of Southeast University, Xuzhou, China
| |
Collapse
|
13
|
John OD, Mouatt P, Panchal SK, Brown L. Rind from Purple Mangosteen ( Garcinia mangostana) Attenuates Diet-Induced Physiological and Metabolic Changes in Obese Rats. Nutrients 2021; 13:319. [PMID: 33499382 PMCID: PMC7912346 DOI: 10.3390/nu13020319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
The pulp of the purple mangosteen, Garcinia mangostana, is a popular tropical fruit but the rind containing xanthones such as α-mangostin together with procyanidins and anthocyanidins is usually discarded as waste. However, this rind has been used in South-East Asia for diarrhoea, dysentery, skin infections and wounds. As xanthones have reported anti-inflammatory and antioxidant responses, this study has determined the bioactive compounds and evaluated the effects of G. mangostana rind on physiological, metabolic, liver and cardiovascular parameters in rats with diet-induced metabolic syndrome. Rats fed a diet with increased simple sugars and saturated fats developed obesity, hypertension, increased left ventricular stiffness, dyslipidaemia and fatty liver. Administration of G. mangostana rind as 5% of the food to rats with diet-induced metabolic syndrome gave a dose of 168 mg/kg/day α-mangostin, 355 mg/kg/day procyanidins, 3.9 mg/kg/day anthocyanins and 11.8 mg/kg/day hydroxycitric acid for 8 weeks which reduced body weight and attenuated physiological and metabolic changes in rats including decreased abdominal fat deposition, decreased abdominal circumference and whole-body fat mass, improved liver structure and function and improved cardiovascular parameters such as systolic blood pressure, left ventricular stiffness and endothelial function. These responses were associated with decreased infiltration of inflammatory cells, decreased deposition of collagen in both heart and liver and decreased mean adipocyte size in retroperitoneal adipose tissues. We conclude that, in rats with diet-induced metabolic syndrome, chronic intake of G. mangostana rind decreased infiltration of inflammatory cells which decreased physiological, metabolic, liver and cardiovascular symptoms.
Collapse
Affiliation(s)
- Oliver D. John
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (O.D.J.); (S.K.P.)
| | - Peter Mouatt
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW 2480, Australia;
| | - Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (O.D.J.); (S.K.P.)
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia; (O.D.J.); (S.K.P.)
- School of Health and Wellbeing, University of Southern Queensland, Ipswich, QLD 4305, Australia
| |
Collapse
|
14
|
Do HTT, Cho J. Mangosteen Pericarp and Its Bioactive Xanthones: Potential Therapeutic Value in Alzheimer's Disease, Parkinson's Disease, and Depression with Pharmacokinetic and Safety Profiles. Int J Mol Sci 2020; 21:E6211. [PMID: 32867357 PMCID: PMC7504283 DOI: 10.3390/ijms21176211] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), and depression are growing burdens for society globally, partly due to a lack of effective treatments. Mangosteen (Garcinia mangostana L.,) pericarp (MP) and its xanthones may provide therapeutic advantages for these disorders. In this review, we discuss potential therapeutic value of MP-derived agents in AD, PD, and depression with their pharmacokinetic and safety profiles. MP-derived agents have shown multifunctional effects including neuroprotective, antioxidant, and anti-neuroinflammatory actions. In addition, they target specific disease pathologies, such as amyloid beta production and deposition as well as cholinergic dysfunction in AD; α-synuclein aggregation in PD; and modulation of monoamine disturbance in depression. Particularly, the xanthone derivatives, including α-mangostin and γ-mangostin, exhibit potent pharmacological actions. However, low oral bioavailability and poor brain penetration may limit their therapeutic applications. These challenges can be overcome in part by administering as a form of MP extract (MPE) or using specific carrier systems. MPE and α-mangostin are generally safe and well-tolerated in animals. Furthermore, mangosteen-based products are safe for humans. Therefore, MPE and its bioactive xanthones are promising candidates for the treatment of AD, PD, and depression. Further studies including clinical trials are essential to decipher their efficacy, and pharmacokinetic and safety profiles in these disorders.
Collapse
Affiliation(s)
| | - Jungsook Cho
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro 32, Ilsandong-gu, Goyang, Gyeonggi 10326, Korea;
| |
Collapse
|
15
|
Yang X. Design and optimization of crocetin loaded PLGA nanoparticles against diabetic nephropathy via suppression of inflammatory biomarkers: a formulation approach to preclinical study. Drug Deliv 2020; 26:849-859. [PMID: 31524015 PMCID: PMC6761602 DOI: 10.1080/10717544.2019.1642417] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes mellitus whose expand
process is linked with the fibrosis, renal hypertrophy and inflammation. The current study
was to formulate and optimize the nano-formulation of crocetin (CT-PLGA-NPs) against
Streptozotocin-induced renal nephropathy in rats. Double emulsion evaporation technique
was used for the preparation of CT-PLGA-NPs. CT-PLGA-NPs were scrutinized for
polydispersity index, size, gastric stability, entrapment, drug-loading capacity and
in-vitro drug release and in vivo preclinical study.
Single intraperitoneal injection of streptozotocin (STZ) (55 mg/kg) and rats were divided
into different group. Renal function and metabolic parameters of urine and serum were
estimated. Fibrotic protein, renal pro-inflammatory cytokines and degree of renal damage
expression were also determined. We also estimated the fibronectin, type IV collagen and
transforming growth factor-β1 for a possible mechanism of action. Crocetin supplement
(10 mg/kg) and CT-PLGA-NPs exhibited the accumulation of the drug in kidney and liver of
diabetic rats. Crocetin reduced the BGL and enhanced plasma insulin and body weight. Dose
dependent treatment of crocetin significantly (p < .001)
down-regulated the expression of renal tumor necrosis factor-α (TNF-α), interleukin-6
(IL-6), interleukin (IL)-1β (IL-1β) and Monocyte Chemoattractant Protein-1 (MCP-1).
Crocetin significantly (p < .001) altered the expression of
fibronectin, type IV collagen, and transforming growth factor-β1 (TGF-1β). Crocetin
significantly (p < .001) down-regulated the protein kinase C activity
and the expression of nuclear factor κB (NF-κB) p65 activity and protein production in
renal tissue. On the basis of the available result, we can conclude that nano-formulation
of crocetin could attenuate the diabetic nephropathy via antifibrotic and
anti-inflammatory effect.
Collapse
Affiliation(s)
- Xiaodong Yang
- Department of General Medicine, Zhumadian Central Hospital , Zhumadian , China
| |
Collapse
|
16
|
Anwar F, Khan R, Sachan R, Kazmi I, Rawat A, Sabih A, Singh R, Afzal M, Ahmad A, Al-Orab AS, Al-Abbasi FA, Bhatt PC, Kumar V. Therapeutic role of calcium and vitamin K3 in chemically induced hepatocarcinogenesis - new tools for cancer treatment. Arch Physiol Biochem 2019; 125:270-275. [PMID: 29663832 DOI: 10.1080/13813455.2018.1455708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
HCC has been reported to be immensely occurring carcinoma worldwide. Recent days the mortality occurred due to liver cancer has also been found to be increased at an alarming speed affecting mostly the young patients. The aim of the current study was to decipher the role of calcium and vitamin K3 in the treatment of chemically induced hepatocarcinogenesis in the male Wistar rats. Liver cancer was induced via a subnecrogenic dose of 160 mg/kg body weight, diethylnitrosamine (DENA) when associated with fasting/refeeding in male Wistar rats. It elevated the serum glutamate oxaloacetate (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), bilirubin, total cholesterol (CH), triglycerides (TG), alfa-fetoprotein (AFP) and reduced high-density lipoprotein (HDL). Histopathological examination of liver tissue showed marked carcinogenicity of the chemical carcinogen. Food, water intake and animal weights were also assessed, respectively. The animals exposed to DENA showed a significant decrease in the body weight. The elevated levels of serum SGOT, SGPT, ALP, AFP, TC and TG were restored by administration of calcium and Vit K (ad libitum) combination at higher dose than the normal dietary requirement (3 mg/kg) daily for 12 weeks p.o. Physiological and biochemical analysis showed the beneficial effects of calcium and vitamin K3 combination in the animals exposed to DENA. The results deciphered the beneficial effects of calcium and vitamin K3 in combination.
Collapse
Affiliation(s)
- Firoz Anwar
- a Department of Biochemistry , Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Ruqaiyah Khan
- b Siddhartha Institute of Pharmacy , Dehradun , India
| | - Richa Sachan
- c School of Pharmacy, Sungkyunkwan University , Republic of Korea
| | - Imran Kazmi
- d Glocal School of Pharmacy, Glocal University , Saharanpur , Uttar Pradesh, India
| | - Alisha Rawat
- b Siddhartha Institute of Pharmacy , Dehradun , India
| | | | - Rajbala Singh
- b Siddhartha Institute of Pharmacy , Dehradun , India
| | - Muhammad Afzal
- e Department of Pharmacology , Jouf University , Sakaka , Kingdom of Saudi Arabia
| | - Aftab Ahmad
- a Department of Biochemistry , Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Abdulaziz S Al-Orab
- a Department of Biochemistry , Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - F A Al-Abbasi
- a Department of Biochemistry , Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Prakash Chandra Bhatt
- f Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy , JamiaHamdard , New Delhi, India
| | - Vikas Kumar
- g Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences (SHUATS) , Allahabad , Uttar Pradesh, India
| |
Collapse
|
17
|
Kumar V, Sharma K, Ahmed B, Al-Abbasi FA, Anwar F, Verma A. Deconvoluting the dual hypoglycemic effect of wedelolactone isolated from Wedelia calendulacea: investigation via experimental validation and molecular docking. RSC Adv 2018; 8:18180-18196. [PMID: 35542112 PMCID: PMC9080591 DOI: 10.1039/c7ra12568b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/02/2018] [Indexed: 01/10/2023] Open
Abstract
Wedelia calendulacea has a long history of use in the Indian Ayurvedic System of Medicine for the treatment, prevention, and cure of a diverse range of human diseases such as diabetes obesity, and other metabolic diseases. A wide range of chemical constituents, such as triterpenoid saponin, kauren diterpene, and coumestans, has been isolated from the plant. Conversely, no published literature is available in relation to the isolation of wedelolactone (WEL) for its anti-diabetic effect. The aim of the present study was to isolate the bioactive phyto-constituent from Wedelia calendulacea and to scrutinize the antidiabetic effect with its possible mechanism of action. The structure of the isolated compound was elucidated by different spectroscopy techniques. Proteins, such as dipeptidyl peptidase-4 (DPPIV), glucose transporter 1 (GLUT1), and peroxisome proliferator-activated receptors-γ (PPARγ), were also subjected to in silico docking. Later, this isolated compound was scrutinized against α-glucosidase and α-amylase enzyme activity along with an oral glucose tolerance test (OGTT) for estimation of glucose utilization. Streptozotocin (STZ) was used for the induction of type II diabetes mellitus (DM) in Wistar rats. The rats were divided into different groups and received the WEL (5, 10, and 20 mg kg-1, b.w.) and glibenclamide (2.5 mg kg-1, b.w.) for 28 days. The blood glucose level (BGL), plasma insulin, and body weight were determined at regular time intervals. The serum lipid profile hypolipidemic effect for the different antioxidant markers and hepatic tissue markers were scrutinized along with an inflammatory mediator to deduce the possible mechanism. With the help of spectroscopy techniques, the isolated compound was identified as wedelolactone. In the docking study, WEL showed docking scores of -6.17, -9.43, and -7.66 against DPP4, GLUTI, and PRARY, respectively. WEL showed the inhibition of α-glucosidase (80.65%) and α-amylase (93.83%) and suggested an effect on postprandial hyperglycemia. In the OGTT, WEL significantly (P < 0.001) downregulated the BGL, a marker for better utilization of drugs. In the diabetes model, WEL reduced the BGL and enhanced the plasma insulin and body weight. It also significantly (P < 0.001) modulated the lipid profile; this suggested an anti-hyperlipidemia effect. WEL significantly (P < 0.001) distorted the hepatic tissue, acting as an antioxidant marker in a dose-dependent manner. WEL significantly (P < 0.001) downregulated the C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) level. On the basis of the available results, we can conclude that WEL can be an alternative drug for the treatment of type II DM either by inhibiting the production of inflammatory mediator or by the downregulation of oxidative stress.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences Allahabad Uttar Pradesh India - 211007
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard New Delhi-110062 India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard New Delhi-110062 India
| | - F A Al-Abbasi
- Department of Biochemistry, King Abdulaziz University Jeddah-21589 Kingdom of Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, King Abdulaziz University Jeddah-21589 Kingdom of Saudi Arabia
| | - Amita Verma
- Bioorganic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences Allahabad-211007 Uttar Pradesh India
| |
Collapse
|
18
|
Pandey P, Rahman M, Bhatt PC, Beg S, Paul B, Hafeez A, Al-Abbasi FA, Nadeem MS, Baothman O, Anwar F, Kumar V. Implication of nano-antioxidant therapy for treatment of hepatocellular carcinoma using PLGA nanoparticles of rutin. Nanomedicine (Lond) 2018; 13:849-870. [DOI: 10.2217/nnm-2017-0306] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: The present work describes the development of poly(lactic co-glycolic acid) (PLGA) nanoparticles (NPs) of rutin (RT) for the treatment of hepatocellular carcinoma in rats. Materials & methods: RT-loaded PLGA NPs (RT-PLGA-NPs) were prepared by double emulsion evaporation method. Further these are optimized by Box–Behnken design. PLGA NPs were evaluated for size, polydispersity index, drug-loading capacity, entrapment, gastric stability, in vitro drug release, in vivo preclinical studies and biochemical studies. Results: Preclinical evaluation of RT-PLGA-NPs for anticancer activity through oral route exhibited significant improvement in hepatic, hematologic and renal biochemical parameters. Highly superior activity was observed in regulating oxidative stress and inflammatory markers, antioxidant enzymes, cytokines and inflammatory mediators and their role on plasma membrane ATPases responsible for destruction in liver tissues. Conclusion: Histopathological evaluation indicated reduced incidence of hepatic nodules, necrosis formation, infiltration of inflammatory cells, blood vessel inflammation and cell swelling with RT-PLGA-NP treatment along with considerable downregulation in the levels of proinflammatory cytokines.
Collapse
Affiliation(s)
- Preeti Pandey
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| | - Prakash Chandra Bhatt
- Centre for Advanced Research in Pharmaceutical Sciences, Microbial & Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy, Jamia Hamdard, New Delhi-110062, India
| | - Sarwar Beg
- Product Development Research, Jubilant Generics Limited, Noida-201301, UP, India
| | - Basudev Paul
- Product Development Research, Jubilant Generics Limited, Noida-201301, UP, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, UP, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Othman Baothman
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Center of Innovation in Personalized Medicine, Cancer & Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad-211007, UP, India
| |
Collapse
|
19
|
Bhatt PC, Pathak S, Kumar V, Panda BP. Attenuation of neurobehavioral and neurochemical abnormalities in animal model of cognitive deficits of Alzheimer's disease by fermented soybean nanonutraceutical. Inflammopharmacology 2018; 26:105-118. [PMID: 28791538 DOI: 10.1007/s10787-017-0381-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/22/2017] [Indexed: 11/28/2022]
Abstract
The present study was performed to evaluate the efficacy of nanonutraceuticals (NN) for attenuation of neurobehavioral and neurochemical abnormalities in Alzheimer's disease. Solid-state fermentation of soybean with Bacillus subtilis was performed to produce different metabolites (nattokinase, daidzin, genistin and glycitin and menaquinone-7). Intoxication of rats with colchicine caused impairment in learning and memory which was demonstrated in neurobehavioral paradigms (Morris water maze and passive avoidance) linked with decreased activity of acetylcholinesterase (AChE). NN treatment led to a significant increase in TLT in the retention trials as compared to acquisition trial TLT suggesting an improved learning and memory in rats. Further, treatment of NN caused an increase in the activity of AChE (42%), accompanied with a reduced activity of glutathione (42%), superoxide dismutase (43%) and catalase (41%). It also decreased the level of lipid peroxidation (28%) and protein carbonyl contents (30%) in hippocampus as compared to those treated with colchicine alone, suggesting a possible neuroprotective efficacy of NN. Interestingly, in silico studies also demonstrated an effective amyloid-β and BACE-1 inhibition activity. These findings clearly indicated that NN reversed colchicine-induced behavioral and neurochemical alterations through potent antioxidant activity and could possibly impart beneficial effects in cognitive defects associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Prakash Chandra Bhatt
- Microbial and Pharmaceutical Biotechnology Laboratory, Centre for Advanced Research in Pharmaceutical Sciences, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shruti Pathak
- Microbial and Pharmaceutical Biotechnology Laboratory, Centre for Advanced Research in Pharmaceutical Sciences, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, Uttar Pradesh, 211007, India
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, Centre for Advanced Research in Pharmaceutical Sciences, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
20
|
Ovalle-Magallanes B, Eugenio-Pérez D, Pedraza-Chaverri J. Medicinal properties of mangosteen (Garcinia mangostana L.): A comprehensive update. Food Chem Toxicol 2017; 109:102-122. [PMID: 28842267 DOI: 10.1016/j.fct.2017.08.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 12/22/2022]
Abstract
Garcinia mangostana L. (Clusiaceae) is a tropical tree native to Southeast Asia known as mangosteen which fruits possess a distinctive and pleasant taste that has granted them the epithet of "queen of the fruits". The seeds and pericarps of the fruit have a long history of use in the traditional medicinal practices of the region, and beverages containing mangosteen pulp and pericarps are sold worldwide as nutritional supplements. The main phytochemicals present in the species are isoprenylated xanthones, a class of secondary metabolites with multiple reports of biological effects, such as antioxidant, pro-apoptotic, anti-proliferative, antinociceptive, anti-inflammatory, neuroprotective, hypoglycemic and anti-obesity. The diversity of actions displayed by mangosteen xanthones shows that these compounds target multiple signaling pathways involved in different pathologies, and place them as valuable sources for developing new drugs to treat chronic and degenerative diseases. This review article presents a comprehensive update of the toxicological findings on animal models, and the preclinical anticancer, analgesic, neuroprotective, antidiabetic and hypolipidemic effects of G. mangostana L. extracts and its main isolates. Pharmacokinetics, drug delivery systems and reports on dose-finding human trials are also examined.
Collapse
Affiliation(s)
- Berenice Ovalle-Magallanes
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Dianelena Eugenio-Pérez
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico.
| |
Collapse
|
21
|
Verma A, Ahmed B, Anwar F, Rahman M, Patel DK, Kaithwas G, Rani R, Bhatt PC, Kumar V. Novel glycoside from Wedelia calendulacea inhibits diethyl nitrosamine-induced renal cancer via downregulating the COX-2 and PEG2 through nuclear factor-κB pathway. Inflammopharmacology 2017; 25:159-175. [DOI: 10.1007/s10787-017-0310-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/04/2017] [Indexed: 12/27/2022]
|