1
|
Umair M, Walsh TR, Mohsin M. A systematic review and meta-analysis of carbapenem resistance and its possible treatment options with focus on clinical Enterobacteriaceae: Thirty years of development in Pakistan. Heliyon 2024; 10:e28052. [PMID: 38596009 PMCID: PMC11001782 DOI: 10.1016/j.heliyon.2024.e28052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Background Carbapenem resistance is epidemic worldwide, these last resort antimicrobials are listed in the WHO 'watch group' with higher resistance potential. During the years 2017-18 Pakistan Antimicrobial Resistance Surveillance System reported an increase in carbapenem resistance. However, a comprehensive information on prevalence and molecular epidemiology of carbapenem resistance in Pakistan is not available. This systematic review and meta-analysis is aimed to report the current carbapenem resistance situation in Pakistan and its treatment options. Methods In this systematic review and meta-analysis, we investigated the pooled prevalence (PPr) of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae by organizing available data, from Web of Science and PubMed by April 2, 2020, in various groups and subgroups including species, years, provinces, extended spectrum β-lactamase production, clinical presentation, carbapenemase and metallo-β-lactamase production, and New Delhi metallo-β-lactamase (NDM) prevalence. Literature review was updated for the studies publisehd by December 07, 2023. Moreover, we descriptively reviewed the molecular epidemiology of carbapenem resistance in Enterobacteriaceae and non-Enterobacteriaceae in Pakistan. Lastly, we statistically explored different treatment options available for carbapenem resistant infections. We used R package 'metafor' for performing meta-analysis and influence diagnostics and determining treatment options. Results From two academic databases Web of Science and PubMed we identified 343 studies. Eighty-eight studies were selected for the systematic review and meta-analysis. Seventy-four studies were selected for phenotypic analysis, 36 for genotypic analysis, and 31 for available treatment options. PPr-ID of 12% [0.12 (0.07, 0.16)] was observed for phenotypic carbapenem resistance in Enterobacteriaceae with more prevalence recorded in Klebsiella pneumoniae 24% [0.24 (0.05, 0.44)] followed by 9% [0.09 (-0.03, 0.20)] in Escherichia coli. During the last two decades we observed a striking increase in carbapenem resistance PPr i.e., from 0% [0.00 (-0.02, 0.03)] to 36% [0.36 (0.17, 0.56)]. blaNDM with PPr 15% [0.15 (0.06, 0.23)] in naive isolates was found to be the fundamental genetic determinant for carbapenem resistance in Enterobacteriaceae in Pakistan. Polymyxin B, colistin, tigecycline, and fosfomycin were identified as the suggested treatment options available for multidrug resistant infections not responding to carbapenems. Various studies reported carbapenem resistance from human, animal, and environment sources. Conclusion In conclusion, we found that NDM-1 producing carbapenem resistant Enterobacteriaceae are increasing in Pakistan. Meta-analysis showed that metallo-β-lactamases producing E. coli ST405 and K. pneumoniae sequence type11 are the major resistant clones. Number of reported studies in various subgroups and inconsistency in following CLSI guidelines are the potential limitations of this meta-analysis. A National antimicrobial resistance (AMR) surveillance strategy based on One Health is urgently needed to check any future AMR crisis in Pakistan.
Collapse
Affiliation(s)
- Muhammad Umair
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Timothy R. Walsh
- INEOS Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| |
Collapse
|
2
|
Qamar MU, Ejaz H, Mohsin M, Hadjadj L, Karadeniz A, Rolain JM, Saleem Z, Diene SM. Co-existence of NDM-, aminoglycoside- and fluoroquinolone-resistant genes in carbapenem-resistant Escherichia coli clinical isolates from Pakistan. Future Microbiol 2023; 18:959-969. [PMID: 37656032 DOI: 10.2217/fmb-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Background: To determine the prevalence of antimicrobial-resistant genes in carbapenem-resistant Escherichia coli (CRECO). Methods: A total of 290 carbapenem-resistant bacteria were collected from tertiary care hospitals in Lahore (Pakistan). These isolates were confirmed by VITEK 2 and matrix-assisted laser desorption/ionization time of flight. The minimum inhibitory concentration was performed by VITEK 2. Sequence typing, resistant gene identification, DNA hybridization and replicate typing were also performed. Results: 33 out of 290 (11.3%) were CRECO and carried blaNDM; 69, 18 and 12% were NDM-1, NDM-5 and NDM-7, respectively, with 100% resistance to β-lactams and β-lactam inhibitors. ST405 and ST468 were mostly identified. NDM-ECO carried approximately 50-450 kb of plasmids and 16 (55%) were associated with IncA/C. Conclusion: NDM-1-producing E. coli are highly prevalent in clinical settings.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Saudi Arabia
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Linda Hadjadj
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| | - Aylin Karadeniz
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| | - Zikria Saleem
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Seydina M Diene
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Faculté de Pharmacie, Marseille, France
| |
Collapse
|
3
|
Mattioni Marchetti V, Kraftova L, Finianos M, Sourenian T, Hrabak J, Bitar I. Polyclonal Spread of Fosfomycin Resistance among Carbapenemase-Producing Members of the Enterobacterales in the Czech Republic. Microbiol Spectr 2023; 11:e0009523. [PMID: 37098942 PMCID: PMC10269928 DOI: 10.1128/spectrum.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/31/2023] [Indexed: 04/27/2023] Open
Abstract
Fosfomycin (FOS) has been recently reintroduced into clinical practice, but its effectiveness against multidrug-resistant (MDR) Enterobacterales is reduced due to the emergence of FOS resistance. The copresence of carbapenemases and FOS resistance could drastically limit antibiotic treatment. The aims of this study were (i) to investigate fosfomycin susceptibility profiles among carbapenem-resistant Enterobacterales (CRE) in the Czech Republic, (ii) to characterize the genetic environment of fosA genes among the collection, and (iii) to evaluate the presence of amino acid mutations in proteins involved in FOS resistance mechanisms. During the period from December 2018 to February 2022, 293 CRE isolates were collected from different hospitals in the Czech Republic. FOS MICs were assessed by the agar dilution method (ADM), FosA and FosC2 production was detected by the sodium phosphonoformate (PPF) test, and the presence of fosA-like genes was confirmed by PCR. Whole-genome sequencing was conducted with an Illumina NovaSeq 6000 system on selected strains, and the effect of point mutations in the FOS pathway was predicted using PROVEAN. Of these strains, 29% showed low susceptibility to fosfomycin (MIC, ≥16 μg/mL) by ADM. An NDM-producing Escherichia coli sequence type 648 (ST648) strain harbored a fosA10 gene on an IncK plasmid, while a VIM-producing Citrobacter freundii ST673 strain harbored a new fosA7 variant, designated fosA7.9. Analysis of mutations in the FOS pathway revealed several deleterious mutations occurring in GlpT, UhpT, UhpC, CyaA, and GlpR. Results regarding single substitutions in amino acid sequences highlighted a relationship between ST and specific mutations and an enhanced predisposition for certain STs to develop resistance. This study highlights the occurrence of several FOS resistance mechanisms in different clones spreading in the Czech Republic. IMPORTANCE Antimicrobial resistance (AMR) currently represents a concern for human health, and the reintroduction of antibiotics such as fosfomycin into clinical practice can provide further option in treatment of multidrug-resistant (MDR) bacterial infections. However, there is a global increase of fosfomycin-resistant bacteria, reducing its effectiveness. Considering this increase, it is crucial to monitor the spread of fosfomycin resistance in MDR bacteria in clinical settings and to investigate the resistance mechanism at the molecular level. Our study reports a large variety of fosfomycin resistance mechanisms among carbapenemase-producing Enterobacterales (CRE) in the Czech Republic. Our study summarizes the main achievements of our research on the use of molecular technologies, such as next-generation sequencing (NGS), to describe the heterogeneous mechanisms that reduce fosfomycin effectiveness in CRE. The results suggest that a program for widespread monitoring of fosfomycin resistance and epidemiology fosfomycin-resistant organisms can aide timely implementation of countermeasures to maintain the effectiveness of fosfomycin.
Collapse
Affiliation(s)
- V. Mattioni Marchetti
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - L. Kraftova
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - M. Finianos
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - T. Sourenian
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - J. Hrabak
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| | - I. Bitar
- Department of Microbiology, Faculty of Medicine, University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic
| |
Collapse
|
4
|
Gondal AJ, Choudhry N, Bukhari H, Rizvi Z, Yasmin N. Characterization of Genomic Diversity among Carbapenem-Resistant Escherichia coli Clinical Isolates and Antibacterial Efficacy of Silver Nanoparticles from Pakistan. Microorganisms 2022; 10:2283. [PMID: 36422353 PMCID: PMC9699514 DOI: 10.3390/microorganisms10112283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 01/18/2024] Open
Abstract
The emergence of carbapenem-resistant Escherichia coli (E. coli) is considered an important threat to public health resulting in resistance accumulation due to antibiotics misuse and selection pressure. This warrants periodic efforts to investigate and develop strategies for infection control. A total of 184 carbapenem-resistant clinical strains of E. coli were characterized for resistance pattern, resistance genes, plasmids, sequence types and in vitro efficacy of silver nanoparticles (AgNPs). Carbapenem resistance was prevalent in E. coli isolated from female patients (64.7%), urine samples (40.8%) and surgical wards (32.1%). Polymyxin-B showed higher susceptibility. ESBLs and carbapenemases were produced in 179 and 119 isolates, respectively. Carbapenemase-encoding genes were observed among 104 strains with blaNDM-1 (45.1%), blaOXA-48 (27%), blaNDM-7 (3.8%), blaNDM-1/blaOXA-48 (15.4%), blaNDM-7/blaOXA-48 (2.9%), blaOXA-48/blaVIM (3.8%) and blaNDM-1/blaVIM (2%). ESBL resistance genes were detected in 147 isolates, namely blaSHV (24.9%), blaCTX-M (17.7%), blaTEM (4.8%), blaSHV/blaCTX-M (29.2%), blaSHV/blaTEM (15%) and blaCTX-M/blaTEM (8.8%). ST405 (44.4%) and ST131 (29.2%) were more frequent sequence types with ST101 (9.7%), ST10 (9.7%) and ST648 (7%). The replicon types IncFII, IncFIIK, IncA/C, IncN and IncL/M were detected. The combination of MEM/AgNPs remained effective against carbapenemase-positive E. coli. We reported genetically diverse E. coli strains coharboring carbapenemases/ESBLs from Pakistan. Moreover, this study highlights the enhanced antibacterial activity of MEM/AgNPs and may be used to manage bacterial infections.
Collapse
Affiliation(s)
- Aamir Jamal Gondal
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| | - Nakhshab Choudhry
- Department of Biochemistry, King Edward Medical University, Lahore 54000, Pakistan
| | - Hina Bukhari
- Department of Pathology, King Edward Medical University, Lahore 54000, Pakistan
| | - Zainab Rizvi
- Department of Oral Pathology, de’Montmorency College of Dentistry, Lahore 54000, Pakistan
| | - Nighat Yasmin
- Department of Biomedical Sciences, King Edward Medical University, Lahore 54000, Pakistan
| |
Collapse
|
5
|
Mujahid A, Rasool N, Usman Qamar M, Zubair M, Ahmad F, Ali Altaf A, Akhtar A, Adnan Ali Shah S, Alqahtani F, Alsanea S, Albekairi TH, Jawad Nasim M, Fawad Rasool M, Imran I. Arylation of halogenated thiophene carboxylate via Suzuki–Miyaura reaction: Anti-bacterial study against Clinically isolated extensively drug resistant Escherichia coli sequence type 405 and Computational Investigation. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
6
|
Qamar MU, Lopes BS, Hassan B, Khurshid M, Shafique M, Atif Nisar M, Mohsin M, Nawaz Z, Muzammil S, Aslam B, Ejaz H, Toleman MA. The present danger of New Delhi metallo-β-lactamase: a threat to public health. Future Microbiol 2020; 15:1759-1778. [PMID: 33404261 DOI: 10.2217/fmb-2020-0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The evolution of antimicrobial-resistant Gram-negative pathogens is a substantial menace to public health sectors, notably in developing countries because of the scarcity of healthcare facilities. New Delhi metallo-β-lactamase (NDM) is a potent β-lactam enzyme able to hydrolyze several available antibiotics. NDM was identified from the clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Swedish patient in New Delhi, India. This enzyme horizontally passed on to various Gram-negative bacteria developing resistance against a variety of antibiotics which cause treatment crucial. These bacteria increase fatality rates and play an integral role in the economic burden. The efficient management of NDM-producing isolates requires the coordination between each healthcare setting in a region. In this review, we present the prevalence of NDM in children, fatality and the economic burden of resistant bacteria, the clonal spread of NDM harboring bacteria and modern techniques for the detection of NDM producing pathogens.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Bruno S Lopes
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, AB24 3DR, Scotland, UK
| | - Brekhna Hassan
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| | - Mohsin Khurshid
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Shafique
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Atif Nisar
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
- College of Science and Engineering, Flinders University, 5042, Australia
| | - Mashkoor Mohsin
- Institute of Microbiology, University of Agriculture Faisalabad, 38000, Pakistan
| | - Zeeshan Nawaz
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, 38000, Pakistan
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Al Jouf, 72388, Saudi Arabia
| | - Mark A Toleman
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, CF10 3AT, Cardiff, UK
| |
Collapse
|
7
|
Hadjadj L, Syed MA, Abbasi SA, Rolain JM, Jamil B. Diversity of Carbapenem Resistance Mechanisms in Clinical Gram-Negative Bacteria in Pakistan. Microb Drug Resist 2020; 27:760-767. [PMID: 33211640 DOI: 10.1089/mdr.2019.0387] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antibiotic resistance is a health challenge worldwide. Carbapenem resistance in Gram-negative bacteria is a major problem since treatment options are very limited. Tigecycline and colistin are drugs of choice in this case, but resistance to these drugs is also high. The aim of this study was to describe the diversity of resistance mechanisms in carbapenem-resistant clinical Gram-negative bacteria from Pakistan. Carbapenem-hydrolyzing enzyme-encoding genes were detected using PCR and DNA sequencing and clonal types determined by multilocus sequence typing (MLST). Forty-four carbapenem-resistant isolates were collected from the microbiology laboratory of Fauji Foundation Hospital and Al-Syed Hospital, Rawalpindi, Pakistan, including Klebsiella spp., Escherichia coli, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter cloacae, and Achromobacter xylosoxidans. blaNDM-1, blaNDM-4, blaNDM-5, blaNDM-7, blaOXA-48, and blaOXA-181 were detected in Enterobacteriaceae; blaOXA-23, blaOXA-72, and blaNDM-1 in A. baumannii, and blaVIM-6 and blaVIM-11 in P. aeruginosa. MLST analysis revealed several predominant clonal types: ST167 in E. coli, ST147 in Klebsiella pneumoniae, ST2 in Acinetobacter, and ST664 in P. aeruginosa. In Acinetobacter, a new clonal type was observed for the first time. To the best of our knowledge, this is the first study describing the clonality and resistance mechanisms of carbapenem-resistant Gram-negative bacteria in Pakistan.
Collapse
Affiliation(s)
- Linda Hadjadj
- Faculté de Médecine et de Pharmacie, Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Muhammad Ali Syed
- Department of Microbiology, The University of Haripur, Haripur, Pakistan
| | | | - Jean-Marc Rolain
- Faculté de Médecine et de Pharmacie, Aix Marseille Univ, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Bushra Jamil
- Department of Medical Laboratory Sciences, University of Lahore, Islamabad Campus, Islamabad, Pakistan
| |
Collapse
|
8
|
Qamar MU, Walsh TR, Toleman MA, Tyrrell JM, Saleem S, Aboklaish A, Jahan S. Dissemination of genetically diverse NDM-1, -5, -7 producing-Gram-negative pathogens isolated from pediatric patients in Pakistan. Future Microbiol 2019; 14:691-704. [PMID: 31148474 DOI: 10.2217/fmb-2019-0012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To determine the prevalence of New Delhi metallo-β-lactamase (NDM)-producing Gram-negative pathogens isolated from children's samples. Materials & methods: Carbapenem-resistant clinical isolates (n = 117) were confirmed by VITEK® 2 compact system, matrix-assisted laser desorption ionization-time of flight and multilocus sequence typing. MIC (μg/ml) of various antibiotics was determined by VITEK 2 compact system. Molecular characterization of the isolates was performed by PCR, DNA sequencing, PFGE and DNA hybridization. Results: Out of 117 carbapenemase producers, 37 (31.6%) and 29 (24.7%) were Klebsiella pneumoniae and Acinetobacter baumannii, respectively. 72 (61.5%) isolates were NDM positive and among these 60, 9 and 3 were NDM-1, -5 and -7, respectively. Majority of the NDM-producing K. pneumoniae belonged to ST11 and ST273 while most of the Escherichia coli belonged to ST405 and ST101. blaNDM were mainly located on 150kb plasmids. MIC displayed high resistance against β-lactams drugs including carbapenems, and the most sensitive drugs were tigecycline and colistin. Conclusion: Dissemination of blaNDM-producing pathogens, particularly in children clinical settings, is a matter of great public health concern.
Collapse
Affiliation(s)
- Muhammad Usman Qamar
- Department of Microbiology, University of Health Sciences, Punjab, Pakistan.,Department of Microbiology, Faculty of Life Sciences, Government College University, Punjab, Pakistan.,Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, Wales, UK
| | - Timothy R Walsh
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, Wales, UK
| | - Mark A Toleman
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, Wales, UK
| | - Jonathan M Tyrrell
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, Wales, UK
| | - Sidrah Saleem
- Department of Microbiology, University of Health Sciences, Punjab, Pakistan
| | - Ali Aboklaish
- Department of Medical Microbiology & Infectious Diseases, Institute of Infection & Immunity, School of Medicine, Cardiff University, Wales, UK
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Punjab, Pakistan
| |
Collapse
|
9
|
Hao Y, Shao C, Geng X, Bai Y, Jin Y, Lu Z. Genotypic and Phenotypic Characterization of Clinical Escherichia coli Sequence Type 405 Carrying IncN2 Plasmid Harboring bla NDM-1. Front Microbiol 2019; 10:788. [PMID: 31105653 PMCID: PMC6499153 DOI: 10.3389/fmicb.2019.00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023] Open
Abstract
We report a bla NDM-carrying ST405 Escherichia coli recovered from the abdominal fluid of a patient in Shandong, China. This strain belonged to the high-risk phylogenetic group D and carried the virulence genes, papG II, papG III, papC, and iroN. In addition to bla NDM-1, this isolate carried the quinolone resistance gene acc(6')-Ib and extended-spectrum β-lactamase (ESBL) genes bla CTX-M-15 and bla CTX-M-14. bla NDM-1 was located on a 41 Kb IncN2 self-transmissible plasmid. The IncN2 plasmid named as pJN24NDM1 was fully sequenced and analyzed. Genome comparative analysis showed that IncN2 plasmids harboring carbapenem-resistance genes possessed conserved backbones and variable accessory regions. Phylogenetic analysis of 87 IncN plasmids based on orthologous genes indicated that 9 IncN2 plasmids fell into one phylogenetic clade, while 4 IncN3 plasmids were in two phylogenetic clades of the 74 IncN1 plasmids. The presence of IncN2 plasmids harboring bla NDM in the high-risk clone ST405 E. coli raises serious concerns for its potential of dissemination.
Collapse
Affiliation(s)
| | | | | | | | - Yan Jin
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|