1
|
Nguyen LTT, Park AR, Van Le V, Hwang I, Kim JC. Exploration of a multifunctional biocontrol agent Streptomyces sp. JCK-8055 for the management of apple fire blight. Appl Microbiol Biotechnol 2024; 108:49. [PMID: 38183485 DOI: 10.1007/s00253-023-12874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 01/08/2024]
Abstract
Apple fire blight, caused by the bacterium Erwinia amylovora, is a devastating disease of apple and pear trees. Biological control methods have attracted much attention from researchers to manage plant diseases as they are eco-friendly and viable alternatives to synthetic pesticides. Herein, we isolated Streptomyces sp. JCK-8055 from the root of pepper and investigated its mechanisms of action against E. amylovora. Streptomyces sp. JCK-8055 produced aureothricin and thiolutin, which antagonistically affect E. amylovora. JCK-8055 and its two active metabolites have a broad-spectrum in vitro activity against various phytopathogenic bacteria and fungi. They also effectively suppressed tomato bacterial wilt and apple fire blight in in vivo experiments. Interestingly, JCK-8055 colonizes roots as a tomato seed coating and induces apple leaf shedding at the abscission zone, ultimately halting the growth of pathogenic bacteria. Additionally, JCK-8055 can produce the plant growth regulation hormone indole-3-acetic acid (IAA) and hydrolytic enzymes, including protease, gelatinase, and cellulase. JCK-8055 treatment also triggered the expression of salicylate (SA) and jasmonate (JA) signaling pathway marker genes, such as PR1, PR2, and PR3. Overall, our findings demonstrate that Streptomyces sp. JCK-8055 can control a wide range of plant diseases, particularly apple fire blight, through a combination of mechanisms such as antibiosis and induced resistance, highlighting its excellent potential as a biocontrol agent. KEY POINTS: • JCK-8055 produces the systemic antimicrobial metabolites, aureothricin, and thiolutin. • JCK-8055 treatment upregulates PR gene expression in apple plants against E. amylovora. • JCK-8055 controls plant diseases with antibiotics and induced resistance.
Collapse
Affiliation(s)
- Loan Thi Thanh Nguyen
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Ve Van Le
- Cell Factory Research Centre, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Inmin Hwang
- Hygienic Safety and Analysis Center, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Institute of Environmentally Friendly Agriculture, Chonnam National University, Gwangju, 61186, Republic of Korea.
- JAN153 Biotech Incorporated, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
2
|
Zhao L, Zhou SY, Fu Y, Shen JL, Yin BC, You D, Ye BC. A dual program for CRP-mediated regulation in bacterial alarmone (p)ppGpp. mBio 2024; 15:e0243024. [PMID: 39365062 PMCID: PMC11559003 DOI: 10.1128/mbio.02430-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Gene expression and proper downstream cellular functions upon facing environmental shifts depend on the combined and cooperative regulation of genetic networks. Here, we identified cAMP receptor protein (CRP) as a master regulator of (p)ppGpp (guanosine tetra- and penta-phosphate) homeostasis. Via CRP-mediated direct transcriptional regulation of the (p)ppGpp synthetase/hydrolase RelA and SpoT, cAMP-CRP stimulates pervasive accumulation of (p)ppGpp under glucose-limiting conditions. Notably, CRP exerts a nonclassical property as a translational regulator through YfiQ-dependent acetylation of ribosome protein S1 at K247, which further enhances the translation of RelA, SpoT, and CRP itself. From a synthetic biology perspective, this self-activating feedback loop for (p)ppGpp synthesis highlights the function of CRP-mediated dual enhancement (CMDE) in controlling bacterial gene expression, which enables stable activation of genetic circuits. CMDE applied in synthetic circuits leads to a stable increase in p-coumaric acid, cinnamic acid, and pinosylvin production. Our findings showed that CRP-mediated dual circuits for (p)ppGpp regulation enable robust activation that could address bioproduction and other biotechnological needs.IMPORTANCETranscriptional-translational coordination is fundamental for rapid and efficient gene expression in most bacteria. Here, we uncovered the roles of cAMP-CRP in this process. We found that CRP distinctly increases RelA and SpoT transcription and translation, and that acetylation of S1 at K247 accelerates the self-activation of the leading CRP under glucose-limiting conditions. We further found that elevated (p)ppGpp significantly impedes the formation of the cAMP-CRP complex, an active form responsible for transcriptional activation. A model was created in which cAMP-CRP and (p)ppGpp cooperate to dynamically modulate the efficiency of transcriptional-translational coordination responses to stress. More broadly, productive activation in synthetic circuits was achieved through the application of CRP-mediated dual enhancement (CMDE), promising to inspire new approaches for the development of cell-based biotechnologies.
Collapse
Affiliation(s)
- Li Zhao
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shi-Yu Zhou
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu Fu
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jin-Long Shen
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bin-Cheng Yin
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Di You
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Lab of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Zhao Y, Liu S, Wang W, Li L, Zhang W, Ji X, Yang D, Guo X, Deng F. Associations of indoor airborne microbiome with lung function: evidence from a randomized, double-blind, crossover study of microbial intervention. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2020-2035. [PMID: 39355928 DOI: 10.1039/d4em00392f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Microorganisms constitute an essential component of the indoor ecosystem and may pose potential health risks after inhalation. However, evidence regarding the impact of indoor airborne microbiome on general respiratory health is scarce. Additionally, while air purification has been shown to be an effective strategy for controlling culturable bioaerosols, its impact on indoor airborne microbiome remains unclear. To determine the impact of indoor airborne microbial exposure on lung function, and whether and how air purification can modify indoor airborne microbiome, we conducted a randomized, double-blind, crossover study employing air purification intervention among 68 healthy young adults in Beijing, China. Indoor airborne bacteria and fungi were characterized using amplicon sequencing technology and quantified by qPCR. Our results indicated positive associations between indoor airborne microbial α-diversity and lung function indices; however, adverse effects from total microbial load were observed. Males were more susceptible to microbial exposure than females. Beneficial effects from richness in Actinobacteria, Bacteroidia, Oxyphotobacteria, Bacilli, Clostridia, Alphaproteobacteria, Gammaproteobacteria, Dothideomycetes, and Sordariomycetes, and detrimental effects from five Proteobacteria genera, including Dechloromonas, Hydrogenophaga, Klebsiella, Pseudomonas, and Tolumonas, were also identified. Air purification contributed to decreased fungal diversity and total fungal load, but not the overall microbial community structure. Our study demonstrates the significant role of indoor airborne microbiome in regulating human respiratory health and provides inspiration for improving health through manipulation of indoor microbiome. Meanwhile, our study also underscores the importance of balancing the potential benefits from decreased microbial load and the underlying risks from reduced microbial diversity while applying environmental microbial interventions.
Collapse
Affiliation(s)
- Yetong Zhao
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Xuezhao Ji
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Di Yang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
- Center for Environment and Health, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100191, China
| |
Collapse
|
4
|
Rammali S, Kamal FZ, El Aalaoui M, Bencharki B, Burlui V, Khattabi A, Abderrahim A, Saad S, Romila L, Novac B, Aitlhaj-Mhand R, Petroaie AD, Ciobică A. In vitro antimicrobial and antioxidant activities of bioactive compounds extracted from Streptomyces africanus strain E2 isolated from Moroccan soil. Sci Rep 2024; 14:27372. [PMID: 39521814 PMCID: PMC11550811 DOI: 10.1038/s41598-024-77729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This study aimed to isolate Streptomyces sp. from Moroccan terrestrial ecosystems and identify bioactive compounds through GC-MS analysis. Antimicrobial activity was assessed against various pathogenic microorganisms including Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922 and Candida albicans ATCC 60193, and multi-drug resistant strains comprising Listeria monocytogenes, Klebsiella pneumoniae 19K 929, Proteus sp. 19K1313, Klebsiella pneumoniae 20B1572, Proteus vulgaris 16C1737, and Klebsiella pneumoniae 20B1572. Based on the results of the gene sequencing of gene 16S rRNA and phylogenetic analysis, the E2 isolate belongs to the genus Streptomyces with the highest degree of resemblance (97.51%) to the Streptomyces africanus strain NBRC 101005 (NR_112600.1). The isolate exhibited broad-spectrum antibacterial activity, with maximum efficacy against Klebsiella pneumoniae 20B1572 indicated by an inhibition zone diameter of 22.5 ± 0.71mm and a minimum inhibitory concentration (MIC) of 0.0625 mg/mL. The in vitro antioxidant potential of E2 strain was determined through screening of its ethyl acetate extract against sets of antioxidant assays. The results were indicative of E2 strain displaying strong antioxidant activity against ABTS, DPPH free radicals, and FRAP. Furthermore, there was a high significant correlation (p < 0.0001) between the total phenolic and flavonoid content and antioxidant activities. The GC-MS analysis of the extract identified six volatile compounds, with Eugenol (96%) and Maltol (93%) being the most prominent. Additionally, the HPLC-UV/vis analysis revealed six phenolic compounds: gallic acid, chlorogenic acid, vanillic acid, trans-ferulic acid, ellagic acid, and cinnamic acid. Overall, the study highlights Streptomyces sp. strain E2 as a potential source of potent antimicrobial and antioxidant metabolites, offering promise in addressing antibiotic resistance and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), 40000, Marrakech, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, 26000, Settat, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km from Settat, 26400, Settat, Morocco
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Vasile Burlui
- Department of Biomaterials, Faculty of Dental Medicine, Apollonia University, 700511, Iasi, Romania
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Aasfar Abderrahim
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Salhi Saad
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Laura Romila
- Apollonia University, Păcurari Street 11, 700511, Iasi, Romania.
| | - Bogdan Novac
- Grigore T. Popa University of Medicine and Pharmacy, 16, Universitatii Street, 700115, Iasi, Romania
| | | | - Antoneta Dacia Petroaie
- Grigore T. Popa University of Medicine and Pharmacy, 16, Universitatii Street, 700115, Iasi, Romania
| | - Alin Ciobică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 20th Carol I Avenue, 700506, Iasi, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044, Bucharest, Romania
- Clinical Department, Apollonia University, Păcurari Street 11, 700511, Iasi, Romania
- CENEMED Platform for Interdisciplinary Research, "Grigore T. Popa" University of Medicine and Pharmacy of Iasi, 16th Universitatii Street, 700115, Iasi, Romania
| |
Collapse
|
5
|
Ostos I, Flórez-Pardo LM, Camargo C. A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review. Front Microbiol 2024; 15:1437098. [PMID: 39464396 PMCID: PMC11502389 DOI: 10.3389/fmicb.2024.1437098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.
Collapse
Affiliation(s)
- Iván Ostos
- Grupo de Investigación en Ingeniería Electrónica, Industrial, Ambiental, Metrología GIEIAM, Universidad Santiago de Cali, Cali, Colombia
| | - Luz Marina Flórez-Pardo
- Grupo de Investigación en Modelado, Análisis y Simulación de Procesos Ambientales e Industriales PAI+, Universidad Autónoma de Occidente, Cali, Colombia
| | - Carolina Camargo
- Centro de Investigación de la Caña de Azúcar, CENICAÑA, Cali, Colombia
| |
Collapse
|
6
|
Castillo-Lopez E, Ricci S, Rivera-Chacon R, Sener-Aydemir A, Pacífico C, Reisinger N, Schwartz-Zimmermann HE, Berthiller F, Kreuzer-Redmer S, Zebeli Q. Dynamic interplay of immune response, metabolome, and microbiota in cows during high-grain feeding: insights from multi-omics analysis. Microbiol Spectr 2024; 12:e0094424. [PMID: 39162517 PMCID: PMC11448160 DOI: 10.1128/spectrum.00944-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
This study explores the dynamics of immune gene expression, ruminal metabolome, and gut microbiota in cows due to the duration of high-grain feeding, shedding light on host response and microbial dynamics in parallel. Cows consumed forage for a week, then gradually transitioned to a high-grain diet, which they consumed for 4 weeks. Immune response was evaluated in ruminal papillae by expression of genes related to the nuclear factor-kappaB (NFkB) pathway and correlated with the microbiota. Rumen metabolome was evaluated with high-performance liquid chromatography coupled with mass spectrometry and anion-exchange chromatography. Rumen and fecal microbiota were evaluated with 16S rRNA gene amplicon sequencing. In the rumen, expression of inflammation-associated genes increased with the duration on high grain, indicating activation of pro-inflammatory cascades; microbial diversity decreased with a high-grain diet but stabilized after week 3 on high grain. Changes in microbial relative abundance and metabolite enrichment were observed throughout the 4 weeks on high grain, with increments in propionogenic taxa (i.e., Succinivibrionaceae). Metabolite enrichment analysis showed that at the start of high-grain feeding, simple carbohydrates were enriched; then, these were substituted by their fermentation products. There were correlations between certain ruminal bacterial taxa (i.e., Ruminococcaceae UCG-005) and expression of genes of the NFkB pathway, suggesting the influence of these taxa on host immune response. In feces, microbial diversity and several Ruminococcaceae members initially declined but recovered by weeks 3 and 4. Overall, despite the stabilization of microbial diversity, changes in microbial relative abundance and proinflammatory genes were observed throughout high-grain feeding, suggesting that cows need more than 4 weeks to fully adjust once consuming a high-grain diet.IMPORTANCEDespite the stepwise diet transition typically assumed to serve for animal adaptation, expression of signaling receptors, mediators, and downstream targets of nuclear factor-kappaB pathway were found throughout the 4 weeks on high grain, which correlated with changes in the rumen microbial profile. In addition, although microbial diversity recovered in the feces and stabilized in the rumen in week 3 on high grain, we observed changes in microbial relative abundance throughout the 4 weeks on high grain, suggesting that cows need more than 4 weeks to adjust once consuming this diet. Findings are particularly important to consider when planning experiments involving dietary changes.
Collapse
Affiliation(s)
- Ezequias Castillo-Lopez
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Sara Ricci
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Raul Rivera-Chacon
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| | - Arife Sener-Aydemir
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Cátia Pacífico
- Biome Diagnostics GmbH, Vienna, Austria
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nicole Reisinger
- dsm-firmenich, Animal Nutrition and Health R&D Center, Tulln, Austria
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Susanne Kreuzer-Redmer
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Qendrim Zebeli
- Center for Animal Nutrition and Welfare, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Vienna, Austria
| |
Collapse
|
7
|
Moussa AY. Streptomyces Endophytes in Edible Plants: New Insights into their Chemistry and Health Benefits. Chem Biodivers 2024; 21:e202400888. [PMID: 38884446 DOI: 10.1002/cbdv.202400888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Streptomyces is the largest source of microbial antibiotics with about 50 % of marketed antimicrobial drugs originating from this genus. Endophytic streptomyces are the link between medicinal plants and the microbial world. Endophytic Streptomyces in edible plants were not targeted before despite their uniqueness and importance. In this review, we analyzed the chemical diversity of more than 150 compounds belonging to endophytic Streptomyces chemical classes such as alkaloids, polyketides, peptides, macrolides and terpenes and their biological activities. This analysis showed a dominant antimicrobial effect for most of the isolated compounds and highlighted an underestimated diversity to be studied or repurposed for other biological activities. Return to edible plants use and conducting toxicity studies to rationalize their nutraceutical potential based on their beneficial endophytes is urged. Although there are many studies for non-vertebrates, the nutraceutical potential of these plants is expected to improve the gut microbiota since they are enriched with bioactive compounds from streptomyces species. This is the first review to discuss edible plants associated streptomyces, and we prospect that many studies will follow to unravel the mysterious health benefits of streptomyces in the human microbiome and encourage the revival of a correct lifestyle for the sake of a healthier microbiome.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University Postal address, 11566, African Union Organization Street, Abbassia, Cairo, Egypt
| |
Collapse
|
8
|
Gang J, Ping Y, Du C. Anti-Magnaporthe oryzae Activity of Streptomyces bikiniensis HD-087 In Vitro and Bioinformatics Analysis of Polyketide Synthase Gene pksL. Curr Microbiol 2024; 81:379. [PMID: 39340701 DOI: 10.1007/s00284-024-03898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
Streptomyces bikiniensis HD-087 is capable of synthesizing various antimicrobial substances to counter the detrimental effects of hazardous microorganisms. To elucidate whether it produces polyketide antibiotics and the synthesis mechanism of antibiotic substances, the metabolites and related genes of S. bikiniensis HD-087 were analyzed through LC-MS, anti-Magnaporthe oryzae activity detection, and bioinformatics approaches. The result indicated that the strain HD-087 could produce erythromycin, a polyketide antibiotic. The inhibitory zones of the fermentation supernatant of strain HD-087 and methanol solution of erythromycin extract against M. oryzae were 40.84 ± 0.68 mm and 33.18 ± 0.81 mm, respectively. The IC50 value of erythromycin extract for inhibiting spore germination of erythromycin extract was 220.43 μg/mL. There are two polyketide synthesis gene clusters in the genome of strain HD-087, namely t1pks-nrps and t3pks-lantipeptide-t1pks-nrps. The key gene pksL in the t3pks-lantipeptide-t1pks-nrps gene cluster was predicted. The results suggested that it encodes a stable, hydrophilic, and acidic protein, mainly composed of α-helix and random coil. The PksL protein contains dehydrogenase (DH), ketone reductase (KR), acyl carrier protein (ACP), and ketone synthase (KS) domains. Moreover, it can form interaction networks with 11 proteins containing domains, such as polyketide synthase and ACP synthase. The molecular docking between PksL and acetyl-CoA is stable and strong, suggesting that PksL protein could catalyze the synthesis of polyketides with CoA as a substrate. This study provides a theoretical basis for further exploring the polyketides synthesis mechanism and developing antifungal metabolites in S. bikiniensis HD-087.
Collapse
Affiliation(s)
- Jiahan Gang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yuan Ping
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Chunmei Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
9
|
Kiepas AB, Hoskisson PA, Pritchard L. 16S rRNA phylogeny and clustering is not a reliable proxy for genome-based taxonomy in Streptomyces. Microb Genom 2024; 10. [PMID: 39254673 PMCID: PMC11385388 DOI: 10.1099/mgen.0.001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Streptomyces is among the most extensively studied genera of bacteria but its complex taxonomy remains contested and is suspected to contain significant species-level misclassification. Resolving the classification of Streptomyces would benefit many areas of applied microbiology that rely on an accurate ground truth for grouping of related organisms, including comparative genomics-based searches for novel antimicrobials. We survey taxonomic conflicts between 16S rRNA and whole genome-based Streptomyces classifications using 2276 publicly available Streptomyces genome assemblies and 48 981 publicly available full-length 16S rRNA Streptomyces sequences from silva, Greengenes, Ribosomal Database Project (RDP), and NCBI (National Centre for Biotechnology Information) databases. We construct a full-length 16S gene tree for 14 239 distinct Streptomyces sequences that resolves three major lineages of Streptomyces, but whose topology is not consistent with existing taxonomic assignments. We use these sequence data to delineate 16S and whole genome landscapes for Streptomyces, demonstrating that 16S and whole-genome classifications are frequently in disagreement, and that 16S zero-radius Operational Taxonomic Units (zOTUs) are often inconsistent with Average Nucleotide Identity (ANI)-based taxonomy. Our results strongly imply that 16S rRNA sequence data does not map to taxonomy sufficiently well to delineate Streptomyces species routinely. We propose that alternative marker sequences should be adopted by the community for classification and metabarcoding. Insofar as Streptomyces taxonomy has been determined or supported by 16S sequence data and may in parts be in error, we also propose that reclassification of the genus by alternative approaches may benefit the Streptomyces community.
Collapse
Affiliation(s)
- Angelika B Kiepas
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
10
|
Anjum MS, Khaliq S, Ashraf N, Anwar MA, Akhtar K. Bioactive Streptomycetes: A Powerful Tool to Synthesize Diverse Nanoparticles With Multifarious Properties. J Basic Microbiol 2024; 64:e2400129. [PMID: 38922954 DOI: 10.1002/jobm.202400129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Nanobiotechnology has gained significant attention due to its capacity to generate substantial benefits through the integration of microbial biotechnology and nanotechnology. Among microbial organisms, Actinomycetes, particularly the prominent genus Streptomycetes, have garnered attention for their prolific production of antibiotics. Streptomycetes have emerged as pivotal contributors to the discovery of a substantial number of antibiotics and play a dominant role in combating infectious diseases on a global scale. Despite the noteworthy progress achieved through the development and utilization of antibiotics to combat infectious pathogens, the prevalence of infectious diseases remains a prominent cause of mortality worldwide, particularly among the elderly and children. The emergence of antibiotic resistance among pathogens has diminished the efficacy of antibiotics in recent decades. Nevertheless, Streptomycetes continue to demonstrate their potential by producing bioactive metabolites for the synthesis of nanoparticles. Streptomycetes are instrumental in producing nanoparticles with diverse bioactive characteristics, including antiviral, antibacterial, antifungal, antioxidant, and antitumor properties. Biologically synthesized nanoparticles have exhibited a meaningful reduction in the impact of antibiotic resistance, providing resources for the development of new and effective drugs. This review succinctly outlines the significant applications of Streptomycetes as a crucial element in nanoparticle synthesis, showcasing their potential for diverse and enhanced beneficial applications.
Collapse
Affiliation(s)
- Muhammad Sultan Anjum
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Neelma Ashraf
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
- Institute of Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwig University of Freiburg, Freiburg im Breisgau, Germany
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad, Pakistan
| |
Collapse
|
11
|
Al Mamun A, Alam K, Koly FA, Showline Chaity F, Ferdous J, Islam S. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in Streptomyces bacteria. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-14. [PMID: 39140768 DOI: 10.1080/10286020.2024.2390510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Ribosomally synthesized post-translationally modified peptides (RiPPs) are a novel category of bioactive natural products (NPs). Streptomyces bacteria are a potential source of many bioactive NPs. Limited opportunities are available to characterize all the bioactive NP gene clusters. In this study, 410 sequences of Streptomyces were analyzed for RiPPs through genome mining using the National Center for Biotechnology Information (NCBI), by combining BAGEL and anti-SMASH. A total of 4098 RiPPs were found; including both classified (lanthipeptide, RiPP-like, bacteriocin, LAPs, lassopeptide, thiopeptides) and nonclassified RiPPs. Soil was identified as a rich habitat for RiPPs. These data may offer alternative future remedies for various health issues.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Khorshed Alam
- Bangladesh Standards and Testing Institution (BSTI), Dhaka, Bangladesh
| | - Farjana Akter Koly
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, Bangladesh
| | - Farjana Showline Chaity
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, Bangladesh
| | - Jannatul Ferdous
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, Bangladesh
| | - Saiful Islam
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, Bangladesh
| |
Collapse
|
12
|
Li X, Zhao S, Lu C, Shen Y. New secondary metabolites produced by an engineered strain Streptomyces sp. XZQH13OEΔastC. Nat Prod Res 2024:1-6. [PMID: 39105411 DOI: 10.1080/14786419.2024.2385701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Two previously undescribed alkaloids (1-2), five known alkaloids (3-7) and five cyclodipeptides (8-12) were obtained from an ansatrienin-producing mutant strain Streptomyces sp. XZQH13OEΔ astC. Their structures were elucidated by analysis of the 1D, 2D NMR and ESI HRMS data and by comparison with the reported data. The antibacterial activities of compounds 1-12 were evaluated.
Collapse
Affiliation(s)
- Xiaomei Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shengliang Zhao
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Liu H, Li J, Singh BK. Harnessing co-evolutionary interactions between plants and Streptomyces to combat drought stress. NATURE PLANTS 2024; 10:1159-1171. [PMID: 39048724 DOI: 10.1038/s41477-024-01749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 06/25/2024] [Indexed: 07/27/2024]
Abstract
Streptomyces is a drought-tolerant bacterial genus in soils, which forms close associations with plants to provide host resilience to drought stress. Here we synthesize the emerging research that illuminates the multifaceted interactions of Streptomyces spp. in both plant and soil environments. It also explores the potential co-evolutionary relationship between plants and Streptomyces spp. to forge mutualistic relationships, providing drought tolerance to plants. We propose that further advancement in fundamental knowledge of eco-evolutionary interactions between plants and Streptomyces spp. is crucial and holds substantial promise for developing effective strategies to combat drought stress, ensuring sustainable agriculture and environmental sustainability in the face of climate change.
Collapse
Affiliation(s)
- Hongwei Liu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| | - Jiayu Li
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
14
|
Rammali S, Ciobică A, El Aalaoui M, Rahim A, Kamal FZ, Dari K, Khattabi A, Romila L, Novac B, Petroaie A, Bencharki B. Exploring the antimicrobial and antioxidant properties of Lentzea flaviverrucosa strain E25-2 isolated from Moroccan forest soil. Front Microbiol 2024; 15:1429035. [PMID: 39104582 PMCID: PMC11298423 DOI: 10.3389/fmicb.2024.1429035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
The alarming rise in antimicrobial resistance (AMR) has created a significant public health challenge, necessitating the discovery of new therapeutic agents to combat infectious diseases and oxidative stress-related disorders. The Lentzea flaviverrucosa strain E25-2, isolated from Moroccan forest soil, represents a potential avenue for such research. This study aimed to identify the isolate E25-2, obtained from soil in a cold Moroccan ecosystem, and further investigate its antimicrobial and antioxidant activities. Phylogenetic analysis based on 16S rRNA gene sequences revealed the strain's classification within the Lentzea genus, with a sequence closely resembling that of Lentzea flaviverrucosa AS4.0578 (96.10% similarity). Antimicrobial activity in solid media showed moderate to strong activity against Staphylococcus aureus ATCC 25923, Bacillus cereus strain ATCC 14579, Escherichia coli strain ATCC 25922, Candida albicans strain ATCC 60193 and 4 phytopathogenic fungi. In addition, ethyl acetate extract of this isolate demonstrated potent antimicrobial activity against 7 clinically multi-drug resistant bacteria. Furthermore, it demonstrated antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, as well as a significant increase in ferric reducing antioxidant power. A significant positive correlation was observed between antioxidant activities and total content of phenolic compounds (p < 0.0001), along with flavonoids (p < 0.0001). Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of amines, hydroxyl groups, pyridopyrazinone rings, esters and pyrrolopyrazines. The Lentzea genus could offer promising prospects in the fight against antibiotic resistance and in the prevention against oxidative stress related diseases.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| | - Alin Ciobică
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Iași, Romania
- Center of Biomedical Research, Romanian Academy, Iasi Branch, Iași, Romania
- Academy of Romanian Scientists, Bucharest, Romania
- CENEMED Platform for Interdisciplinary Research, “Grigore T. Popa” University of Medicine and Pharmacy of Iasi, Iasi, Romania
| | | | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| | - Fatima Zahra Kamal
- Higher Institute of Nursing Professions and Health Technical (ISPITS), Marrakech, Morocco
- Laboratory of Physical Chemistry of Processes and Materials, Faculty of Sciences and Techniques, Hassan First University, Settat, Morocco
| | - Khadija Dari
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| | - Laura Romila
- Department of Chemistry, “Ioan Haulica” Institute, Apollonia University, Iași, Romania
| | - Bogdan Novac
- Urology Department, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| | - Antoneta Petroaie
- Family Medicine Department, Grigore T. Popa University of Medicine and Pharmacy, Iași, Romania
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat, Morocco
| |
Collapse
|
15
|
Mazumdar R, Thakur D. Antibacterial activity and biosynthetic potential of Streptomyces sp. PBR19, isolated from forest rhizosphere soil of Assam. Braz J Microbiol 2024:10.1007/s42770-024-01454-3. [PMID: 38985434 DOI: 10.1007/s42770-024-01454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024] Open
Abstract
An Actinomycetia isolate, designated as PBR19, was derived from the rhizosphere soil of Pobitora Wildlife Sanctuary (PWS), Assam, India. The isolate, identified as Streptomyces sp., shares a sequence similarity of 93.96% with its nearest type strain, Streptomyces atrovirens. This finding indicates the potential classification of PBR19 as a new taxon within the Actinomycetota phylum. PBR19 displayed notable antibacterial action against some ESKAPE pathogens. The ethyl acetate extract of PBR19 (EtAc-PBR19) showed the lowest minimum inhibitory concentration (MIC) of ≥ 0.195 µg/mL against Acinetobacter baumannii ATCC BAA-1705. A lower MIC indicates higher potency against the tested pathogen. Scanning electron microscope (SEM) findings revealed significant changes in the cytoplasmic membrane structure of the pathogen. This suggests that the antibacterial activity may be linked to the disruption of the microbial membrane. The predominant chemical compound detected in the EtAc-PBR19 was identified as phenol, 3,5-bis(1,1-dimethylethyl), comprising 48.59% of the area percentage. Additionally, PBR19 was found to contain the type II polyketide synthases (PKS type II) gene associated with antibiotic synthesis. The predicted gene product of PKSII was identified as the macrolide antibiotic Megalomicin A. The taxonomic distinctiveness, potent antibacterial effects, and the presence of a gene associated with antibiotic synthesis suggest that PBR19 could be a valuable candidate for further exploration in drug development and synthetic biology. The study contributes to the broader understanding of microbial diversity and the potential for discovering bioactive compounds in less-explored environments.
Collapse
Affiliation(s)
- Rajkumari Mazumdar
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India
- Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, India
| | - Debajit Thakur
- Life Sciences Division, Institute of Advanced Study in Science and Technology, Guwahati, India.
| |
Collapse
|
16
|
Meena SN, Wajs-Bonikowska A, Girawale S, Imran M, Poduwal P, Kodam KM. High-Throughput Mining of Novel Compounds from Known Microbes: A Boost to Natural Product Screening. Molecules 2024; 29:3237. [PMID: 38999189 PMCID: PMC11243205 DOI: 10.3390/molecules29133237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Advanced techniques can accelerate the pace of natural product discovery from microbes, which has been lagging behind the drug discovery era. Therefore, the present review article discusses the various interdisciplinary and cutting-edge techniques to present a concrete strategy that enables the high-throughput screening of novel natural compounds (NCs) from known microbes. Recent bioinformatics methods revealed that the microbial genome contains a huge untapped reservoir of silent biosynthetic gene clusters (BGC). This article describes several methods to identify the microbial strains with hidden mines of silent BGCs. Moreover, antiSMASH 5.0 is a free, accurate, and highly reliable bioinformatics tool discussed in detail to identify silent BGCs in the microbial genome. Further, the latest microbial culture technique, HiTES (high-throughput elicitor screening), has been detailed for the expression of silent BGCs using 500-1000 different growth conditions at a time. Following the expression of silent BGCs, the latest mass spectrometry methods are highlighted to identify the NCs. The recently emerged LAESI-IMS (laser ablation electrospray ionization-imaging mass spectrometry) technique, which enables the rapid identification of novel NCs directly from microtiter plates, is presented in detail. Finally, various trending 'dereplication' strategies are emphasized to increase the effectiveness of NC screening.
Collapse
Affiliation(s)
- Surya Nandan Meena
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Anna Wajs-Bonikowska
- Institute of Natural Products and Cosmetics, Faculty of Biotechnology and Food Sciences, Łódz University of Technology, Stefanowskiego Street 2/22, 90-537 Łódz, Poland
| | - Savita Girawale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| | - Md Imran
- Department of Botany, University of Delhi, Delhi 110007, India
| | - Preethi Poduwal
- Department of Biotechnology, Dhempe College of Arts and Science, Miramar, Goa 403001, India;
| | - Kisan M. Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India; (S.N.M.); (K.M.K.)
| |
Collapse
|
17
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. Nucleic Acids Res 2024; 52:6347-6359. [PMID: 38661211 PMCID: PMC11194089 DOI: 10.1093/nar/gkae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lia M Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Lyle A Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
18
|
Du Y, Han W, Hao P, Hu Y, Hu T, Zeng Y. A Genomics-Based Discovery of Secondary Metabolite Biosynthetic Gene Clusters in the Potential Novel Strain Streptomyces sp. 21So2-11 Isolated from Antarctic Soil. Microorganisms 2024; 12:1228. [PMID: 38930610 PMCID: PMC11205464 DOI: 10.3390/microorganisms12061228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Streptomyces species are attractive sources of secondary metabolites that serve as major sources of antibiotics and other drugs. In this study, genome mining was used to determine the biosynthetic potential of Streptomyces sp. 21So2-11 isolated from Antarctic soil. 16S rRNA gene sequencing revealed that this strain is most closely related to Streptomyces drozdowiczii NBRC 101007T, with a similarity of 98.02%. Genome comparisons based on average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) showed that strain 21So2-11 represents a novel species of the genus Streptomyces. In addition to a large number of genes related to environmental adaptation and ecological function, a total of 28 putative biosynthetic gene clusters (BGCs) responsible for the biosynthesis of known and/or novel secondary metabolites, including terpenes, lantipeptides, polyketides, nonribosomal peptides, RiPPs and siderophores, were detected in the genome of strain 21So2-11. In addition, a total of 1456 BGCs were predicted to contribute to the biosynthesis of more than 300 secondary metabolites based on the genomes of 47 Streptomyces strains originating from polar regions. The results indicate the potential of Streptomyces sp. 21So2-11 for bioactive secondary metabolite production and are helpful for understanding bacterial adaptability and ecological function in cold terrestrial environments.
Collapse
Affiliation(s)
- Yu Du
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
| | - Wei Han
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
| | - Puyu Hao
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Yongqiang Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
| | - Ting Hu
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
| | - Yinxin Zeng
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; (Y.D.); (W.H.); (P.H.); (Y.H.); (T.H.)
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
- Antarctic Great Wall Ecology National Observation and Research Station, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China
- Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
- Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China
| |
Collapse
|
19
|
Calvopina-Chavez DG, Bursey DM, Tseng YJ, Patil LM, Bewley KD, Bennallack PR, McPhie JM, Wagstaff KB, Daley A, Miller SM, Moody JD, Price JC, Griffitts JS. Micrococcin cysteine-to-thiazole conversion through transient interactions between the scaffolding protein TclI and the modification enzymes TclJ and TclN. Appl Environ Microbiol 2024; 90:e0024424. [PMID: 38780510 PMCID: PMC11218655 DOI: 10.1128/aem.00244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase, and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, demonstrate complex formation between TclI, TclJ, and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core. IMPORTANCE Thiopeptides are a family of antimicrobial peptides characterized for having sulfur-containing heterocycles and for being highly post-translationally modified. Numerous thiopeptides have been identified; almost all of which inhibit protein synthesis in gram-positive bacteria. These intrinsic antimicrobial properties make thiopeptides promising candidates for the development of new antibiotics. The thiopeptide micrococcin is synthesized by the ribosome and undergoes several post-translational modifications to acquire its bioactivity. In this study, we identify key interactions within the enzymatic complex that carries out cysteine to thiazole conversion in the biosynthesis of micrococcin.
Collapse
Affiliation(s)
| | - Devan M. Bursey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Yi-Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Leena M. Patil
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Kathryn D. Bewley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - Philip R. Bennallack
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| | - Josh M. McPhie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Kimberly B. Wagstaff
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Anisha Daley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Susan M. Miller
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, USA
| | - James D. Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - John C. Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
20
|
Malfent F, Zehl M, Kirkegaard RH, Oberhofer M, Zotchev SB. Genomes and secondary metabolomes of Streptomyces spp. isolated from Leontopodium nivale ssp. alpinum. Front Microbiol 2024; 15:1408479. [PMID: 38946903 PMCID: PMC11212599 DOI: 10.3389/fmicb.2024.1408479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 07/02/2024] Open
Abstract
Bacterial endophytes dwelling in medicinal plants represent an as yet underexplored source of bioactive natural products with the potential to be developed into drugs against various human diseases. For the first time, several Streptomyces spp. were isolated from the rare and endangered traditional medicinal plant Leontopodium nivale ssp. alpinum, also known as Edelweiss. In the search for novel natural products, nine endophytic Streptomyces spp. from Edelweiss were investigated via genome sequencing and analysis, followed by fermentation in different media and investigation of secondary metabolomes. A total of 214 secondary metabolite biosynthetic gene clusters (BGCs), of which 35 are presumably unique, were identified by the bioinformatics tool antiSMASH in the genomes of these isolates. LC-MS analyses of the secondary metabolomes of these isolates revealed their potential to produce both known and presumably novel secondary metabolites, whereby most of the identified molecules could be linked to their cognate BGCs. This work sets the stage for further investigation of endophytic streptomycetes from Edelweiss aimed at the discovery and characterization of novel bioactive natural products.
Collapse
Affiliation(s)
- Fabian Malfent
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Rasmus H. Kirkegaard
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Martina Oberhofer
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Sergey B. Zotchev
- Division of Pharmacognosy, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Bello KE, Irekeola AA, Alshehri AA. Streptomyces isolate SOM013, a potential agent against microbial resistance and gastric ulcers. Saudi Pharm J 2024; 32:102101. [PMID: 38799000 PMCID: PMC11127256 DOI: 10.1016/j.jsps.2024.102101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
The menace of microbial resistance and re-emerging disease is still a problem for healthcare givers globally, and the need for newer sources of potent antibiotics has become paramount. This study investigated the antimicrobial and antiulcer activities of Streptomyces isolate SOM013. Streptomyces isolates were cultivated and purified following standard microbiological protocols. Secondary metabolites were recovered and characterized from Streptomyces isolate SOM013 via broth fermentation and extraction. Varying concentrations (0.5 mg/mL, 0.025 mg/mL and 0.0125 mg/mL) of the SOM013 extract were used for antimicrobial screening against resistant bacteria and medically important fungi (methicillin-resistant Escherichia coli, Oxacillin resistant Helicobacter pylori, Shigella spp, extended broad-spectrum resistant Pseudomonas aeruginosa, Streptococcus spp, Campylobacter spp, Candida albicans, Aspergillus niger, and Aspergillus flavus). The antiulcer activity of the SOM013 was also examined in a methanol-induced gastric ulcer animal model. A total of 23 Streptomyces spp were recovered from the study. Methanolic extract of the SOM013 isolates was more potent across the clinical test microorganisms compared to water extract. The antimicrobial activity was dose dependent, with methanolic extract at 0.05 g/mL displaying the highest zone of inhibition (18.8 ± 0.3 mm) when tested against extended broad-spectrum resistant Pseudomonas aeruginosa. Further, the extract's ulcer index and protection efficacy were significant as the concentration increased (P < 0.01). SOM013 isolate has a moderate antimicrobial and high antiulcer activity worthy of pharmacological exploration.
Collapse
Affiliation(s)
- Kizito Eneye Bello
- Department of Microbiology, Faculty of Natural Science, Kogi State (Prince Abubakar Audu) University, Anyigba, PMB 1008, Anyigba, Kogi State, Nigeria
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
- Microbiology Unit, Department of Biological Sciences, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara, Nigeria
| | - Ahmad A. Alshehri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, P.O. Box 1988, Najran, Saudi Arabia
- Health research center, Najran University, P.O. Box 1988, Najran, Saudi Arabia
| |
Collapse
|
22
|
Alkorta I, Garbisu C. Expanding the focus of the One Health concept: links between the Earth-system processes of the planetary boundaries framework and antibiotic resistance. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 0:reveh-2024-0013. [PMID: 38815132 DOI: 10.1515/reveh-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/26/2024] [Indexed: 06/01/2024]
Abstract
The scientific community warns that our impact on planet Earth is so acute that we are crossing several of the planetary boundaries that demarcate the safe operating space for humankind. Besides, there is mounting evidence of serious effects on people's health derived from the ongoing environmental degradation. Regarding human health, the spread of antibiotic resistant bacteria is one of the most critical public health issues worldwide. Relevantly, antibiotic resistance has been claimed to be the quintessential One Health issue. The One Health concept links human, animal, and environmental health, but it is frequently only focused on the risk of zoonotic pathogens to public health or, to a lesser extent, the impact of contaminants on human health, i.e., adverse effects on human health coming from the other two One Health "compartments". It is recurrently claimed that antibiotic resistance must be approached from a One Health perspective, but such statement often only refers to the connection between the use of antibiotics in veterinary practice and the antibiotic resistance crisis, or the impact of contaminants (antibiotics, heavy metals, disinfectants, etc.) on antibiotic resistance. Nonetheless, the nine Earth-system processes considered in the planetary boundaries framework can be directly or indirectly linked to antibiotic resistance. Here, some of the main links between those processes and the dissemination of antibiotic resistance are described. The ultimate goal is to expand the focus of the One Health concept by pointing out the links between critical Earth-system processes and the One Health quintessential issue, i.e., antibiotic resistance.
Collapse
Affiliation(s)
- Itziar Alkorta
- Department of Biochemistry and Molecular Biology, 16402 University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Carlos Garbisu
- NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Spain
| |
Collapse
|
23
|
Huff R, Mann MB, Castro IMS, Kothe CI, Frazzon J, Frazzon APG. First report on the characterization of the gut microbiota in Heliconius erato phyllis caterpillars (Lepidoptera-Nymphalidae) from southern Brazil. BRAZ J BIOL 2024; 84:e282245. [PMID: 38808791 DOI: 10.1590/1519-6984.282245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/06/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- R Huff
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Microbiologia, Imunologia e Parasitologia, Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Porto Alegre, RS, Brasil
| | - M B Mann
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Microbiologia, Imunologia e Parasitologia, Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Porto Alegre, RS, Brasil
| | - I M S Castro
- Universidade de São Paulo - USP, Interunidades de Pós-graduação em Bioinformática, São Paulo, SP, Brasil
| | - C I Kothe
- Université Paris-Saclay, Institut National de Recherche pour L'agriculture, L'alimentation et L'environnement - INRAE, L'institut Micalis, Jouy-en-Josas, France
| | - J Frazzon
- Universidade Federal do Rio Grande do Sul - UFRGS, Instituto de Ciência e Tecnologia de Alimentos, Porto Alegre, RS, Brasil
| | - A P Guedes Frazzon
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Microbiologia, Imunologia e Parasitologia, Programa de Pós-graduação em Microbiologia Agrícola e do Ambiente, Porto Alegre, RS, Brasil
| |
Collapse
|
24
|
Hnamte L, Vanlallawmzuali, Kumar A, Yadav MK, Zothanpuia, Singh PK. An updated view of bacterial endophytes as antimicrobial agents against plant and human pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100241. [PMID: 39091295 PMCID: PMC11292266 DOI: 10.1016/j.crmicr.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Bacterial endophytes are a crucial component of the phytomicrobiome, playing an essential role in agriculture and industries. Endophytes are a rich source of bioactive compounds, serving as natural antibiotics that can be effective in combating antibiotic resistance in pathogens. These bacteria interact with host plants through various processes such as quorum sensing, chemotaxis, antibiosis, and enzymatic activity. The current paper focuses on how plants benefit extensively from endophytic bacteria and their symbiotic relationship in which the microbes enhance plant growth, nitrogen fixation, increase nutrient uptake, improve defense mechanisms, and act as antimicrobial agents against pathogens. Moreover, it highlights some of the bioactive compounds produced by endophytes.
Collapse
Affiliation(s)
- Lalhmangaihmawia Hnamte
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Vanlallawmzuali
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Ajay Kumar
- Amity institute of Biotechnology, Amity University, Noida-201313, India
| | - Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda, Punjab, India
| | - Zothanpuia
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| | - Prashant Kumar Singh
- Department of Biotechnology/Life Sciences, Pachhunga University College (A Constituent College of Mizoram University), Aizawl-796001, Mizoram, India
| |
Collapse
|
25
|
Nugraha AP, Sibero MT, Farabi K, Surboyo MDC, Ernawati DS, Ahmad Noor TNEBT. Marine Ascomycetes Extract Antifungal Susceptibility against Candida spp. Isolates from Oral Candidiasis HIV/AIDS Patient: An In Vitro Study. Eur J Dent 2024; 18:624-631. [PMID: 38387624 PMCID: PMC11132786 DOI: 10.1055/s-0043-1768466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVE The etiology of oral candidiasis (OC) was Candida albicans, C. krusei, C. dubliniensis, C. tropicalis that are frequently found in human immunodeficiency virus/ acquired immunodeficiency syndrome (HIV/AIDS) patients. Marine ascomycetes (MA) have been widely reported as an important producer of various antibiotic compounds. However, there is limited study of antifungal compounds from MA against Candida species. The aim of this study was to investigate the antifungal susceptibility of MA against Candida spp. isolates from OC HIV/AIDS patient. MATERIALS AND METHODS Trichoderma sp. is a sponge-associated fungus collected from Karimunjawa National Park, Central Java, Indonesia. The validation of C. albicans, C. krusei, C. dubliniensis, C. tropicalis. was done by ChromAgar. This study was true experimental with post-test only control group design; the sample was four replications for each group. Nystatin administration (K +), the golden standard antifungal drug, was used. The minimum fungicidal concentration (MFC), minimum inhibitory concentration (MIC), and diffusion zone methods were done. Analysis of variance difference test, and post-hoc Tukey's honest significant different were done to analyze the significant different between groups (p ≤ 0.05). RESULTS The MFC and MIC of MA against C. albicans, C. krusei, C. dubliniensis, and C. tropicalis were found at 12.5%. In addition, the greatest diffusion zone of MA against C. albicans, C. krusei, C. dubliniensis, and C. tropicalis was found at 12.5%. There is no appreciable difference in antifungal activity between K + and 12.5% of MA extract (p ≥ 0.05). CONCLUSION Concentration of 12.5% MA extract has antifungal susceptibility against Candida spp. isolates from OC HIV/AIDS patient.
Collapse
Affiliation(s)
- Alexander Patera Nugraha
- Department of Orthodontic, Faculty of Dental Medicine - Universitas Airlangga, Surabaya, Indonesia
- Immunology Study Programme, Postgraduate School, Universitas Airlangga, Surabaya, Indonesia
| | - Mada Triandala Sibero
- Department of Marine Science, Fac. of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Kindi Farabi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Indonesia
| | | | - Diah Savitri Ernawati
- Department of Oral Medicine, Faculty of Dental Medicine - Universitas Airlangga, Surabaya, Indonesia
| | | |
Collapse
|
26
|
Abdelaziz R, Elsheshtawy HM, El-Houseiny W, Aloufi AS, Alwutayd KM, Mansour AT, Hadad G, Arisha AH, El-Murr AE, M Yassin A. A novel metabolite of Streptomyces coeruleorubidus exhibits antibacterial activity against Streptococcus agalactiae through modulation of physiological performance, inflammatory cytokines, apoptosis, and oxidative stress-correlated gene expressions in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 148:109496. [PMID: 38461875 DOI: 10.1016/j.fsi.2024.109496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Using the unique structures found in natural materials to produce new antibacterial drugs is crucial. Actinobacteria is well-known for its ability to produce naturally occurring chemicals with a variety of structural features that can be used as weapons against infectious bacteria. In the present study, the Streptomyces coeruleorubidus metabolites were characterized and their efficacy in suppressing Streptococcus agalactiae growth was carried out both in vitro and in vivo. The metabolites of S. coeruleorubidus were purified and identified as octasiloxane-hexadecamethyl (OHM). In vivo antibacterial activity of OHM revealed an inhibitory minimum concentration value of 0.5 μg/ml against S. agalactiae and induced ultrastructural cell changes revealed by scanning electron microscope. The safe concentration of OHM was determined as 0.8 mg/L for Nile tilapia. Four in vivo treatments were treated with 0 and 0.8 mg/L OHM and with or without challenge by S. agalactiae (1 × 107 CFU/mL) named control, OHM, S. agalactiae, and S. agalactiae + OHM groups. The OHM treatment improved the survival of Nile tilapia by 33.33% than S. agalactiae challenge group. Waterborne OHM treatment significantly mitigated the deleterious effects of S. agalactiae on hematological, hepato-renal functions, stress indicators, and antioxidant balance. OHM significantly alleviated nitric oxide levels, complement 3, IgM, and lysozyme activity, downregulation of liver antioxidant genes expression in S. agalactiae group. Furthermore, the addition of OHM to challenged fish with S. agalactiae-significantly reversed dramatic negative regulation of inflammatory, apoptosis, and immune related gene expression (caspase-3, bax, pcna, tnf-α, ifn-γ, il-8 il-1β, il-10, tgf-β, and bcl-2 in the Nile tilapia spleen. Additionally, the damaged hepatic and splenic structure induced by bacterial infection was restored with OHM treatment. Finally, S. coeruleorubidus metabolites (mainly OHM) revealed in vitro and in vivo antibacterial activity and showed alleviated effects on the physiological status of S. agalactiae infected tilapia.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hassnaa Mahmoud Elsheshtawy
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Walaa El-Houseiny
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Abeer S Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia; Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ghada Hadad
- Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, University of Sadat City, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Abd Elhakeem El-Murr
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amany M Yassin
- Laboratories Unit, Microbiology Department, Zagazig Univeristy Hospiltals, Zagazig University, Zagazig, Egypt
| |
Collapse
|
27
|
Belykh E, Maystrenko T, Velegzhaninov I, Tavleeva M, Rasova E, Rybak A. Taxonomic Diversity and Functional Traits of Soil Bacterial Communities under Radioactive Contamination: A Review. Microorganisms 2024; 12:733. [PMID: 38674676 PMCID: PMC11051952 DOI: 10.3390/microorganisms12040733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Studies investigating the taxonomic diversity and structure of soil bacteria in areas with enhanced radioactive backgrounds have been ongoing for three decades. An analysis of data published from 1996 to 2024 reveals changes in the taxonomic structure of radioactively contaminated soils compared to the reference, showing that these changes are not exclusively dependent on contamination rates or pollutant compositions. High levels of radioactive exposure from external irradiation and a high radionuclide content lead to a decrease in the alpha diversity of soil bacterial communities, both in laboratory settings and environmental conditions. The effects of low or moderate exposure are not consistently pronounced or unidirectional. Functional differences among taxonomic groups that dominate in contaminated soil indicate a variety of adaptation strategies. Bacteria identified as multiple-stress tolerant; exhibiting tolerance to metals and antibiotics; producing antioxidant enzymes, low-molecular antioxidants, and radioprotectors; participating in redox reactions; and possessing thermophilic characteristics play a significant role. Changes in the taxonomic and functional structure, resulting from increased soil radionuclide content, are influenced by the combined effects of ionizing radiation, the chemical toxicity of radionuclides and co-contaminants, as well as the physical and chemical properties of the soil and the initial bacterial community composition. Currently, the quantification of the differential contributions of these factors based on the existing published studies presents a challenge.
Collapse
Affiliation(s)
- Elena Belykh
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Tatiana Maystrenko
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Ilya Velegzhaninov
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Marina Tavleeva
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
- Department of Biology, Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prospekt, Syktyvkar 167001, Russia
| | - Elena Rasova
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| | - Anna Rybak
- Institute of Biology of Komi Scientific Centre, Ural Branch of Russian Academy of Sciences, 28 Kommunisticheskaya St., Syktyvkar 167982, Russia (I.V.); (E.R.)
| |
Collapse
|
28
|
Zheng J, Zhou Y, Zhang D, Ma K, Gong Y, Luo X, Liu J, Cui S. Intestinal melatonin levels and gut microbiota homeostasis are independent of the pineal gland in pigs. Front Microbiol 2024; 15:1352586. [PMID: 38596375 PMCID: PMC11003461 DOI: 10.3389/fmicb.2024.1352586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Melatonin (MEL) is a crucial neuroendocrine hormone primarily produced by the pineal gland. Pinealectomy (PINX) has been performed on an endogenous MEL deficiency model to investigate the functions of pineal MEL and its relationship with various diseases. However, the effect of PINX on the gastrointestinal tract (GIT) MEL levels and gut microbiome in pigs has not been previously reported. Methods By using a newly established pig PINX model, we detected the levels of MEL in the GIT by liquid chromatography-tandem mass spectrometry. In addition, we examined the effects of PINX on the expression of MEL synthesis enzymes, intestinal histomorphology, and the intestinal barrier. Furthermore, 16S rRNA sequencing was performed to analyze the colonic microbiome. Results PINX reduced serum MEL levels but did not affect GIT MEL levels. Conversely, MEL supplementation increased MEL levels in the GIT and intestinal contents. Neither PINX nor MEL supplementation had any effect on weight gain, organ coefficient, serum biochemical indexes, or MEL synthetase arylalkylamine N-acetyltransferase (AANAT) expression in the duodenum, ileum, and colon. Furthermore, no significant differences were observed in the intestinal morphology or intestinal mucosal barrier function due to the treatments. Additionally, 16S rRNA sequencing revealed that PINX had no significant impact on the composition of the intestinal microbiota. Nevertheless, MEL supplementation decreased the abundance of Fibrobacterota and increased the abundance of Actinobacteriota, Desulfobacterota, and Chloroflexi. Conclusion We demonstrated that synthesis of MEL in the GIT is independent of the pineal gland. PINX had no influence on intestinal MEL level and microbiota composition in pigs, while exogenous MEL alters the structure of the gut microbiota.
Collapse
Affiliation(s)
- Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kezhe Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yuneng Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xuan Luo
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiali Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, China
| |
Collapse
|
29
|
Kum E, İnce E. Metabolomics Approach to Explore Bioactive Natural Products Derived From Plant-Root-Associated Streptomyces. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04905-7. [PMID: 38512549 DOI: 10.1007/s12010-024-04905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/23/2024]
Abstract
Streptomyces, a prominent genus within the Actinomycetota phylum, is responsible for over 60% of clinically relevant antibiotics. Streptomyces strains inhabiting plant roots possess the potential to synthesize bioactive natural products, conferring defense and resilience to plants against pathogenic microorganisms. However, this potential remains largely unexplored. This study aims to screen for bioactive metabolites produced by Streptomyces strains in the plant rhizosphere.Six Streptomyces isolates were cultivated using three modified media to induce the production of diverse metabolites, employing the One Strain Many Compounds (OSMAC) approach. The metabolites present in extracts from fermentation broths were examined through a non-targeted Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) approach coupled with Global Natural Products Social Molecular Networking (GNPS MN). The antimicrobial activity of the extracts was assessed using the disc diffusion method.The strains demonstrated a wide-ranging antimicrobial efficacy against all examined organisms. The GNPS molecular network analyses reveal that metabolite profiles in extracts can exhibit variations based on the medium and solvent system employed. Notably, the ethyl acetate and dichloromethane extracts from Streptomyces sp. CAH29, cultivated in Glucose-Yeast Extract Medium (GYM), exhibited inhibition diameters of up to 30 mm against both Staphylococcus aureus and Candida albicans. Within the metabolomes of these strains, the antibiotics spiramycin and actinomycin were detected. Additionally, lyngbatoxin, a tumor promoter, and potential new analogs were identified. Significantly, a considerable portion of the produced metabolites did not align with any known compounds, indicating the existence of unidentified metabolites generated by these strains. This suggests the possibility of introducing novel chemical entities.Our study illustrated that Streptomyces strains associated with plant roots could be considered a valuable source of bioactive secondary metabolites. Furthermore, the metabolomics approach utilized in this study serves as a rapid and valuable tool for the screening of microorganisms capable of producing bioactive metabolites.
Collapse
Affiliation(s)
- Ekrem Kum
- The Institute of Natural and Applied Science, Dicle University, Diyarbakır, Turkey
| | - Ebru İnce
- Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey.
| |
Collapse
|
30
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
31
|
Murtaza M, Abrol V, Nehra E, Choudhary P, Singh SK, Jaglan S. Biodiversity and Bioactive Potential of Actinomycetes from Unexplored High Altitude Regions of Kargil, India. Indian J Microbiol 2024; 64:110-124. [PMID: 38468743 PMCID: PMC10924818 DOI: 10.1007/s12088-023-01133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/30/2023] [Indexed: 03/13/2024] Open
Abstract
The effectiveness of currently available antimicrobials and anticancer medications is steadily declining due to the emergence of drug resistance. Since actinobacteria are important producers of bioactive substances, we have isolated them from the soil samples of exotic North-Western Himalayan terrains. Out of 128 isolates, 39 strains were prioritized based on their bioactive potential. The diversity analysis revealed higher abundance distribution of actinomycetes in the soil of an open field (68.7%), followed by the mountainside (34.9%), from which most of the bioactive strains were obtained. The extract of the strain S26-11 was found to be highly active against Gram-positive Staphylococcus aureus and Bacillus subtilis with a MIC of 0.5 μg/mL and 1 μg/mL respectively. A cytotoxicity assay (sulforhodamine B) was performed on a series of cancer cell lines (PC-3, MCF-7, A-549, and HCT-116). The extract of the strain S26-11 showed cytotoxic activity against all cancer cell lines with an IC50 of 2 µg/mL against PC-3, 1.9 µg/mL against MCF-7, 0.52 µg/mL against A-549, and 0.83 µg/mL against HCT-116. Moreover, the antioxidant activity was assessed using a DPPH-based assay and the results revealed that the S17-8 isolate showed the highest antioxidant activity with IC50 of 114.136 μg/mL. The Response Surface Methodology (RSM) had helped to optimize the physical parameters for scaling up of the bioactive strain S26-11. The unexplored soil niches of Kargil (UT, Ladakh), India, is rich in actinomycetes which are having potential bioactivities, would be worth to explore for the discovery of bioactive compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01133-1.
Collapse
Affiliation(s)
- Mohd Murtaza
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Vidushi Abrol
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016 India
| | - Ekta Nehra
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Poonam Choudhary
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Shashank K. Singh
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Sundeep Jaglan
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180016 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
32
|
Chen C, Chen L, Mao C, Jin L, Wu S, Zheng Y, Cui Z, Li Z, Zhang Y, Zhu S, Jiang H, Liu X. Natural Extracts for Antibacterial Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306553. [PMID: 37847896 DOI: 10.1002/smll.202306553] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Indexed: 10/19/2023]
Abstract
Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.
Collapse
Affiliation(s)
- Cuihong Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Lin Chen
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Congyang Mao
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Liguo Jin
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Shuilin Wu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Yiheyuan Road 5#, Beijing, 100871, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Zhaoyang Li
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Shengli Zhu
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Hui Jiang
- School of Materials Science & Engineering, the Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Yaguan Road 135#, Tianjin, 300072, China
| | - Xiangmei Liu
- Biomedical Materials Engineering Research Center, Hubei Key Laboratory of Polymer Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340#, Tianjin, 300401, China
| |
Collapse
|
33
|
Chhetri G, Kim MJ, Kim I, Tran DVH, Kim YW, Kim HW, Seo T. Streptomyces tagetis sp. nov., a chromomycin producing bacteria isolated from the roots of Tagetes patula. Front Microbiol 2024; 15:1361583. [PMID: 38495511 PMCID: PMC10940327 DOI: 10.3389/fmicb.2024.1361583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024] Open
Abstract
A novel halotolerant actinobacterium, designated as RG38T, capable of producing black extracellular melanin pigment on SP2 agar, was isolated from the roots of Tagetes patula. Comparative analysis of the 16S rRNA gene sequence revealed the highest similarity to Streptomyces collinus NBRC 12759T (99.3%). Phylogenetic analysis showed that strain RG38T clustered within the genus Streptomyces forming a monophyletic cluster with its close relatives. The average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and amino-acid identity (AAI) values between strain RG38T and related species within the genus Streptomyces were below the standard threshold for prokaryotic species delineation. The DNA G + C content of the strain RG38T was determined to be 73.3%. The genome size measured 7,150,598 bp comprising 17 contigs and encompassed 6,053 protein coding genes. AntiSMASH analysis of the whole genome revealed 35 putative biosynthetic gene clusters (BGCs) responsible for various secondary metabolites. Among these clusters, two gene clusters exhibited 100% similarity to the chromomycin A3, albaflavenone, and anthracimycin, respectively. These compounds were reported to possess significant anticancer and antibacterial activities. LC-MS-based analysis, coupled with further isolation studies, confirmed the production of chromomycins A2 (1), A3 (2), and their derivatives, along with their antibiotic activities. These findings underscore the potential of this novel strain as a novel resource for the discovery of diverse antimicrobial compounds. This study is the first to report an antimicrobial compound producing Streptomyces species isolated from medicinal plant T. patula. Based on a polyphasic study, the strain RG38T isolated from an unexplored habitat with a high potential for new natural products represents a novel species within the genus Streptomyces. Accordingly, we propose the name Streptomyces tagetis sp. nov. for this novel species, with the type strain is RG38T (=KCTC 49624T = TBRC 15113T).
Collapse
Affiliation(s)
- Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Myeong Ji Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Duc V. H. Tran
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Young-Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Hyun Woo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, Republic of Korea
| |
Collapse
|
34
|
Nakanishi A, Omino N, Nakamura T, Goto S, Matsumoto R, Yomogita M, Narisawa N, Kimijima M, Iritani K. Evaluation of Cellular Responses of Heterotrophic Escherichia coli Cultured with Autotrophic Chlamydomonas reinhardtii as a Nutrient Source by Analyses Based on Microbiology and Transcriptome. Microorganisms 2024; 12:452. [PMID: 38543503 PMCID: PMC10972114 DOI: 10.3390/microorganisms12030452] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 11/12/2024] Open
Abstract
Heterotrophic microorganism Escherichia coli LS5218 was cultured with flesh green alga Chlamydomonas reinhardtii C-9: NIES-2235 as a nutrient supplier. In order to evaluate the cell response of Escherichia coli with Chlamydomonas reinhardtii, Escherichia coli was evaluated with microbial methods and comprehensive gene transcriptional analyses. Escherichia coli with Chlamydomonas reinhardtii showed a specific growth rate (µmax) of 1.04 ± 0.27, which was similar to that for cells growing in Luria-Bertani medium (µmax = 1.20 ± 0.40 h-1). Furthermore, comparing the cellular responses of Escherichia coli in a green-algae-containing medium with those in the Luria-Bertani medium, transcriptomic analysis showed that Escherichia coli upregulated gene transcription levels related to glycolysis, 5-phospho-d-ribosyl-1-diphosphate, and lipid synthesis; on the other hand, it decreased the levels related to lipid degradation. In particular, the transcription levels were increased by 103.7 times on pgm (p * < 0.05 (p = 0.015)) in glycolysis, and decreased by 0.247 times on fadE (p * < 0.05 (p = 0.041)) in lipolysis. These genes are unique and could regulate the direction of metabolism; these responses possibly indicate carbon source assimilation as a cellular response in Escherichia coli. This paper is the first report to clarify that Escherichia coli, a substance-producing strain, directly uses Chlamydomonas reinhardtii as a nutrient supplier by evaluation of the cellular responses analyzed with microbial methods and transcriptome analysis.
Collapse
Affiliation(s)
- Akihito Nakanishi
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
- Graduate School of Bionics, Tokyo University of Technology, Hachioji 192-0982, Japan;
| | - Natsumi Omino
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
| | - Tomoyo Nakamura
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
- Graduate School of Bionics, Tokyo University of Technology, Hachioji 192-0982, Japan;
| | - Saki Goto
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
- Graduate School of Bionics, Tokyo University of Technology, Hachioji 192-0982, Japan;
| | - Riri Matsumoto
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji 192-0982, Japan; (N.O.); (T.N.); (S.G.); (R.M.)
| | - Misaki Yomogita
- Graduate School of Bionics, Tokyo University of Technology, Hachioji 192-0982, Japan;
| | - Naoki Narisawa
- Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa 252-0880, Japan; (N.N.); (M.K.)
| | - Manami Kimijima
- Bioresource Utilization Sciences, Nihon University Graduate School of Bioresource Sciences, Fujisawa 252-0880, Japan; (N.N.); (M.K.)
| | - Kohei Iritani
- Department of Applied Chemistry, School of Engineering, Tokyo University of Technology, Hachioji 192-0982, Japan
- Research Center for Advanced Lignin-Based Materials, Tokyo University of Technology, Hachioji 192-0982, Japan
| |
Collapse
|
35
|
Manthei KA, Munson LM, Nandakumar J, Simmons LA. Structural and biochemical characterization of the mitomycin C repair exonuclease MrfB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580553. [PMID: 38405983 PMCID: PMC10889028 DOI: 10.1101/2024.02.15.580553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitomycin C (MMC) repair factor A (mrfA) and factor B (mrfB), encode a conserved helicase and exonuclease that repair DNA damage in the soil-dwelling bacterium Bacillus subtilis. Here we have focused on the characterization of MrfB, a DEDDh exonuclease in the DnaQ superfamily. We solved the structure of the exonuclease core of MrfB to a resolution of 2.1 Å, in what appears to be an inactive state. In this conformation, a predicted α-helix containing the catalytic DEDDh residue Asp172 adopts a random coil, which moves Asp172 away from the active site and results in the occupancy of only one of the two catalytic Mg2+ ions. We propose that MrfB resides in this inactive state until it interacts with DNA to become activated. By comparing our structure to an AlphaFold prediction as well as other DnaQ-family structures, we located residues hypothesized to be important for exonuclease function. Using exonuclease assays we show that MrfB is a Mg2+-dependent 3'-5' DNA exonuclease. We show that Leu113 aids in coordinating the 3' end of the DNA substrate, and that a basic loop is important for substrate binding. This work provides insight into the function of a recently discovered bacterial exonuclease important for the repair of MMC-induced DNA adducts.
Collapse
Affiliation(s)
- Kelly A. Manthei
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lia M. Munson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lyle A. Simmons
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Rammali S, Rahim A, El Aalaoui M, Bencharki B, Dari K, Habach A, Abdeslam L, Khattabi A. Antimicrobial potential of Streptomyces coeruleofuscus SCJ isolated from microbiologically unexplored garden soil in Northwest Morocco. Sci Rep 2024; 14:3359. [PMID: 38336871 PMCID: PMC10858231 DOI: 10.1038/s41598-024-53801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Research on microorganisms in various biotopes is required to identify new, natural potent molecules. These molecules are essential to control the development of multi-drug resistance (MDR). In the present study, a Streptomyces sp., namely SCJ, was isolated from a soil sample collected from a Moroccan garden. SCJ isolate was identified on the basis of a polyphasic approach, which included cultural, micro-morphological, biochemical, and physiological characteristics. The sequence of the 16S rRNA gene of the SCJ strain showed 99.78% similarity to strains of Streptomyces coeruleofuscus YR-T (KY753282.1). The preliminary screening indicated that the SCJ isolate exhibited activity against Candida albicans ATCC 60,193, Escherichia coli ATCC 25,922, Staphylococcus aureus CECT 976, Staphylococcus aureus ATCC 25,923, Bacillus cereus ATCC 14,579, Pseudomonas aeruginosa ATCC 27,853, as well as various other clinical MDR bacteria and five phytopathogenic fungi. The ethyl acetate extract of the isolated strain demonstrated highly significant (p < 0.05) antimicrobial activity against multi-resistant bacteria and phytopathogenic fungi. The absorption spectral analysis of the ethyl acetate extract of the SCJ isolate obtained showed no absorption peaks characteristic of polyene molecules. Moreover, no hemolytic activity against erythrocytes was observed in this extract. GC-MS analysis of the ethyl acetate extract of the SCJ isolate revealed the presence of 9 volatile compounds including 3,5-Dimethylpyrazole, and pyrrolizidine derivatives (Pyrrolo[1,2-a]pyrazine 1,4-dione, hexahydro-3-(2-methylpropyl)), which could potentially explain the antimicrobial activity demonstrated in this study.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco.
| | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km From Settat, 26400, Settat, Morocco
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Khadija Dari
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Aicha Habach
- Biotechnology Unit, National Institute of Agronomic Research of Rabat, Av. Annasr, 10000, Rabat, Morocco
| | - Lamiri Abdeslam
- Applied Chemistry & Environment Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| |
Collapse
|
37
|
Shen Y, Liu N, Wang Z. Recent advances in the culture-independent discovery of natural products using metagenomic approaches. Chin J Nat Med 2024; 22:100-111. [PMID: 38342563 DOI: 10.1016/s1875-5364(24)60585-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Indexed: 02/13/2024]
Abstract
Natural products derived from bacterial sources have long been pivotal in the discovery of drug leads. However, the cultivation of only about 1% of bacteria in laboratory settings has left a significant portion of biosynthetic diversity hidden within the genomes of uncultured bacteria. Advances in sequencing technologies now enable the exploration of genetic material from these metagenomes through culture-independent methods. This approach involves extracting genetic sequences from environmental DNA and applying a hybrid methodology that combines functional screening, sequence tag-based homology screening, and bioinformatic-assisted chemical synthesis. Through this process, numerous valuable natural products have been identified and synthesized from previously uncharted metagenomic territories. This paper provides an overview of the recent advancements in the utilization of culture-independent techniques for the discovery of novel biosynthetic gene clusters and bioactive small molecules within metagenomic libraries.
Collapse
Affiliation(s)
- Yiping Shen
- Laboratory of Microbial Drug Discovery, China Pharmaceutical University, Nanjing 211198, China
| | - Nan Liu
- Laboratory of Microbial Drug Discovery, China Pharmaceutical University, Nanjing 211198, China
| | - Zongqiang Wang
- Laboratory of Microbial Drug Discovery, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
38
|
Liu J, Xu Z, Bai Y, Feng J, Xu L, Li F. Streptomyces albireticuli lung infection managed as a pulmonary air cyst: a case report and literature review. Front Cell Infect Microbiol 2024; 13:1296491. [PMID: 38274731 PMCID: PMC10808341 DOI: 10.3389/fcimb.2023.1296491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Streptomyces, the largest genus in the Streptomycetaceae family and a prolific producer of antibacterial drugs, is a saprophytic soil organism that rarely causes invasive infections. Here we report a case of necrotic pneumonia caused by Streptomyces albireticuli in a 75-year-old man who presented with progressive chest tightness and dyspnea. Streptomyces albireticuli was isolated from his bronchoalveolar lavage fluid and identified through whole-genome sequencing (WGS) and phylogenetic analysis. The patient responded satisfactorily to clarithromycin therapy. The findings of this study may enhance our vigilance in identifying visceral infections caused by Streptomyces.
Collapse
Affiliation(s)
- Jiajiao Liu
- Department of Neurosurgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Critical Care Medicine, The General Hospital of Western Theatre Command Chinese People's Liberation Army (PLA), Chengdu, China
| | - Zhaoxia Xu
- Department of Emergency Department, The General Hospital of Western Theatre Command Chinese People's Liberation Army (PLA), Chengdu, China
| | - Yujie Bai
- Department of Critical Care Medicine, The General Hospital of Western Theatre Command Chinese People's Liberation Army (PLA), Chengdu, China
| | - Jian Feng
- Department of Critical Care Medicine, The General Hospital of Western Theatre Command Chinese People's Liberation Army (PLA), Chengdu, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fuxiang Li
- Department of Critical Care Medicine, The General Hospital of Western Theatre Command Chinese People's Liberation Army (PLA), Chengdu, China
| |
Collapse
|
39
|
Singh N, Patil S, Shahnawaz M, Rai V, Patil A, Tripathi CKM, Wen F, Dong S, Cai D. Green extraction of puromycin-based antibiotics from Streptomyces albofaciens (MS38) for sustainable biopharmaceutical applications. Front Chem 2024; 11:1326328. [PMID: 38264123 PMCID: PMC10803528 DOI: 10.3389/fchem.2023.1326328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024] Open
Abstract
Background: Microbial secondary metabolites have shown promise as a source of novel antimicrobial agents. In this study, we aimed to isolate, characterize, and evaluate the antimicrobial activity of compound from a novel Streptomyces albofaciens strain MS38. The objective was to identify a potential bioactive compound with broad-spectrum antimicrobial properties. Methods: The isolated strain MS38 on starch casein agar was characterized using morphological, physiological, and molecular identification techniques. The compound was obtained from the fermented broth through extraction with n-butanol and further purification using silica gel column chromatography and high-performance liquid chromatography (HPLC). Structural elucidation was conducted using Ultraviolet (UV), Infrared (IR), nuclear magnetic resonance (NMR), and mass spectrometry (MS) techniques. The antimicrobial activity was evaluated using the agar well diffusion method and the microplate Alamar blue assay (MABA). Results: The isolated strain MS38 was identified as novel S. albofaciens based on morphological characteristics and confirmed by 16S sequences analysis and MALDI-TOF MS. The compound obtained from the fermented broth exhibited substantial antimicrobial activity against a variety of pathogenic bacteria and fungi. Structural analysis revealed a complex chemical structure with characteristic functional groups indicative of potential antimicrobial properties. The compound demonstrated strong activity against both Gram-positive (Staphylococcus Spp.) and Gram-negative (Klebsiella pneumoniae and Escherichia coli) bacteria, as well as fungi, including Candida albicans and Trichophyton rubrum. Conclusion: This study successfully isolated and characterized a bioactive compound from a novel S. albofaciens MS38. The compound exhibited significant antimicrobial activity against a range of pathogenic microorganisms. These findings underscore the importance of exploring microbial biodiversity for the discovery of novel antimicrobial agents. This study contributes to the growing knowledge of microbial secondary metabolites with potential therapeutic value.
Collapse
Affiliation(s)
- Neha Singh
- Biochemistry and Microbiology Laboratory, School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
- Virology Lab, Department of Microbiology, Pandit Jawahar Lal Nehru Memorial Medical College, Raipur, Chhattisgarh, India
| | - Sandip Patil
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
- Paediatric Research Institute, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Mohd. Shahnawaz
- Department of Botany, University of Ladakh, Ladakh UT, India
| | - Vibhuti Rai
- Biochemistry and Microbiology Laboratory, School of Studies in Life Sciences, Pt. Ravishankar Shukla University, Raipur, India
| | - Abhinandan Patil
- Division of Pharmacy, Dr. DY Patil University, Kolhapur, Maharashtra, India
| | - C. K. M. Tripathi
- Fermentation Technology Division, Central Drug Research Institute, CSIR, Lucknow, India
| | - Feiqiu Wen
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Shaowei Dong
- Department of Haematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, Guangdong, China
| | - Defeng Cai
- Clinical Laboratory (Pathology) Centre, South China Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Schmidt JJ, Remme DCLE, Eisfeld J, Brandenburg VB, Bille H, Narberhaus F. The LysR-type transcription factor LsrB regulates beta-lactam resistance in Agrobacterium tumefaciens. Mol Microbiol 2024; 121:26-39. [PMID: 37985428 DOI: 10.1111/mmi.15191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen, broadly known as the causal agent of the crown gall disease. The soil bacterium is naturally resistant to beta-lactam antibiotics by utilizing the inducible beta-lactamase AmpC. Our picture on the condition-dependent regulation of ampC expression is incomplete. A known regulator is AmpR controlling the transcription of ampC in response to unrecycled muropeptides as a signal for cell wall stress. In our study, we uncovered the global transcriptional regulator LsrB as a critical player acting upstream of AmpR. Deletion of lsrB led to severe ampicillin and penicillin sensitivity, which could be restored to wild-type levels by lsrB complementation. By transcriptome profiling via RNA-Seq and qRT-PCR and by electrophoretic mobility shift assays, we show that ampD coding for an anhydroamidase involved in peptidoglycan recycling is under direct negative control by LsrB. Controlling AmpD levels by the LysR-type regulator in turn impacts the cytoplasmic concentration of cell wall degradation products and thereby the AmpR-mediated regulation of ampC. Our results substantially expand the existing model of inducible beta-lactam resistance in A. tumefaciens by establishing LsrB as higher-level transcriptional regulator.
Collapse
Affiliation(s)
| | | | - Jessica Eisfeld
- Medical Microbiology, Ruhr University Bochum, Bochum, Germany
| | | | - Hannah Bille
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
41
|
Pombubpa N, Lakmuang C, Tiwong P, Kanchanabanca C. Streptomyces Diversity Maps Reveal Distinct High-Specificity Biogeographical and Environmental Patterns Compared to the Overall Bacterial Diversity. Life (Basel) 2023; 14:11. [PMID: 38276260 PMCID: PMC10821021 DOI: 10.3390/life14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Despite their enormous impact on the environment and humans, the distribution and variety of the biggest natural secondary metabolite producers, the genus Streptomyces, have not been adequately investigated. We developed representative maps from public EMP 16S rRNA amplicon sequences microbiomics data. Streptomyces ASVs were extracted from the EMP overall bacterial community, demonstrating Streptomyces diversity and identifying crucial diversity patterns. Our findings revealed that while the EMP primarily distinguished bacterial communities as host-associated or free-living (EMPO level 1), the Streptomyces community showed no significant difference but exhibited distinctions between categories in EMPO level 2 (animal, plant, non-saline, and saline). Multiple linear regression analysis demonstrated that pH, temperature, and salinity significantly predicted Streptomyces richness, with richness decreasing as these factors increased. However, latitude and longitude do not predict Streptomyces richness. Our Streptomyces maps revealed that additional samplings in Africa and Southeast Asia are needed. Additionally, our findings indicated that a greater number of samples did not always result in greater Streptomyces richness; future surveys may not necessitate extensive sampling from a single location. Broader sampling, rather than local/regional sampling, may be more critical in answering microbial biogeograph questions. Lastly, using 16S rRNA gene sequencing data has some limitations, which should be interpreted cautiously.
Collapse
Affiliation(s)
- Nuttapon Pombubpa
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chayaporn Lakmuang
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
| | - Pornnapat Tiwong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
| | - Chompoonik Kanchanabanca
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (N.P.); (C.L.); (P.T.)
| |
Collapse
|
42
|
Jeyachandran S, Vibhute P, Kumar D, Ragavendran C. Random mutagenesis as a tool for industrial strain improvement for enhanced production of antibiotics: a review. Mol Biol Rep 2023; 51:19. [PMID: 38100064 DOI: 10.1007/s11033-023-08975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Secondary metabolites are produced by microbes in minimal quantities in the natural environment out of necessity. However, in the pharmaceutical industry, their overproduction becomes essential. To achieve higher yields, genetic modifications are employed to create strains that surpass the productivity of the initially isolated strains. While rational screening and genetic engineering have emerged as valuable practices in recent years, the cost-effective technique of mutagenesis and selection, known as "random screening," remains a preferred method for efficient short-term strain development. This review aims to comprehensively explore all aspects of strain improvement, focusing on why random mutagenesis continues to be widely adopted.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Bio-signal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
| | - Prachi Vibhute
- PG & Research Department of Biotechnology & Microbiology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620001, India
| | - Dinesh Kumar
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR-Central Salt & Marine Chemical Research Institute, Mandapam, Tamil Nadu, 623 519, India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India
| |
Collapse
|
43
|
Padayachee T, Lamb DC, Nelson DR, Syed K. Structure-Function Analysis of the Biotechnologically Important Cytochrome P450 107 (CYP107) Enzyme Family. Biomolecules 2023; 13:1733. [PMID: 38136604 PMCID: PMC10741444 DOI: 10.3390/biom13121733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Cytochrome P450 monooxygenases (CYPs; P450s) are a superfamily of heme-containing enzymes that are recognized for their vast substrate range and oxidative multifunctionality. CYP107 family members perform hydroxylation and epoxidation processes, producing a variety of biotechnologically useful secondary metabolites. Despite their biotechnological importance, a thorough examination of CYP107 protein structures regarding active site cavity dynamics and key amino acids interacting with bound ligands has yet to be undertaken. To address this research knowledge gap, 44 CYP107 crystal structures were investigated in this study. We demonstrate that the CYP107 active site cavity is very flexible, with ligand binding reducing the volume of the active site in some situations and increasing volume size in other instances. Polar interactions between the substrate and active site residues result in crucial salt bridges and the formation of proton shuttling pathways. Hydrophobic interactions, however, anchor the substrate within the active site. The amino acid residues within the binding pocket influence substrate orientation and anchoring, determining the position of the hydroxylation site and hence direct CYP107's catalytic activity. Additionally, the amino acid dynamics within and around the binding pocket determine CYP107's multifunctionality. This study serves as a reference for understanding the structure-function analysis of CYP107 family members precisely and the structure-function analysis of P450 enzymes in general. Finally, this work will aid in the genetic engineering of CYP107 enzymes to produce novel molecules of biotechnological interest.
Collapse
Affiliation(s)
- Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| | - David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
44
|
Zou J, Mao Y, Hou B, Kang Y, Wang R, Wu H, Ye J, Zhang H. DeoR regulates lincomycin production in Streptomyces lincolnensis. World J Microbiol Biotechnol 2023; 39:332. [DOI: doi.org/10.1007/s11274-023-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
|
45
|
Ongenae V, Kempff A, van Neer V, Shomar H, Tesson F, Rozen D, Briegel A, Claessen D. Genome sequence and characterization of Streptomyces phages Vanseggelen and Verabelle, representing two new species within the genus Camvirus. Sci Rep 2023; 13:20153. [PMID: 37978256 PMCID: PMC10656467 DOI: 10.1038/s41598-023-47634-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023] Open
Abstract
Despite the rising interest in bacteriophages, little is known about their infection cycle and lifestyle in a multicellular host. Even in the model system Streptomyces, only a small number of phages have been sequenced and well characterized so far. Here, we report the complete characterization and genome sequences of Streptomyces phages Vanseggelen and Verabelle isolated using Streptomyces coelicolor as a host. A wide range of Streptomyces strains could be infected by both phages, but neither of the two phages was able to infect members of the closely related sister genus Kitasatospora. The phages Vanseggelen and Verabelle have a double-stranded DNA genome with lengths of 48,720 and 48,126 bp, respectively. Both phage genomes contain 72 putative genes, and the presence of an integrase encoding protein indicates a lysogenic lifestyle. Characterization of the phages revealed their stability over a wide range of temperatures (30-45 °C) and pH values (4-10). In conclusion, Streptomyces phage Vanseggelen and Streptomyces phage Verabelle are newly isolated phages that can be classified as new species in the genus Camvirus, within the subfamily Arquattrovirinae.
Collapse
Affiliation(s)
- Véronique Ongenae
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Annabel Kempff
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Vera van Neer
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
| | - Helena Shomar
- MDM Lab, Department Genomes and Genetics, Pasteur Institute, Paris, France
- INSERM, U1284, Université Paris-Cité, Paris, France
| | | | - Daniël Rozen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| | - Ariane Briegel
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| | - Dennis Claessen
- Molecular Biotechnology, Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
46
|
Khan S, Srivastava S, Karnwal A, Malik T. Streptomyces as a promising biological control agents for plant pathogens. Front Microbiol 2023; 14:1285543. [PMID: 38033592 PMCID: PMC10682734 DOI: 10.3389/fmicb.2023.1285543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Plant diseases caused by pathogenic microorganisms in agriculture present a considerable obstacle, resulting in approximately 30-40% crop damage. The use of conventional techniques to manage these microorganisms, i.e., applying chemical pesticides and antimicrobials, has been discovered to have adverse effects on human health and the environment. Furthermore, these methods have contributed to the emergence of resistance among phytopathogens. Consequently, it has become imperative to investigate natural alternatives to address this issue. The Streptomyces genus of gram-positive bacteria is a potentially viable natural alternative that has been extensively researched due to its capacity to generate diverse antimicrobial compounds, such as metabolites and organic compounds. Scientists globally use diverse approaches and methodologies to extract new bioactive compounds from these bacteria. The efficacy of bioactive compounds in mitigating various phytopathogens that pose a significant threat to crops and plants has been demonstrated. Hence, the Streptomyces genus exhibits potential as a biological control agent for combating plant pathogens. This review article aims to provide further insight into the Streptomyces genus as a source of antimicrobial compounds that can potentially be a biological control against plant pathogens. The investigation of various bioactive compounds synthesized by this genus can enhance our comprehension of their prospective utilization in agriculture.
Collapse
Affiliation(s)
- Shaista Khan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Seweta Srivastava
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
47
|
Ge ZB, Zhai ZQ, Xie WY, Dai J, Huang K, Johnson DR, Zhao FJ, Wang P. Two-tiered mutualism improves survival and competitiveness of cross-feeding soil bacteria. THE ISME JOURNAL 2023; 17:2090-2102. [PMID: 37737252 PMCID: PMC10579247 DOI: 10.1038/s41396-023-01519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Metabolic cross-feeding is a pervasive microbial interaction type that affects community stability and functioning and directs carbon and energy flows. The mechanisms that underlie these interactions and their association with metal/metalloid biogeochemistry, however, remain poorly understood. Here, we identified two soil bacteria, Bacillus sp. BP-3 and Delftia sp. DT-2, that engage in a two-tiered mutualism. Strain BP-3 has low utilization ability of pyruvic acid while strain DT-2 lacks hexokinase, lacks a phosphotransferase system, and is defective in glucose utilization. When strain BP-3 is grown in isolation with glucose, it releases pyruvic acid to the environment resulting in acidification and eventual self-killing. However, when strain BP-3 is grown together with strain DT-2, strain DT-2 utilizes the released pyruvic acid to meet its energy requirements, consequently rescuing strain BP-3 from pyruvic acid-induced growth inhibition. The two bacteria further enhance their collective competitiveness against other microbes by using arsenic as a weapon. Strain DT-2 reduces relatively non-toxic methylarsenate [MAs(V)] to highly toxic methylarsenite [MAs(III)], which kills or suppresses competitors, while strain BP-3 detoxifies MAs(III) by methylation to non-toxic dimethylarsenate [DMAs(V)]. These two arsenic transformations are enhanced when strains DT-2 and BP-3 are grown together. The two strains, along with their close relatives, widely co-occur in soils and their abundances increase with the soil arsenic concentration. Our results reveal that these bacterial types employ a two-tiered mutualism to ensure their collective metabolic activity and maintain their ecological competitive against other soil microbes. These findings shed light on the intricateness of bacterial interactions and their roles in ecosystem functioning.
Collapse
Affiliation(s)
- Zhan-Biao Ge
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi-Qiang Zhai
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wan-Ying Xie
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Dai
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ke Huang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
- Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland
| | - Fang-Jie Zhao
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peng Wang
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
- Centre for Agriculture and Health, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
48
|
Pinheiro Alves de Souza Y, Schloter M, Weisser W, Schulz S. Deterministic Development of Soil Microbial Communities in Disturbed Soils Depends on Microbial Biomass of the Bioinoculum. MICROBIAL ECOLOGY 2023; 86:2882-2893. [PMID: 37624441 PMCID: PMC10640511 DOI: 10.1007/s00248-023-02285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Despite its enormous importance for ecosystem services, factors driving microbial recolonization of soils after disturbance are still poorly understood. Here, we compared the microbial recolonization patterns of a disturbed, autoclaved soil using different amounts of the original non-disturbed soil as inoculum. By using this approach, we manipulated microbial biomass, but did not change microbial diversity of the inoculum. We followed the development of a new soil microbiome after reinoculation over a period of 4 weeks using a molecular barcoding approach as well as qPCR. Focus was given on the assessment of bacteria and archaea. We could show that 1 week after inoculation in all inoculated treatments bacterial biomass exceeded the values from the original soil as a consequence of high dissolved organic carbon (DOC) concentrations in the disturbed soil resulting from the disturbance. This high biomass was persistent over the complete experimental period. In line with the high DOC concentrations, in the first 2 weeks of incubation, copiotrophic bacteria dominated the community, which derived from the inoculum used. Only in the disturbed control soils which did not receive a microbial inoculum, recolonization pattern differed. In contrast, archaeal biomass did not recover over the experimental period and recolonization was strongly triggered by amount of inoculated original soil added. Interestingly, the variability between replicates of the same inoculation density decreased with increasing biomass in the inoculum, indicating a deterministic development of soil microbiomes if higher numbers of cells are used for reinoculation.
Collapse
Affiliation(s)
- Yuri Pinheiro Alves de Souza
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Neuherberg, Germany
- Technische Universität München, TUM School of Life Science, Chair of Environmental Microbiology, Freising, Germany
| | - Michael Schloter
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Neuherberg, Germany
- Technische Universität München, TUM School of Life Science, Chair of Environmental Microbiology, Freising, Germany
| | - Wolfgang Weisser
- Technische Universität München, TUM School of Life Science, Chair of Terrestrial Ecology, Freising, Germany
| | - Stefanie Schulz
- Helmholtz Zentrum München, Research Unit Comparative Microbiome Analysis, Neuherberg, Germany.
| |
Collapse
|
49
|
Calvopina-Chavez DG, Bursey DM, Tseng YJ, Patil LM, Bewley KD, Bennallack PR, McPhie JM, Wagstaff KB, Daley A, Miller SM, Moody JD, Price JC, Griffitts JS. Micrococcin cysteine-to-thiazole conversion through transient interactions between a scaffolding protein and two modification enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563616. [PMID: 37961320 PMCID: PMC10634744 DOI: 10.1101/2023.10.23.563616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, we demonstrate complex formation between TclI, TclJ and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core.
Collapse
Affiliation(s)
| | - Devan M Bursey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Yi-Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Leena M Patil
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kathryn D Bewley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
- Currently at: Genentech Inc, San Francisco, CA 94080
| | - Philip R Bennallack
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
- Currently at: Werfen North America, Bedford, MA 01730
| | - Josh M McPhie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kimberly B Wagstaff
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Anisha Daley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Susan M Miller
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Joel S Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
50
|
Chávez-Hernández M, Ortiz-Álvarez J, Morales-Jiménez J, Villa-Tanaca L, Hernández-Rodríguez C. Phenotypic and Genomic Characterization of Streptomyces pakalii sp. nov., a Novel Species with Anti-Biofilm and Anti-Quorum Sensing Activity in ESKAPE Bacteria. Microorganisms 2023; 11:2551. [PMID: 37894209 PMCID: PMC10608816 DOI: 10.3390/microorganisms11102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of infections caused by antimicrobial multi-resistant microorganisms has led to the search for new microorganisms capable of producing novel antibiotics. This work proposes Streptomyces pakalii sp. nov. as a new member of the Streptomycetaceae family. The strain ENCB-J15 was isolated from the jungle soil in Palenque National Park, Chiapas, Mexico. The strain formed pale brown, dry, tough, and buried colonies in the agar with no diffusible pigment in GAE (glucose-asparagine-yeast extract) medium. Scanning electron micrographs showed typical mycelium with long chains of smooth and oval-shaped spores (3-10 m). The strain grew in all of the International Streptomyces Project (ISP)'s media at 28-37 °C with a pH of 6-9 and 0-10% NaCl. S. pakalii ENCB-J15 assimilated diverse carbon as well as organic and inorganic nitrogen sources. The strain also exhibited significant inhibitory activity against the prodigiosin synthesis of Serratia marcescens and the inhibition of the formation and destruction of biofilms of ESKAPE strains of Acinetobacter baumannii and Klebsiella pneumoniae. The draft genome sequencing of ENCB-J15 revealed a 7.6 Mb genome with a high G + C content (71.6%), 6833 total genes, and 6746 genes encoding putative proteins. A total of 26 accessory clusters of proteins associated with carbon sources and amino acid catabolism, DNA modification, and the antibiotic biosynthetic process were annotated. The 16S rRNA gene phylogeny, core-proteome phylogenomic tree, and virtual genome fingerprints support that S. pakalii ENCB-J15 is a new species related to Streptomyces badius and Streptomyces globisporus. Similarly, its average nucleotide identity (ANI) (96.4%), average amino acid identity (AAI) (96.06%), and virtual DNA-DNA hybridization (67.3%) provide evidence to recognize it as a new species. Comparative genomics revealed that S. pakalli and its closest related species maintain a well-conserved genomic synteny. This work proposes Streptomyces pakalii sp. nov. as a novel species that expresses anti-biofilm and anti-quorum sensing activities.
Collapse
Affiliation(s)
- Michelle Chávez-Hernández
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| | - Jossue Ortiz-Álvarez
- Programa “Investigadoras e Investigadores por México”. Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT). Av. de los Insurgentes Sur 1582, Crédito Constructor, Benito Juárez, Ciudad de México 03940, Mexico;
| | - Jesús Morales-Jiménez
- Departamento el Hombre y su Ambiente, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, Ciudad de México 04960, Mexico;
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala, Col. Sto. Tomás s/n, Ciudad de México 11340, Mexico; (M.C.-H.); (L.V.-T.)
| |
Collapse
|