1
|
Saleem M, Ahmad T, Haynes AP, Albritton CF, Mwesigwa N, Graber MK, Kirabo A, Shibao CA. Innovative assessment of lipid-induced oxidative stress and inflammation in harvested human endothelial cells. Physiol Rep 2024; 12:e16048. [PMID: 38872467 PMCID: PMC11176576 DOI: 10.14814/phy2.16048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/15/2024] Open
Abstract
Studying acute changes in vascular endothelial cells in humans is challenging. We studied ten African American women and used the J-wire technique to isolate vein endothelial cells before and after a four-hour lipid and heparin infusion. Dynamic changes in lipid-induced oxidative stress and inflammatory markers were measured with fluorescence-activated cell sorting. We used the surface markers CD31 and CD144 to identify human endothelial cells. Peripheral blood mononuclear cells isolated from blood were used as a negative control. The participants received galantamine (16 mg/day) for 3 months. We previously demonstrated that galantamine treatment effectively suppresses lipid-induced oxidative stress and inflammation. In this study, we infused lipids to evaluate its potential to increase the activation of endothelial cells, as assessed by the levels of CD54+ endothelial cells and expression of Growth arrest-specific 6 compared to the baseline sample. Further, we aimed to investigate whether lipid infusion led to increased expression of the oxidative stress markers IsoLGs and nitrotyrosine in endothelial cells. This approach will expedite the in vivo identification of novel pathways linked with endothelial cell dysfunction induced by oxidative stress and inflammatory cytokines. This study describes an innovative method to harvest and study human endothelial cells and demonstrates the dynamic changes in oxidative stress and inflammatory markers release induced by lipid infusion.
Collapse
Affiliation(s)
- Mohammad Saleem
- Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Taseer Ahmad
- Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, College of Pharmacy, University of Sargodha, University Road, Sargodha, Punjab, Pakistan
| | - Alexandria Porcia Haynes
- Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Claude F Albritton
- Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- School of Graduate Studies, Meharry Medical College, Nashville, Tennessee, USA
| | - Naome Mwesigwa
- Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Meghan K Graber
- Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, Tennessee, USA
- Vanderbilt Institute for Global Health, Nashville, Tennessee, USA
| | - Cyndya A Shibao
- Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Goncharov NV, Popova PI, Kudryavtsev IV, Golovkin AS, Savitskaya IV, Avdonin PP, Korf EA, Voitenko NG, Belinskaia DA, Serebryakova MK, Matveeva NV, Gerlakh NO, Anikievich NE, Gubatenko MA, Dobrylko IA, Trulioff AS, Aquino AD, Jenkins RO, Avdonin PV. Immunological Profile and Markers of Endothelial Dysfunction in Elderly Patients with Cognitive Impairments. Int J Mol Sci 2024; 25:1888. [PMID: 38339164 PMCID: PMC10855959 DOI: 10.3390/ijms25031888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The process of aging is accompanied by a dynamic restructuring of the immune response, a phenomenon known as immunosenescence. Further, damage to the endothelium can be both a cause and a consequence of many diseases, especially in elderly people. The purpose of this study was to carry out immunological and biochemical profiling of elderly people with acute ischemic stroke (AIS), chronic cerebral circulation insufficiency (CCCI), prediabetes or newly diagnosed type II diabetes mellitus (DM), and subcortical ischemic vascular dementia (SIVD). Socio-demographic, lifestyle, and cognitive data were obtained. Biochemical, hematological, and immunological analyses were carried out, and extracellular vesicles (EVs) with endothelial CD markers were assessed. The greatest number of significant deviations from conditionally healthy donors (HDs) of the same age were registered in the SIVD group, a total of 20, of which 12 were specific and six were non-specific but with maximal differences (as compared to the other three groups) from the HDs group. The non-specific deviations were for the MOCA (Montreal Cognitive Impairment Scale), the MMSE (Mini Mental State Examination) and life satisfaction self-assessment scores, a decrease of albumin levels, and ADAMTS13 (a Disintegrin and Metalloproteinase with a Thrombospondin Type 1 motif, member 13) activity, and an increase of the VWF (von Willebrand factor) level. Considering the significant changes in immunological parameters (mostly Th17-like cells) and endothelial CD markers (CD144 and CD34), vascular repair was impaired to the greatest extent in the DM group. The AIS patients showed 12 significant deviations from the HD controls, including three specific to this group. These were high NEFAs (non-esterified fatty acids) and CD31 and CD147 markers of EVs. The lowest number of deviations were registered in the CCCI group, nine in total. There were significant changes from the HD controls with no specifics to this group, and just one non-specific with a maximal difference from the control parameters, which was α1-AGP (alpha 1 acid glycoprotein, orosomucoid). Besides the DM patients, impairments of vascular repair were also registered in the CCCI and AIS patients, with a complete absence of such in patients with dementia (SIVD group). On the other hand, microvascular damage seemed to be maximal in the latter group, considering the biochemical indicators VWF and ADAMTS13. In the DM patients, a maximum immune response was registered, mainly with Th17-like cells. In the CCCI group, the reaction was not as pronounced compared to other groups of patients, which may indicate the initial stages and/or compensatory nature of organic changes (remodeling). At the same time, immunological and biochemical deviations in SIVD patients indicated a persistent remodeling in microvessels, chronic inflammation, and a significant decrease in the anabolic function of the liver and other tissues. The data obtained support two interrelated assumptions. Taking into account the primary biochemical factors that trigger the pathological processes associated with vascular pathology and related diseases, the first assumption is that purine degradation in skeletal muscle may be a major factor in the production of uric acid, followed by its production by non-muscle cells, the main of which are endothelial cells. Another assumption is that therapeutic factors that increase the levels of endothelial progenitor cells may have a therapeutic effect in reducing the risk of cerebrovascular disease and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Nikolay V. Goncharov
- Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical Biological Agency, bld 93 Kuzmolovsky, Leningrad Region 188663, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | | | | | | | | | - Piotr P. Avdonin
- Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| | - Ekaterina A. Korf
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Natalia G. Voitenko
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Daria A. Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | | | | | | | | | | | - Irina A. Dobrylko
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg 194223, Russia
| | | | - Arthur D. Aquino
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Richard O. Jenkins
- School of Allied Health Sciences, De Montfort University, The Gateway, Leicester LE1 9BH, UK
| | - Pavel V. Avdonin
- Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
3
|
Garcia VP, Fandl HK, Hijmans JG, Berry AR, Cardenas HL, Stockelman KA, DeSouza NM, Treuth JW, Greiner JJ, Park AJ, Stauffer BL, DeSouza CA. Effects of circulating endothelial microvesicles isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide production. Am J Physiol Endocrinol Metab 2024; 326:E38-E49. [PMID: 37991453 PMCID: PMC11193534 DOI: 10.1152/ajpendo.00139.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/27/2023] [Accepted: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Circulating endothelial cell-derived microvesicles (EMVs) have been shown to be elevated with obesity and associated with endothelial dysfunction; however, their direct effect on endothelial cells is unknown. The experimental aim of this study was to determine the effect of EMVs isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide (NO) production. EMVs (CD144+ microvesicles) were identified, enumerated, and isolated from plasma by flow cytometry from 24 sedentary adults: 12 normal-weight adults [8 M/4 F; age: 55 ± 6 yr; body mass index (BMI): 24.3 ± 0.7 kg/m2; EMV: 144 ± 53 EMVs/µL] and 12 adults with obesity (6 M/6 F; 59 ± 7 yr; BMI: 31.0 ± 1.1 kg/m2; EMV: 245 ± 89 EMVs/µL). Human umbilical vein endothelial cells were cultured and treated with EMVs from either normal-weight adults or adults with obesity. EMVs from obese adults induced significantly higher release of interleukin (IL)-6 (108.2 ± 7.7 vs. 90.9 ± 10.0 pg/mL) and IL-8 (75.4 ± 9.8 vs. 59.5 ± 11.5 pg/mL) from endothelial cells vs. EMVs from normal-weight adults, concordant with greater intracellular expression of phosphorylated NF-κB p65 (Ser536; active NF-κB) [145.0 ± 34.1 vs. 114.5 ± 30.4 arbitrary units (AU)]. Expression of phosphorylated p38-MAPK (15.4 ± 5.7 vs. 9.2 ± 2.5 AU) and active caspase-3 (168.2 ± 65.5 vs. 107.8 ± 40.5 AU), markers of cell apoptosis, was higher in cells treated with obesity-related EMVs. Phosphorylated endothelial nitric oxide synthase (eNOS) (Ser1177) expression (23.5 ± 7.2 vs. 34.7 ± 9.7 AU) and NO production (6.9 ± 1.4 vs. 8.7 ± 0.7 µmol/L) were significantly lower in the cells treated with EMVs from obese adults. These data indicate that circulating EMVs from adults with obesity promote a proinflammatory, proapoptotic, and NO-compromised endothelial phenotype. Circulating EMVs are a potential mediator of obesity-related endothelial dysfunction.NEW & NOTEWORTHY In the present study, we determined the effect of circulating endothelial cell-derived microvesicles (EMVs) isolated from adults with obesity on endothelial cell inflammation, apoptosis, and nitric oxide (NO) production in vitro. Circulating EMVs harvested from adults with obesity promoted a proinflammatory, proapoptotic, and NO-compromised endothelial phenotype. Elevated circulating EMVs in adults with obesity, independent of other cardiometabolic risk factors, are a potential novel systemic mediator of obesity-related endothelial dysfunction and vascular risk.
Collapse
Affiliation(s)
- Vinicius P Garcia
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Hannah K Fandl
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Jamie G Hijmans
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Auburn R Berry
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Hannah L Cardenas
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Kelly A Stockelman
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Noah M DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - J William Treuth
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Jared J Greiner
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
| | - Andrew J Park
- Rocky Mountain Regional Spinal Injury System, Craig Hospital, Englewood, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Center, Denver, Colorado, United States
| | - Brian L Stauffer
- Department of Medicine, University of Colorado Anschutz Medical Center, Denver, Colorado, United States
- Denver Health Medical Center, Denver, Colorado, United States
| | - Christopher A DeSouza
- Integrative Vascular Biology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, United States
- Department of Medicine, University of Colorado Anschutz Medical Center, Denver, Colorado, United States
| |
Collapse
|
4
|
Endothelial Dysfunction Syndromes after Allogeneic Stem Cell Transplantation. Cancers (Basel) 2023; 15:cancers15030680. [PMID: 36765638 PMCID: PMC9913851 DOI: 10.3390/cancers15030680] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains the only therapy with a curative potential for a variety of malignant and non-malignant diseases. The major limitation of the procedure is the significant morbidity and mortality mainly associated with the development of graft versus host disease (GVHD) as well as with a series of complications related to endothelial injury, such as sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), transplant-associated thrombotic microangiopathy (TA-TMA), etc. Endothelial cells (ECs) are key players in the maintenance of vascular homeostasis and during allo-HSCT are confronted by multiple challenges, such as the toxicity from conditioning, the administration of calcineurin inhibitors, the immunosuppression associated infections, and the donor alloreactivity against host tissues. The early diagnosis of endothelial dysfunction syndromes is of paramount importance for the development of effective prophylactic and therapeutic strategies. There is an urgent need for the better understanding of the pathogenetic mechanisms as well as for the identification of novel biomarkers for the early diagnosis of endothelial damage. This review summarizes the current knowledge on the biology of the endothelial dysfunction syndromes after allo-HSCT, along with the respective therapeutic approaches, and discusses the strengths and weaknesses of possible biomarkers of endothelial damage and dysfunction.
Collapse
|
5
|
Lei X, Wang K, Wang W, Jin H, Gu W, Chen Z, Wang W, Gao K, Wang H. Recognize the role of CD146/MCAM in the osteosarcoma progression: an in vitro study. Cancer Cell Int 2021; 21:300. [PMID: 34103063 PMCID: PMC8186124 DOI: 10.1186/s12935-021-02006-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Background Osteosarcoma (OS) is a common malignant bone tumor with poor prognosis. We previously reviewed that CD146 is correlated with multiple cancer progression, while its impact on OS is currently not systematically studied. Methods MG63 was transfected with lentivirus to express CD146 ectopically, and anti-CD146 neutralizing antibody ab75769 was used to inhibit 143B. Cyclic migration of MG63 and co-culture between MG63 and 143B were used to explore the role of OS malignancy in CD146 expression. The effect of OS cell medium (CM) on endothelium behaviors was assessed, and the expression changes of CD146 before and after co-culture of endothelium and OS were evaluated. Finally, the expression of CD146 in OS was detected under different culture conditions, including hyperoxia, low oxygen, high glucose and low glucose conditions. Results CD146 promoted the colony formation, migration, invasion and homotypic adhesion of OS cells, and reducing the concentration of soluble CD146 in the OS medium inhibited the proliferation, migration and lumen formation of the cultured endothelium. However, CD146 did not affect the adhesion between OS and endothelium, nor did co-culture of both sides affect the CD146 expression. Similarly, the proliferation, migration and CD146 expression of MG63 remained unchanged after many cycles of migration itself, as did its co-culture with 143B for expressing CD146. In addition, we also showed that high glucose promoted the expression of CD146 in OS, while hypoxia had the opposite effect. Conclusions These findings demonstrate that CD146 promotes OS progression by mediating pro-tumoral and angiogenic effects. Thus, CD146 could be a potential therapeutic target for OS, especially for OS patients with diabetes. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02006-7.
Collapse
Affiliation(s)
- Xing Lei
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Kewei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Wenbo Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Hao Jin
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Wenguang Gu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China
| | - Zhiguo Chen
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Wei Wang
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Kaituo Gao
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi, 276000, China
| | - Huan Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
6
|
Lia G, Giaccone L, Leone S, Bruno B. Biomarkers for Early Complications of Endothelial Origin After Allogeneic Hematopoietic Stem Cell Transplantation: Do They Have a Potential Clinical Role? Front Immunol 2021; 12:641427. [PMID: 34093530 PMCID: PMC8170404 DOI: 10.3389/fimmu.2021.641427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
Endothelial cell (EC) dysfunction causes a number of early and life-threatening post hematopoietic stem cell transplant (HCT) complications that result in a rapid clinical decline. The main early complications are graft-vs.-host disease (GVHD), transplant associated thrombotic microangiopathy (TA-TMA), and sinusoidal obstruction syndrome (SOS). Post-HCT endothelial dysfunction occurs as a result of chemotherapy, infections, and allogeneic reactivity. Despite major advances in transplant immunology and improvements in supportive care medicine, these complications represent a major obstacle for successful HCT. In recent years, different biomarkers have been investigated for early detection of post-transplant endothelial cell dysfunction, but few have been validated. In this review we will define GVHD, TA-TMA and SOS, summarize the current data available in HCT biomarker research and identify promising biomarkers for detection and diagnosis of early HCT complications.
Collapse
Affiliation(s)
- Giuseppe Lia
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Luisa Giaccone
- Stem Cell Transplant Program, Department of Oncology, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Sarah Leone
- Department of Internal Medicine, New York University Grossman School of Medicine, New York, NY, United States
| | - Benedetto Bruno
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Division of Hematology and Medical Oncology, New York University Grossman School of Medicine, Perlmutter Cancer Center, New York University Langone Health, New York, NY, United States
| |
Collapse
|
7
|
Gao W, Yang X, Du J, Wang H, Zhong H, Jiang J, Yang C. Glucocorticoid guides mobilization of bone marrow stem/progenitor cells via FPR and CXCR4 coupling. Stem Cell Res Ther 2021; 12:16. [PMID: 33413641 PMCID: PMC7791823 DOI: 10.1186/s13287-020-02071-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/06/2020] [Indexed: 12/04/2022] Open
Abstract
Background Our previous studies have proved the efficient exogenous repairing responses via bone marrow stem and progenitor cells (BMSPCs). However, the trafficking of endogenous bone marrow stem and progenitor cells to and from the bone marrow (BM) is a highly regulated process that remains to be elucidated. We aimed to study the relative importance of the hypothalamic-pituitary-adrenal (HPA) axis in the glucocorticoid-induced BMSPC mobilization. Methods The circulating mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) were examined in Crh (+/+, −/−) mice after running stress or glucocorticoid mini-infusion. The MSCs and EPCs were investigated ex vivo after treatment with glucocorticoid and glucocorticoid receptor (GR) antagonist, RU486. The expression of chemotaxis receptors, N-formyl peptide receptor (FPR), and Cys-X-Cys receptor 4 (CXCR4) of MSCs and EPCs as well as their colocalization were investigated after treatment with glucocorticoid, glucocorticoid receptor (GR) antagonist (RU486), and FPR antagonist (Cyclosporin H). Results Forced running stress increased circulating MSCs and EPCs in mice, which was blunted when Crh was knocked out, and positively related to the levels of serum glucocorticoid. Prolonged glucocorticoid mini-infusion imitated the stress-induced increase in circulating MSCs and EPCs in Crh+/+ mice and rescued the impaired mobilization in circulating MSCs and EPCs in Crh−/− mice. Meanwhile, glucocorticoid promoted the chemotaxis of MSCs and EPCs ex vivo via GR, inhibited by RU486 (10 μM). Concurrently, glucocorticoid increased the expression of FPR of MSCs and EPCs, but inhibited their expression of CXCR4, followed by their changing colocalization in the cytoplasm. The GC-induced colocalization of FPR and CXCR4 was blunted by Cyclosporin H (1 μM). Conclusion Glucocorticoid-induced CXCR4-FPR responsiveness selectively guides the mobilization of BMSPCs, which is essential to functional tissue repair. Graphical abstract Schematic view of the role of glucocorticoid on the mobilization of bone marrow-derived stem/progenitor cells subsets in the present study. The HPA axis activation promotes the release of glucocorticoid, which regulates the directional migration of MSCs and EPCs mainly via GR. The possible mechanisms refer to the signal coupling of FPR and CXCR4. Their two-sided changes regulated by glucocorticoid are involved in the egress of MSCs and EPCs from BM, which is helpful for wound healing. MSCs, mesenchymal stem cells; EPCs, endothelial progenitor cells.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02071-1.
Collapse
Affiliation(s)
- Wenting Gao
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Department of Cardiovascular Surgery, First Affiliated Hospital of Baotou Medical College, Baotou, 014000, Inner Mongolia, People's Republic of China
| | - Xuetao Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Chinese PLA 952th Hospital, Geermu, 816000, Qinghai, People's Republic of China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Haiyan Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China
| | - Hejiang Zhong
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.,Department of Anesthesiology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| | - Ce Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
8
|
Study the relationship of endothelial damage / dysfunction due to occupational exposure to low dose ionizing radiation versus high dose exposure during radiotherapy. Cancer Treat Res Commun 2020; 25:100215. [PMID: 33091734 DOI: 10.1016/j.ctarc.2020.100215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/15/2020] [Accepted: 09/28/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Vascular injuries caused by irradiation include acute vasculitis with neutrophil invasion, endothelial cell (EC) swelling, capillary loss, and activation of coagulator mechanisms, along with local ischemia and fibrosis. The circulating endothelial cells (CECs), increase dramatically in diseases with vascular damage. AIM The aim of this study is to provide data on the endothelial dysfunction due to occupational exposure to low dose ionizing radiation versus high dose exposure during radiotherapy (RT). PATIENTS AND METHODS This study included 100 subjects divided into three main groups: Group I: High dose exposure group: 50 breast cancer patients treated with post-operative radiotherapy. Group II: Low dose exposure group: 25 hospital radiation workers. Group III: 25 healthy volunteers' age and sex matched as control group who had never worked in radiation-related jobs. TM levels measured by enzyme linked immunosorbent assay (ELISA). Circulating endothelial cells (CEC) enumerated in peripheral blood by flow cytometric analysis of their signature receptor CD146. RESULTS % CD146+ cells and plasma TM were significantly increased in radiation workers and after exposure to radiotherapy treatment in breast cancer patients. When comparing patients group with radiation workers group, we found significant elevation in plasma TM in radiation workers while insignificant difference was found in % CD146+ cells. CONCLUSION CECs and plasma TM both are increased in radiation workers and patients treated with radiotherapy. They may constitute valuable markers of endothelial injury. Workers exposed to low doses of ionizing radiation may develop significant endothelial dysfunction predisposes them to cardiovascular complications namely thrombosis, mostly due to oxidative stress among other causes.
Collapse
|
9
|
Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020; 22:3327-3337. [PMID: 32945451 PMCID: PMC7453557 DOI: 10.3892/mmr.2020.11431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non-invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)-labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION-poly-l-lysine (USPION-PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2-weighted image fast spin-echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high-fat diet. USPION-labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary-like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION-PLL nanoparticles were 10–20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue-stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION-labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Tingting Tan
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Li Cheng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Jiapeng Liu
- Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| | - Hongyan Song
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Li
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Kui Zhang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
10
|
Suhito IR, Kang ES, Kim DS, Baek S, Park SJ, Moon SH, Luo Z, Lee D, Min J, Kim TH. High density gold nanostructure composites for precise electrochemical detection of human embryonic stem cells in cell mixture. Colloids Surf B Biointerfaces 2019; 180:384-392. [PMID: 31082776 DOI: 10.1016/j.colsurfb.2019.04.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 01/10/2023]
Abstract
Precise detection of undifferentiated human pluripotent stem cells (hPSCs) and their entire subsequent elimination are incredibly important in preventing teratoma formations after transplantation. Recently, electrochemical sensing platforms have demonstrated immense potential as a new tool to detect remaining hPSCs in label-free and non-destructive manner. Nevertheless, one of the critical huddles of this electrochemical sensing approach is its low sensitivity since even low concentrations of remaining hPSCs were reported to form teratoma once transplanted. To address this issue, in this study, we report an engineering-based approach to improve the sensitivity of electrochemical sensing platform for hPSC detection. By optimizing the density of gold nanostructure and the matrigel concentration to improve both electro-catalytic property and biocompatibility, the sensitivity of the developed platform toward hESCs detection could reach 12,500 cells/chip, which is close to the known critical concentration of hPSCs (˜10,000 cells) that induce teratoma formation in vivo. Remarkably, the electrochemical signals were not detectable from other types of stem cell-derived endothelial cells (CB-EPCs) even at high concentrations of CB-EPCs (40,000 cells/chip), proving the high selectivity of the developed platform toward hPSC detection. Hence, the developed platform could be highly useful to solve the safety issues that are related with clinical application of hPSC-derived cells.
Collapse
Affiliation(s)
- Intan Rosalina Suhito
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ee-Seul Kang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Da-Seul Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seungho Baek
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soon-Jung Park
- Department of Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Hwan Moon
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Donghyun Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea; Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
11
|
Zhou F, Zhou Y, Yang M, Wen J, Dong J, Tan W. Optimized multiparametric flow cytometric analysis of circulating endothelial cells and their subpopulations in peripheral blood of patients with solid tumors: a technical analysis. Cancer Manag Res 2018; 10:447-464. [PMID: 29563835 PMCID: PMC5846315 DOI: 10.2147/cmar.s157837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Circulating endothelial cells (CECs) and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM) assay for CECs and subpopulations in peripheral blood for patients with solid cancers. Patients and methods An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann–Whitney U tests were used to determine statistically significant differences. Results In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients with solid tumors. Several key technical issues regarding preanalytical elements, FCM data acquisition, and analysis were addressed. Furthermore, we clinically validated the utility of our method. The baseline levels of mature CECs, endothelial progenitor cells, and activated CECs were higher in cancer patients than healthy subjects (P<0.01). However, there was no significant difference in resting CEC levels between healthy subjects and cancer patients (P=0.193). Conclusion We integrated and comprehensively addressed significant technical issues found in previously published assays and validated the reproducibility and sensitivity of our proposed method. Future work is required to explore the potential of our optimized method in clinical oncologic applications.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Oncology, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, People's Republic of China
| | - Yaying Zhou
- Clinical Medical Research Center, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Ming Yang
- Department of Oncology, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Jinli Wen
- Clinical Medical Research Center, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, People's Republic of China
| | - Wenyong Tan
- Department of Oncology, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen, People's Republic of China
| |
Collapse
|
12
|
Zhu Y, Feng B, He S, Su Z, Zheng G. Resveratrol combined with total flavones of hawthorn alleviate the endothelial cells injury after coronary bypass graft surgery. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 40:20-26. [PMID: 29496171 DOI: 10.1016/j.phymed.2017.12.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/23/2017] [Accepted: 12/31/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To explore the preventive and therapeutic effects of Resveratrol combined with total flavones of hawthorn, compatibility of traditional Chinese medicines, on the endothelial cells injury after artery bypass graft surgery. METHODS The animal model of coronary artery bypass grafting (CABG) was prepared by transplanting a segment of autologous jugular vein onto the transected common carotid artery in rabbits. After CABG surgery, the rabbits were administrated with saline (model group), aspirin (Aspirin group), resveratrol (Res group), total flavones of hawthorn (Haw group) and resveratrol combined with total flavones of hawthorn (Res+Haw group) once a day for eight weeks, respectively. Eight weeks later, the grafting arteries from all group were obtained for the pathomorphism observation, peripheral blood was collected to detect circulating endothelial cells (CECs) by flow cytometry. And the concentration of albumen and mRNA of ICAM-1 in the serum were measured by western blot and quantitative real-time polymerase chain reaction, respectively. RESULTS Compared with the model group, the level of CECs density and the expressions of albumen and mRNA of ICAM-1 were significantly decreased in the aspirin,resveratrol,total flavones of hawthorn and resveratrol combined with total flavones of hawthorn groups (P < .05). Of note, above all parameters were lower in Res group than aspirin group. CONCLUSION The Resveratrol combined with total flavones of hawthorn could protect the endothelial cells after coronary artery bypass graft.
Collapse
Affiliation(s)
- Ying Zhu
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Bing Feng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Songmin He
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zuqing Su
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guangjuan Zheng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong 510006, China; The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
13
|
Draper JE, Sroczynska P, Fadlullah MZH, Patel R, Newton G, Breitwieser W, Kouskoff V, Lacaud G. A novel prospective isolation of murine fetal liver progenitors to study in utero hematopoietic defects. PLoS Genet 2018; 14:e1007127. [PMID: 29300724 PMCID: PMC5754050 DOI: 10.1371/journal.pgen.1007127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/26/2017] [Indexed: 12/29/2022] Open
Abstract
In recent years, highly detailed characterization of adult bone marrow (BM) myeloid progenitors has been achieved and, as a result, the impact of somatic defects on different hematopoietic lineage fate decisions can be precisely determined. Fetal liver (FL) hematopoietic progenitor cells (HPCs) are poorly characterized in comparison, potentially hindering the study of the impact of genetic alterations on midgestation hematopoiesis. Numerous disorders, for example infant acute leukemias, have in utero origins and their study would therefore benefit from the ability to isolate highly purified progenitor subsets. We previously demonstrated that a Runx1 distal promoter (P1)-GFP::proximal promoter (P2)-hCD4 dual-reporter mouse (Mus musculus) model can be used to identify adult BM progenitor subsets with distinct lineage preferences. In this study, we undertook the characterization of the expression of Runx1-P1-GFP and P2-hCD4 in FL. Expression of P2-hCD4 in the FL immunophenotypic Megakaryocyte-Erythroid Progenitor (MEP) and Common Myeloid Progenitor (CMP) compartments corresponded to increased granulocytic/monocytic/megakaryocytic and decreased erythroid specification. Moreover, Runx1-P2-hCD4 expression correlated with several endogenous cell surface markers' expression, including CD31 and CD45, providing a new strategy for prospective identification of highly purified fetal myeloid progenitors in transgenic mouse models. We utilized this methodology to compare the impact of the deletion of either total RUNX1 or RUNX1C alone and to determine the fetal HPCs lineages most substantially affected. This new prospective identification of FL progenitors therefore raises the prospect of identifying the underlying gene networks responsible with greater precision than previously possible.
Collapse
Affiliation(s)
- Julia E. Draper
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Patrycja Sroczynska
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Muhammad Z. H. Fadlullah
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Rahima Patel
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Gillian Newton
- Molecular Biology Core Facility, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Wolfgang Breitwieser
- Molecular Biology Core Facility, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, Michael Smith Building, The University of Manchester, Manchester, United Kingdom
| | - Georges Lacaud
- Cancer Research UK Stem Cell Biology Group, Cancer Research UK Manchester Institute, Manchester Cancer Research Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Antihypertensive Drugs Aliskiren, Nebivolol, and Olmesartan Reduce Hypertension by Reducing Endothelial Microparticles and Regulating Angiogenesis. J Cardiovasc Pharmacol 2017; 70:176-183. [DOI: 10.1097/fjc.0000000000000503] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Zhou F, Zhou Y, Dong J, Tan W. Circulating endothelial cells and their subsets: novel biomarkers for cancer. Biomark Med 2017; 11:665-676. [PMID: 28597689 DOI: 10.2217/bmm-2017-0143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Angiogenesis contributes to the growth of solid tumors. Antiangiogenic agents are widely used in various cancers and considerable efforts have been made in the development of novel biomarkers that can predict the outcome of an anticancer treatment. Of those, circulating endothelial cells (CECs) and their subsets constitute a surrogate tool for monitoring disease activity. However, owing to the lack of standardization on the phenotypes and detection of CECs and their subsets, results have always been inconsistent and uninterpretable. In this review, we focus on the biological characteristics in terms of physiology, phenotypes and detection of CECs along with their subsets; review the current scenario of CEC enumeration as a surrogate biomarker in clinical oncology; and explore their future potential applications.
Collapse
Affiliation(s)
- Fangbin Zhou
- Department of Oncology, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen 518020, China.,Integrated Chinese & Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Yaying Zhou
- Clinical Medical Research Center, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen 518020, China
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou 510632, China
| | - Wenyong Tan
- Department of Oncology, The Second Clinical Medical College, Shenzhen People's Hospital, Jinan University, Shenzhen 518020, China
| |
Collapse
|
16
|
Malinovskaya NA, Komleva YK, Salmin VV, Morgun AV, Shuvaev AN, Panina YA, Boitsova EB, Salmina AB. Endothelial Progenitor Cells Physiology and Metabolic Plasticity in Brain Angiogenesis and Blood-Brain Barrier Modeling. Front Physiol 2016; 7:599. [PMID: 27990124 PMCID: PMC5130982 DOI: 10.3389/fphys.2016.00599] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 12/31/2022] Open
Abstract
Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB) development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons). Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alla B. Salmina
- Research Institute of Molecular Medicine & Pathobiochemistry, Krasnoyarsk State Medical University named after Prof. V.F. Voino-YasenetskyKrasnoyarsk, Russia
| |
Collapse
|