1
|
Pan X, Hao E, Zhang F, Wei W, Du Z, Yan G, Wang X, Deng J, Hou X. Diabetes cardiomyopathy: targeted regulation of mitochondrial dysfunction and therapeutic potential of plant secondary metabolites. Front Pharmacol 2024; 15:1401961. [PMID: 39045049 PMCID: PMC11263127 DOI: 10.3389/fphar.2024.1401961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/11/2024] [Indexed: 07/25/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a specific heart condition in diabetic patients, which is a major cause of heart failure and significantly affects quality of life. DCM is manifested as abnormal cardiac structure and function in the absence of ischaemic or hypertensive heart disease in individuals with diabetes. Although the development of DCM involves multiple pathological mechanisms, mitochondrial dysfunction is considered to play a crucial role. The regulatory mechanisms of mitochondrial dysfunction mainly include mitochondrial dynamics, oxidative stress, calcium handling, uncoupling, biogenesis, mitophagy, and insulin signaling. Targeting mitochondrial function in the treatment of DCM has attracted increasing attention. Studies have shown that plant secondary metabolites contribute to improving mitochondrial function and alleviating the development of DCM. This review outlines the role of mitochondrial dysfunction in the pathogenesis of DCM and discusses the regulatory mechanism for mitochondrial dysfunction. In addition, it also summarizes treatment strategies based on plant secondary metabolites. These strategies targeting the treatment of mitochondrial dysfunction may help prevent and treat DCM.
Collapse
Affiliation(s)
- Xianglong Pan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Wei Wei
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Guangli Yan
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xijun Wang
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaotao Hou
- Department of Pharmaceutical, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
2
|
Wang X, Hu T, Jiang Y, He Y, Li P, Peng W, Wang Y, Su W. Jingzhi Guanxin Oral Liquids Attenuate Atherosclerotic Coronary Heart Disease via Modulating Lipid Metabolism and PPAR-Related Targets. Pharmaceuticals (Basel) 2024; 17:784. [PMID: 38931451 PMCID: PMC11206304 DOI: 10.3390/ph17060784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Jingzhi Guanxin Oral Liquids (JZGX), a traditional Chinese medicine formulation prepared from the decoction of five herbs, has been utilized to relieve chest pain with coronary artery disease (CAD). However, the chemical composition and therapeutic mechanisms of JZGX remain obscured. In this research, the potential targets and pathways of JZGX against CAD were anticipated through network pharmacology based on analyzing its chemical constituents using UPLC-Q-TOF-MS/MS. One hundred seven ingredients in JZGX were identified. The 39 active chemicals and 37 key targets were screened, and CAD-related signaling pathways were clustered, mainly associated with lipid metabolism. Subsequently, the atherosclerotic CAD animal model employing 24 weeks of high-fat diet (HFD) ApoE-/- mice was constructed to investigate the JZGX efficacy and underlying mechanisms validating network forecasts. The histological staining examination and cardiovascular biomarker tests confirmed that JZGX reduced plaque formation in the aorta and decreased blood lipids in vivo. It featured anti-inflammatory, anti-thrombotic, and myocardial protective effects. JZGX prevented excessive lipid deposits and inflammation within the liver and exhibited hepatoprotective properties. Serum untargeted metabolomics analysis indicated that JZGX ameliorated metabolic abnormalities in atherosclerotic CAD mice and prompted lipid metabolism, especially linoleic acid. The PPARs and attached critical targets (SREBP1, FASN, PTGS2, and CYP3A), filtered from the networks and connected with lipid metabolism, were dramatically modulated through JZGX administration, as revealed by western blotting. The molecular docking outcomes showed that all 39 active ingredients in JZGX had good binding activity with PPARα and PPARγ. These findings illustrate that JZGX alleviates atherosclerotic CAD progression by remodeling the lipid metabolism and regulating PPAR-related proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Ejaz B, Mujib A, Syeed R, Mamgain J, Malik MQ, Birat K, Dewir YH, Magyar-Tábori K. Phytocompounds and Regulation of Flavonoids in In Vitro-Grown Safflower Plant Tissue by Abiotic Elicitor CdCl 2. Metabolites 2024; 14:127. [PMID: 38393019 PMCID: PMC10891796 DOI: 10.3390/metabo14020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/29/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
In this study, a Gas chromatography-mass spectrometry (GC-MS) investigation of embryogenic callus and somatic embryo regenerated shoots of Carthamus tinctorius revealed the presence of a variety of sugars, sugar acids, sugar alcohols, fatty acids, organic acids, and amino acids of broad therapeutic value. The in vitro developed inflorescence contained a wide range of active compounds. In embryogenic calluses, important flavonoids like naringenin, myricetin, kaempferol, epicatechin gallate, rutin, pelargonidin, peonidin, and delphinidin were identified. To augment the synthesis of active compounds, the effect of cadmium chloride (CdCl2) elicitation was tested for various treatments (T1-T4) along with a control (T0). Varying concentrations of CdCl2 [0.05 mM (T1), 0.10 mM (T2), 0.15 mM (T3), and 0.20 mM (T4)] were added to the MS medium, and flavonoid accumulation was quantified through ultra-high-pressure liquid chromatography-tandem mass spectroscopy (UHPLC-MS/MS). The flavonoids naringenin, kaempferol, epicatechin gallate, pelargonidin, cyanidin, and delphinidin increased by 6.7-, 1.9-, 3.3-, 2.1-, 1.9-, and 4.4-fold, respectively, at T3, whereas quercetin, myricetin, rutin, and peonidin showed a linear increase with the increase in CdCl2 levels. The impacts of stress markers, i.e., ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD), on defense responses in triggering synthesis were also evaluated. The maximum APX and SOD activity was observed at T3, while CAT activity was at its maximum at T2. The impact of elicitor on biochemical attributes like protein, proline, sugar, and malondialdehyde (MDA) content was investigated. The maximum protein, proline, and sugar accumulation was noted at high elicitor dose T4, while the maximum MDA content was noted at T3. These elevated levels of biochemical parameters indicated stress in culture, and the amendment of CdCl2 in media thus could be a realistic approach for enhancing secondary metabolite synthesis in safflower.
Collapse
Affiliation(s)
- Bushra Ejaz
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Abdul Mujib
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Rukaya Syeed
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Jyoti Mamgain
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Moien Qadir Malik
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Kanchan Birat
- Cellular Differentiation and Molecular Genetics Section, Department of Botany, Jamia Hamdard, New Delhi 110062, India; (B.E.); (R.S.); (J.M.); (M.Q.M.); (K.B.)
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Katalin Magyar-Tábori
- Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, P.O. Box 12, 4400 Nyíregyháza, Hungary;
| |
Collapse
|
4
|
Fristiohady A, Al-Ramadan W, Fitrawan LOM, Hamsidi R, Purnama LOMJ, Malaka MH, Haruna LA, Sahidin. Safflower ( Carthamus tinctorius Linn.) Inhibits Cell Proliferation and Induces Apoptotic in Breast Cancer Cell Lines T47D. Pak J Biol Sci 2023; 26:427-433. [PMID: 37937336 DOI: 10.3923/pjbs.2023.427.433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
<b>Background and Objective:</b> Safflower (<i>Carthamus tinctorius</i> Linn.) is one of the medicinal plants that contain secondary metabolites that have the potential to as anti-cancer by inducing apoptosis. This study aims to determine the content of secondary metabolite compounds and the induction activity of apoptosis from ethanol extract of safflower in the T47D breast cancer cell line. <b>Materials and Methods:</b> Safflower was extracted using 96% ethanol and assayed for phytochemical screening, cytotoxic tests by cell counting kit-8 to determine inhibitory concentration and apoptosis induction activity by flow cytometry to determine the ability of samples induce the programmed cell cancer in death. The data collected was analyzed with the PRISM GraphPad version. <b>Results:</b> The ethanol extract of safflower contains flavonoid compounds, alkaloids, saponins, tannins and terpenoids. The results of the anticancer activity test showed an IC<sub>50</sub> value of 479 μg mL<sup>1</sup> and the best percentage of apoptosis at a concentration of 200 μg mL<sup>1</sup> was 16.61% at the beginning of apoptosis and 10.52% at the end of apoptosis. <b>Conclusion:</b> The safflower can be developed as a breast anticancer agent that works through the induction of apoptosis to improve the effectiveness of breast cancer treatment.
Collapse
|
5
|
Ri MH, Xing Y, Zuo HX, Li MY, Jin HL, Ma J, Jin X. Regulatory mechanisms of natural compounds from traditional Chinese herbal medicines on the microglial response in ischemic stroke. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154889. [PMID: 37262999 DOI: 10.1016/j.phymed.2023.154889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Development of clinically effective neuroprotective agents for stroke therapy is still a challenging task. Microglia play a critical role in brain injury and recovery after ischemic stroke. Traditional Chinese herbal medicines (TCHMs) are based on a unique therapeutic principle, have various formulas, and have long been widely used to treat stroke. Therefore, the active compounds in TCHMs and their underlying mechanisms of action are attracting increasing attention in the field of stroke drug development. PURPOSE To summarize the regulatory mechanisms of TCHM-derived natural compounds on the microglial response in animal models of ischemic stroke. METHODS We searched studies published until 10 April 2023 in the Web of Science, PubMed, and ScienceDirect using the following keywords: natural compounds, natural products or phytochemicals, traditional Chinese Medicine or Chinese herbal medicine, microglia, and ischemic stroke. This review was prepared according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analysis) guidelines. RESULTS Natural compounds derived from TCHMs can attenuate the M1 phenotype of microglia, which is involved in the detrimental inflammatory response, via inhibition of NF-κB, MAPKs, JAK/STAT, Notch, TLR4, P2X7R, CX3CR1, IL-17RA, the NLRP3 inflammasome, and pro-oxidant enzymes. Additionally, the neuroprotective response of microglia with the M2 phenotype can be enhanced by activating Nrf2/HO-1, PI3K/AKT, AMPK, PPARγ, SIRT1, CB2R, TREM2, nAChR, and IL-33/ST2. Several clinical trials showed that TCHM-derived natural compounds that regulate microglial responses have significant and safe therapeutic effects, but further well-designed clinical studies are needed. CONCLUSIONS Further research regarding the direct targets and potential pleiotropic or synergistic effects of natural compounds would provide a more reasonable approach for regulation of the microglial response with the possibility of successful stroke drug development.
Collapse
Affiliation(s)
- Myong Hak Ri
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Faculty of Life Science, Kim Il Sung University, Pyongyang, Democratic People's Republic of Korea
| | - Yue Xing
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Xiang Zuo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ming Yue Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Hong Lan Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Juan Ma
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Xuejun Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
6
|
He B, Zhang Y, Wang L, Guo D, Jia X, Wu J, Qi S, Wu H, Gao Y, Guo M. Both Two CtACO3 Transcripts Promoting the Accumulation of the Flavonoid Profiles in Overexpressed Transgenic Safflower. FRONTIERS IN PLANT SCIENCE 2022; 13:833811. [PMID: 35463446 PMCID: PMC9019494 DOI: 10.3389/fpls.2022.833811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/23/2022] [Indexed: 05/10/2023]
Abstract
The unique flavonoids, quinochalcones, such as hydroxysafflor yellow A (HSYA) and carthamin, in the floret of safflower showed an excellent pharmacological effect in treating cardiocerebral vascular disease, yet the regulating mechanisms governing the flavonoid biosynthesis are largely unknown. In this study, CtACO3, the key enzyme genes required for the ethylene signaling pathway, were found positively related to the flavonoid biosynthesis at different floret development periods in safflower and has two CtACO3 transcripts, CtACO3-1 and CtACO3-2, and the latter was a splice variant of CtACO3 that lacked 5' coding sequences. The functions and underlying probable mechanisms of the two transcripts have been explored. The quantitative PCR data showed that CtACO3-1 and CtACO3-2 were predominantly expressed in the floret and increased with floret development. Subcellular localization results indicated that CtACO3-1 was localized in the cytoplasm, whereas CtACO3-2 was localized in the cytoplasm and nucleus. Furthermore, the overexpression of CtACO3-1 or CtACO3-2 in transgenic safflower lines significantly increased the accumulation of quinochalcones and flavonols. The expression of the flavonoid pathway genes showed an upward trend, with CtCHS1, CtF3H1, CtFLS1, and CtDFR1 was considerably induced in the overexpression of CtACO3-1 or CtACO3-2 lines. An interesting phenomenon for CtACO3-2 protein suppressing the transcription of CtACO3-1 might be related to the nucleus location of CtACO3-2. Yeast two-hybrid (Y2H), glutathione S-transferase (GST) pull-down, and BiFC experiments revealed that CtACO3-2 interacted with CtCSN5a. In addition, the interactions between CtCSN5a and CtCOI1, CtCOI1 and CtJAZ1, CtJAZ1 and CtbHLH3 were observed by Y2H and GST pull-down methods, respectively. The above results suggested that the CtACO3-2 promoting flavonoid accumulation might be attributed to the transcriptional activation of flavonoid biosynthesis genes by CtbHLH3, whereas the CtbHLH3 might be regulated through CtCSN5-CtCOI1-CtJAZ1 signal molecules. Our study provided a novel insight of CtACO3 affected the flavonoid biosynthesis in safflower.
Collapse
Affiliation(s)
- Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yanjie Zhang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Lunuan Wang
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Dandan Guo
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xinlei Jia
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jianhui Wu
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuyi Qi
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Hong Wu
- Department of Cardiology, Changhai Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
- *Correspondence: Hong Wu,
| | - Yue Gao
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Yue Gao,
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Naval Medical University (Second Military Medical University), Shanghai, China
- Meili Guo,
| |
Collapse
|
7
|
Luo LP, Suo P, Ren LL, Liu HJ, Zhang Y, Zhao YY. Shenkang Injection and Its Three Anthraquinones Ameliorates Renal Fibrosis by Simultaneous Targeting IƙB/NF-ƙB and Keap1/Nrf2 Signaling Pathways. Front Pharmacol 2021; 12:800522. [PMID: 35002735 PMCID: PMC8729217 DOI: 10.3389/fphar.2021.800522] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/17/2021] [Indexed: 12/29/2022] Open
Abstract
Oxidative stress and inflammation are important and critical mediators in the development and progression of chronic kidney disease (CKD) and its complications. Shenkang injection (SKI) has been widely used to treat patients with CKD. Although the anti-oxidative and anti-inflammatory activity was involved in SKI against CKD, its bioactive components and underlying mechanism remain enigmatic. A rat model of adenine-induced chronic renal failure (CRF) is associated with, and largely driven by, oxidative stress and inflammation. Hence, we identified the anti-oxidative and anti-inflammatory components of SKI and further revealed their underlying mechanism in the adenine-induced CRF rats. Compared with control rats, the levels of creatinine, urea, uric acid, total cholesterol, triglyceride, and low-density lipoprotein cholesterol in serum were significantly increased in the adenine-induced CRF rats. However, treatment with SKI and its three anthraquinones including chrysophanol, emodin, and rhein could reverse these aberrant changes. They could significantly inhibit pro-fibrotic protein expressions including collagen I, α-SMA, fibronectin, and vimentin in the kidney tissues of the adenine-induced CRF rats. Of note, SKI and rhein showed the stronger inhibitory effect on these pro-fibrotic protein expressions than chrysophanol and emodin. Furthermore, they could improve dysregulation of IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways. Chrysophanol and emodin showed the stronger inhibitory effect on the NF-κB p65 protein expression than SKI and rhein. Rhein showed the strongest inhibitory effect on p65 downstream target gene products including NAD(P)H oxidase subunits (p47phox, p67phox, and gp91phox) and COX-2, MCP-1, iNOS, and 12-LO in the kidney tissues. However, SKI and rhein showed the stronger inhibitory effect on the significantly downregulated anti-inflammatory and anti-oxidative protein expression nuclear Nrf2 and its target gene products including HO-1, catalase, GCLC, and NQO1 in the Keap1/Nrf2 signaling pathway than chrysophanol and emodin. This study first demonstrated that SKI and its major components protected against renal fibrosis by inhibiting oxidative stress and inflammation via simultaneous targeting IƙB/NF-ƙB and Keap1/Nrf2 signaling pathways, which illuminated the potential molecular mechanism of anti-oxidative and anti-inflammatory effects of SKI.
Collapse
Affiliation(s)
- Liang-Pu Luo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ping Suo
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Li-Li Ren
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Hong-Jiao Liu
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Ying-Yong Zhao
- Faculty of Life Science and Medicine, Northwest University, Xi’an, China
| |
Collapse
|
8
|
Li XR, Liu J, Peng C, Zhou QM, Liu F, Guo L, Xiong L. Polyacetylene glucosides from the florets of Carthamus tinctorius and their anti-inflammatory activity. PHYTOCHEMISTRY 2021; 187:112770. [PMID: 33873017 DOI: 10.1016/j.phytochem.2021.112770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/28/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Five previously undescribed polyacetylene glucosides, namely, four C10- and one C14-acetylenes, together with three known analogues, were isolated from the florets of Carthamus tinctorius L. The structures of these novel compounds were elucidated to be (5R)-5-acetoxy-8,10,12-tetradecatriyne-1-O-β-D-glucopyranoside, (2Z)-decaene-4,6,8-triyne-1-O-β-D-glucopyranoside, (8Z)-1-[(3-O-β-D-glucosyl)-isovaleroyloxy]-8-decaene-4,6-diyne, (8Z)-decaene-1-isovaleroyloxy-4,6-diyne-10-O-β-D-glucopyranoside, and (2E,8E)-decadiene-4,6-diyne-1-O-β-D-glucopyranoside via spectroscopic and chemical methods. All of the isolated compounds were tested for cytotoxicity against cancer cell lines, antibacterial activity, and inhibitory effects on the lipopolysaccharide (LPS)-induced nitric oxide (NO) production. The results showed that (5R)-5-acetoxy-8,10,12-tetradecatriyne-1-O-β-D-glucopyranoside significantly inhibited LPS-induced NO production in RAW264.7 cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Xin-Rui Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qin-Mei Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fei Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Liang Xiong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
9
|
Polyacetylenes and Flavonoids Isolated from Flowers of Carthamus tinctorius. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03439-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Qiao Y, Shi Y, Wu C, Hou X, Pan X, Deng Z, Wang S. Rapid screening and identification of anticoagulation component from carthami flos by two-dimensional thrombin affinity chromatography combined with HPLC-MS/MS. J Sep Sci 2021; 44:3061-3069. [PMID: 34110096 DOI: 10.1002/jssc.202100092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 11/09/2022]
Abstract
Carthami flos, commonly known as Honghua in China, is the dried floret of safflower and widely acknowledged as a blood stasis promoting herb. The study aimed at investigating the relationship between thrombin and carthami flos through a high-performance thrombin affinity chromatography combined with a high-performance liquid chromatography-tandem mass spectrometry system. First, thrombin was immobilized on the glutaraldehyde-modified amino silica gel to prepare the thrombin affinity stationary phase, which was packed into a small column (1.0 × 2.0 mm, id) for recognizing the anticoagulant active components of carthami flos. The target component was enriched and analyzed by the high-performance liquid chromatography-tandem mass spectrometry system. Finally, hydroxysafflor yellow A was screened out and identified as the active component. The anticoagulant effects of hydroxysafflor yellow A were analyzed by anticoagulant experiments in vitro, and the interaction of hydroxysafflor yellow A with thrombin was investigated by the molecular docking method. The results proved that hydroxysafflor yellow A (30 μg/mL, 0.05 mM) and carthami flos extract (30 μg/mL) could prolong activated partial thrombin time and thrombin time by 50 and 11%, respectively. Moreover, hydroxysafflor yellow A exhibits a good hydrogen bond field and stereo field matching with thrombin. Overall, it was concluded that hydroxysafflor yellow A might exert an anticoagulation effect by interacting with thrombin and thus could be potential anticoagulant drugs for the prevention and treatment of venous thrombosis.
Collapse
Affiliation(s)
- Yanru Qiao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Yingdi Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Chen Wu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, P. R. China
| | - Xiaofang Hou
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Zijie Deng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, P. R. China.,Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an, P. R. China
| |
Collapse
|
11
|
Role of Herbal Teas in Regulating Cellular Homeostasis and Autophagy and Their Implications in Regulating Overall Health. Nutrients 2021; 13:nu13072162. [PMID: 34201882 PMCID: PMC8308238 DOI: 10.3390/nu13072162] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/19/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Tea is one of the most popular and widely consumed beverages worldwide, and possesses numerous potential health benefits. Herbal teas are well-known to contain an abundance of polyphenol antioxidants and other ingredients, thereby implicating protection and treatment against various ailments, and maintaining overall health in humans, although their mechanisms of action have not yet been fully identified. Autophagy is a conserved mechanism present in organisms that maintains basal cellular homeostasis and is essential in mediating the pathogenesis of several diseases, including cancer, type II diabetes, obesity, and Alzheimer’s disease. The increasing prevalence of these diseases, which could be attributed to the imbalance in the level of autophagy, presents a considerable challenge in the healthcare industry. Natural medicine stands as an effective, safe, and economical alternative in balancing autophagy and maintaining homeostasis. Tea is a part of the diet for many people, and it could mediate autophagy as well. Here, we aim to provide an updated overview of popular herbal teas’ health-promoting and disease healing properties and in-depth information on their relation to autophagy and its related signaling molecules. The present review sheds more light on the significance of herbal teas in regulating autophagy, thereby improving overall health.
Collapse
|
12
|
Network Pharmacology and Molecular Docking Analysis on Molecular Targets and Mechanisms of Buyang Huanwu Decoction in the Treatment of Ischemic Stroke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:8815447. [PMID: 33727944 PMCID: PMC7937485 DOI: 10.1155/2021/8815447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023]
Abstract
Methods The bioactive components and potential targets of BHD were screened by TCMSP, BATMAN-TCM, ETCM, and SymMap databases. Besides, compounds that failed to find the targets from the above databases were predicted through STITCH, SwissTargetPrediction, and SEA. Moreover, six databases were searched to mine targets of IS. The intersection targets were obtained and analyzed by GO and KEGG enrichment. Furthermore, BHD-IS PPI network, compound-target network, and herb-target-pathway network were constructed by Cytoscape 3.6.0. Finally, AutoDock was used for molecular docking verification. Results A total of 235 putative targets were obtained from 59 active compounds in BHD. Among them, 62 targets were related to IS. PPI network showed that the top ten key targets were IL6, TNF, VEGFA, AKT1, etc. The enrichment analysis demonstrated candidate BHD targets were more frequently involved in TNF, PI3K-Akt, and NF-kappa B signaling pathway. Network topology analysis showed that Radix Astragali was the main herb in BHD, and the key components were quercetin, beta-sitosterol, kaempferol, stigmasterol, etc. The results of molecular docking showed the active components in BHD had a good binding ability with the key targets. Conclusions Our study demonstrated that BHD exerted the effect of treating IS by regulating multitargets and multichannels with multicomponents through the method of network pharmacology and molecular docking.
Collapse
|
13
|
Lopes DCDXP, de Oliveira TB, Viçosa AL, Valverde SS, Ricci Júnior E. Anti-Inflammatory Activity of the Compositae Family and Its Therapeutic Potential. PLANTA MEDICA 2021; 87:71-100. [PMID: 32663896 DOI: 10.1055/a-1178-5158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Compositae is the largest family of flowering plants, with more than 1600 genera and 22 000 species. It has many economic uses in foods, cosmetics, and pharmaceutics. The literature reports its numerous medicinal benefits and recognized anti-inflammatory activity. Thus, this study evaluated the technological trends of anti-inflammatory activity of Compositae, based on the survey of scientific databases, articles, and patents, as well as the website of the Brazilian National Health Regulatory Agency (ANVISA), which is responsible for registering and controlling of healthcare and cosmetic products in the Brazil. The survey was conducted between 2008 and 2018, in the databases Science Direct, Lilacs, PubMed, and Web of Science (main collection), as well as the SciELO Citation Index. The patent survey was carried out on the basis of the Derwent Innovations Index, an important source for worldwide patent consultation, which covers 20 y of registered patents. Despite the numerous studies involving species of the Compositae family in different models of anti-inflammatory activity, there are few records of patents or products on the market from these species for that purpose. Some species have a traditional use and are present even in the Phytotherapic Summary of the Brazilian Pharmacopeia. This review confirms the therapeutic potential of Compositae for the development of anti-inflammatory drugs and reinforces the need to develop competencies and reduce technological bottlenecks to promote research and innovation in biodiversity products.
Collapse
Affiliation(s)
- Deise Cristina Drummond Xavier Paes Lopes
- Galenic Development Laboratory, LADEG, Health Sciences Center, Block L, Underground University Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Experimental Pharmacotechnical Laboratory, LabFE/Farmanguinhos-Fiocruz
| | | | | | - Simone Sacramento Valverde
- Laboratory of Medicinal Chemistry of Bioactive Products, LaQMed/Tec4Bio/Farmanguinhos-Fiocruz, Rio de Janeiro, Brazil
| | - Eduardo Ricci Júnior
- Galenic Development Laboratory, LADEG, Health Sciences Center, Block L, Underground University Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Herbal medicine treatment for patients with chronic subdural hematoma: A systematic review and meta-analysis. Complement Ther Clin Pract 2021; 43:101307. [PMID: 33508703 DOI: 10.1016/j.ctcp.2021.101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE In Asian countries, herbal medicines have been used to treat Chronic subdural hematoma (CSDH) as an adjunctive therapy. This review aims to evaluate the efficacy and safety of herbal medicine on treating CSDH and preventing recurrent CSDH. METHODS A literature search was conducted on PubMed, CENTRAL, Scopus, CiNii, KTKP, NDSL, OASIS, and CNKI for randomized controlled trials that evaluated the effects of herbal medicines on CSDH. RESULTS Seven studies (n = 646) were included. The overall methodological quality of these studies was low. In the herbal group, the meta-analysis indicated statistically significant improvements in the total effective rate and recurrence rate as compared with those in the non-herbal group. Herbal treatments were found to be relatively safe. CONCLUSION Herbal medicines might be efficacious in the management of CSDH and prevent its recurrence. Further rigorous studies will have to be conducted in order to make more definite conclusions.
Collapse
|
15
|
Wang MN, Cao YG, Wei YX, Ren YJ, Liu YL, Chen X, He C, Zheng XK, Feng WS. Saffloflavone, a new flavonoid from the flowers of Carthamus tinctorius L. and its cardioprotective activity. Nat Prod Res 2021; 36:3317-3323. [PMID: 33432825 DOI: 10.1080/14786419.2020.1855167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new flavonoid, saffloflavone , along with six known compounds, kaempferol-3-O-rutinoside, kaempferol-3-O-sophoroside, quercetin-3-O-β-d-glucoside, quercetin-7-O-β-d-glucoside, luteolin-7-O-β-d-glucoside and kaempferol 3-O-β-d-glucoside were isolated from the flowers of Carthamus tinctorius L. All the structures were determined by interpretation of their spectroscopic data. The cardioprotective effects of all the isolates against oxidative stress of H9c2 cells induced by H2O2 were investigated. The results showed that compounds 4-6 exhibited protective effects against of H9c2 cells injury induced by H2O2.
Collapse
Affiliation(s)
- Meng-Na Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, PR China;,The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, PR China
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, PR China;,The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, PR China
| | - Ya-Xin Wei
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, PR China;,The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, PR China
| | - Ying-Jie Ren
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, PR China;,The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, PR China
| | - Yan-Ling Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, PR China;,The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, PR China
| | - Xu Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, PR China;,The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, PR China
| | - Chen He
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, PR China;,The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, PR China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, PR China;,The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, PR China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, PR China;,The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou, PR China
| |
Collapse
|
16
|
Kim B, Han S, Kwon M, Kim J, Lim E, Kim Y. Carthami flos induces apoptosis by activating caspases and regulating mitogen-activated protein kinase and reactive oxygen species signaling pathways in AGS human gastric cancer cells. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_127_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
17
|
Qiang T, Liu J, Dong Y, Ma Y, Zhang B, Wei X, Liu H, Xiao P. Transcriptome Sequencing and Chemical Analysis Reveal the Formation Mechanism of White Florets in Carthamus tinctorius L. PLANTS 2020; 9:plants9070847. [PMID: 32635570 PMCID: PMC7412316 DOI: 10.3390/plants9070847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Carthamus tinctorius L. (safflower), an economic crop and herb, has been extensively studied for its diverse chemical constituents and pharmacological effects, but the mechanism of safflower pigments (SP) leading to different colors of florets has not been clarified. In the present study, we compared the contents of SP in two varieties of safflower with white and red florets, named Xinhonghua No. 7 (WXHH) and Yunhong No. 2 (RYH). The results showed the contents of SP in RYH were higher than WXHH. To investigate genes related to SP, we obtained six cDNA libraries of florets from the two varieties by transcriptome sequencing. A total of 225,008 unigenes were assembled and 40 unigenes related to safflower pigment biosynthesis were annotated, including 7 unigenes of phenylalanine ammonia-lyase (PAL), 20 unigenes of 4-coumarate-CoA ligase (4CL), 1 unigene of trans-cinnamate 4-monooxygenase (C4H), 7 unigenes of chalcone synthase (CHS), 4 unigenes of chalcone isomerase (CHI), and 1 unigene of flavanone 3-hydroxylase (F3H). Based on expression levels we selected 16 differentially expressed unigenes (DEGs) and tested them using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR), which was consistent with the sequencing results. Consequently, we speculated that in WXHH, 3 PALs, 3 4CLs, 1 C4H, 1 CHS, and 1 CHI, which were down-regulated, and 1 F3H, which was up-regulated, may play a key role in the formation of white florets.
Collapse
Affiliation(s)
- Tingyan Qiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (T.Q.); (J.L.); (Y.D.); (B.Z.); (X.W.); (P.X.)
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (T.Q.); (J.L.); (Y.D.); (B.Z.); (X.W.); (P.X.)
| | - Yuqing Dong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (T.Q.); (J.L.); (Y.D.); (B.Z.); (X.W.); (P.X.)
| | - Yinbo Ma
- Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon 34134, Korea;
| | - Bengang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (T.Q.); (J.L.); (Y.D.); (B.Z.); (X.W.); (P.X.)
| | - Xueping Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (T.Q.); (J.L.); (Y.D.); (B.Z.); (X.W.); (P.X.)
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (T.Q.); (J.L.); (Y.D.); (B.Z.); (X.W.); (P.X.)
- Correspondence: ; Tel.: +86-10-57833196
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; (T.Q.); (J.L.); (Y.D.); (B.Z.); (X.W.); (P.X.)
| |
Collapse
|
18
|
Sun X, Lan J, Tong R, Zhang H, Sun S, Xiong A, Wang Z, Yang L. An integrative investigation on the efficacy of Plantaginis semen based on UPLC-QTOF-MS metabolomics approach in hyperlipidemic mice. Biomed Pharmacother 2019; 115:108907. [PMID: 31071507 DOI: 10.1016/j.biopha.2019.108907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
Abstract
Plantaginis semen, the dried mature seed of Plantago asiatica L. or Plantago deprdssa Willd., has a prominent effect on the treatment of obesity, type 2 diabetes and lipid disorders, however, its clinical application is limited due to inadequate in-depth mechanism exploration and incomplete discussion of action targets of its in vivo. Therefore, an untargeted metabolomics approach was firstly applied to study the serum metabolic differences in mice. Metabolomics analysis was performed using ultra performance liquid chromatography quadrupole time of flight mass spectrometry (UPLC-QTOF-MS) together with multivariate statistical data analysis. The results showed that Plantaginis semen can mainly improve blood lipids, some degree in blood glucose and insulin levels in high-fat mice, in addition, the phenotype of liver and fat stained sections demonstrated remarkable results. A total of 22 metabolites involved in arachidonic acid, glycerophospholipid, glycosphingolipid, linoleate, Omega-3 fatty acid, phosphatidylinositol phosphate and tyrosine metabolisms were identified. In further, it was found that the possible mechanisms of Plantaginis semen on hyperlipidemic mice lied in the biosynthesis of thyroxine, biological effects of enzymes of phospholipase A2 activity, glucosylceramide synthase and inositol essential enzyme 1α, genes expressions of fatty acid metabolism and inflammation. Serum metabolomics revealed that Plantaginis semen could cure the organism disease via regulating multiple metabolic pathways which will be helpful for understanding the mechanism of this herb and providing references for better applications of it in clinic, even researches on other TCMs.
Collapse
Affiliation(s)
- Xiaomeng Sun
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiping Lan
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Renchao Tong
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Haoyue Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuai Sun
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Aizhen Xiong
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
19
|
Tu Y, He B, Gao S, Guo D, Jia X, Dong X, Guo M. CtACO1 Overexpression Resulted in the Alteration of the Flavonoids Profile of Safflower. Molecules 2019; 24:molecules24061128. [PMID: 30901924 PMCID: PMC6471848 DOI: 10.3390/molecules24061128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Flavonoids with various structures play a vital role in plant acclimatization to varying environments as well as in plant growth, development, and reproduction. Exogenous applications of ethylene and 1-aminocyclopropane carboxylic acid (ACC), could affect the accumulation of flavonoids. Very few attempts have been made to investigate the effect of 1-aminocyclopropane carboxylic acid oxidase (ACO), a unique enzyme that catalyzes ACC to ethylene, on genes and metabolites in the flavonoid biosynthetic pathway. In this study, two ACOs in safflower (CtACOs) were cloned, and then transgenic safflower with overexpressed CtACO1 was generated through the Agrobacterium-mediated floral dipping method. Results: CtACO1 and CtACO2 were both characterized by the 2-oxoglutarate binding domain RxS and the ferrous iron binding site HxDxnH as ACOs from other plants. However, the transcript levels of CtACO1 in flowers at stages I, II, III, and IV were all higher than those of CtACO2. At the cellular level, by using electroporation transformation, CtACO1 was found to be localized at the cytomembrane in onion epidermal cells. CtACO1 overexpression had varying effects on genes involved in the ethylene and flavonoid biosynthetic pathways. The metabolites analysis showed that CtACO1 overexpression lines had a higher accumulation of quercetin and its glycosylated derivatives (quercetin 3-β-d-glucoside and rutin). In contrast, the accumulation of quinochalcones (hydroxysafflor yellow A and carthamin), kaempferol glycosylated derivatives (kaempferol-3-O-β-rutinoside and kaempferol-3-O-β-d-glucoside), apigenin, and luteolin in CtACO1 overexpression lines were decreased. Conclusion: This study confirmed the feasibility of applying the floral dipping method to safflower and showed a novel regulatory effect of CtACO1 in the flavonoid biosynthetic pathway. It provides hypothetical and practical groundwork for further research on regulating the overall metabolic flux of flavonoids in safflower, particularly hydroxysafflor yellow A and other quinochalcones, by using appropriate genetic engineering strategies.
Collapse
Affiliation(s)
- Yanhua Tu
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Songyan Gao
- Chemical Experiment Teaching Center, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Dandan Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xinlei Jia
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Xin Dong
- Chemical Experiment Teaching Center, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
20
|
A Novel Discovery: Holistic Efficacy at the Special Organ Level of Pungent Flavored Compounds from Pungent Traditional Chinese Medicine. Int J Mol Sci 2019; 20:ijms20030752. [PMID: 30754631 PMCID: PMC6387020 DOI: 10.3390/ijms20030752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/25/2022] Open
Abstract
Pungent traditional Chinese medicines (TCMs) play a vital role in the clinical treatment of hepatobiliary disease, gastrointestinal diseases, cardiovascular diseases, diabetes, skin diseases and so on. Pungent TCMs have a vastness of pungent flavored (with pungent taste or smell) compounds. To elucidate the molecular mechanism of pungent flavored compounds in treating cardiovascular diseases (CVDs) and liver diseases, five pungent TCMs with the action of blood-activating and stasis-resolving (BASR) were selected. Here, an integrated systems pharmacology approach is presented for illustrating the molecular correlations between pungent flavored compounds and their holistic efficacy at the special organ level. First, we identified target proteins that are associated with pungent flavored compounds and found that these targets were functionally related to CVDs and liver diseases. Then, based on the phenotype that directly links human genes to the body parts they affect, we clustered target modules associated with pungent flavored compounds into liver and heart organs. We applied systems-based analysis to introduce a pungent flavored compound-target-pathway-organ network that clarifies mechanisms of pungent substances treating cardiovascular diseases and liver diseases by acting on the heart/liver organ. The systems pharmacology also suggests a novel systematic strategy for rational drug development from pungent TCMs in treating cardiovascular disease and associated liver diseases.
Collapse
|
21
|
Tu Y, Li D, Fan L, Jia X, Guo D, Xin H, Guo M. DOXC-class 2-oxoglutarate-dependent dioxygenase in safflower: Gene characterization, transcript abundance, and correlation with flavonoids. BIOCHEM SYST ECOL 2018. [DOI: 10.1016/j.bse.2018.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Wu W, Chen Y, Wang B, Sun X, Guo P, Chen X. Identification of chemical components in Baidianling Capsule based on gas chromatography-mass spectrometry and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. J Sep Sci 2017. [PMID: 28631877 DOI: 10.1002/jssc.201700033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Baidianling Capsule, which is made from 16 Chinese herbs, has been widely used for treating vitiligo clinically. In this study, the sensitive and rapid method has been developed for the analysis of chemical components in Baidianling Capsule by gas chromatography-mass spectrometry in combination with retention indices and high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Firstly, a total of 110 potential volatile compounds obtained from different extraction procedures including alkanes, alkenes, alkynes, ketones, ethers, aldehydes, alcohols, phenols, organic acids, esters, furans, pyrrole, acid amides, heterocycles, and oxides were detected from Baidianling Capsule by gas chromatography-mass spectrometry, of which 75 were identified by mass spectrometry in combination with the retention index. Then, a total of 124 components were tentatively identified by high-performance liquid chromatography combined with Fourier transform ion cyclotron resonance mass spectrometry. Fifteen constituents from Baidianling Capsule were accurately identified by comparing the retention times with those of reference compounds, others were identified by comparing the retention times and mass spectrometry data, as well as retrieving the reference literature. This study provides a practical strategy for rapidly screening and identifying the multiple constituents of a complex traditional Chinese medicine.
Collapse
Affiliation(s)
- Wenying Wu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Binjie Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyang Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ping Guo
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaohui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
23
|
Guo D, Xue Y, Li D, He B, Jia X, Dong X, Guo M. Overexpression of CtCHS1 Increases Accumulation of Quinochalcone in Safflower. FRONTIERS IN PLANT SCIENCE 2017; 8:1409. [PMID: 28861095 PMCID: PMC5559696 DOI: 10.3389/fpls.2017.01409] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2017] [Indexed: 05/10/2023]
Abstract
Carthami flos, the dried petal of safflower (Carthamus tinctorius L.) has been widely used in traditional Chinese medicine to treat cardiovascular and cerebrovascular diseases, in which quinochalcone glucosides such as hydrosafflower yellow A (HSYA), carthamin are uniquely present and have been identified as active compounds. In the present study, through sequencing of a safflower floret cDNA library and subsequent microarray analysis, we found 23 unigenes (5 PALs, 1 C4Hs, 5 4CLs, 6 CHSs, 2 CHIs, 2 DFRs, 2 FLSs) involved in flavonoid pathway, of which 4 were up-regulated differentially during quinochalcone glucosides accumulation with the floret developing stage. The up-regulated genes were verified by PCR methods. Considering chalcone synthase are entry enzyme in flavonoid biosynthesis, CHS1 was focused on target gene to verify its function furtherly. Bioinformation analysis showed that CHS1 shared 86.94% conserved residues with CHS from other plants. Subcellular localization showed that CtCHS1 was localized in cytoplasm in onion epidermal cells. The transgenic safflower plant with overexpression CtCHS1 by Agrobacterium-mediated pollen-tube pathway method was firstly generated. The results present that expression of PAL2, PAL3, CHS1, CHS4, CHS6 increased and expression of CHI1 and CHI2 decreased in the transgenic plant floret. Meanwhile, the accumulation of quinochalcone glucosides increased by ∼20-30% and accumulation of quercetin-3-β-D-glucoside and quercetin decreased by 48 and 63% in the transgenic plant floret. These results suggested that CtCHS1 played an important role in quinochalcone glucosides biosynthesis rather than flavonol biosynthesis. These results also demonstrated that the pollen-tube pathway method was an efficient method for gene transformation in safflower. Our study will provide a deep understanding of potential synthetic genes involved in quinochalcone biosynthetic pathway.
Collapse
Affiliation(s)
- Dandan Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Yingru Xue
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Dongqiao Li
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Beixuan He
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Xinlei Jia
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
| | - Xin Dong
- Testing and Analysis Center, College of Pharmacy, Second Military Medical UniversityShanghai, China
- *Correspondence: Xin Dong, Meili Guo,
| | - Meili Guo
- Department of Pharmacognosy, College of Pharmacy, Second Military Medical UniversityShanghai, China
- *Correspondence: Xin Dong, Meili Guo,
| |
Collapse
|
24
|
Tu Y, Liu F, Guo D, Fan L, Zhu Z, Xue Y, Gao Y, Guo M. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation. BMC PLANT BIOLOGY 2016; 16:132. [PMID: 27286810 PMCID: PMC4902928 DOI: 10.1186/s12870-016-0813-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/18/2016] [Indexed: 05/08/2023]
Abstract
BACKGROUND Among secondary metabolites, flavonoids are particularly crucial for plant growth, development, and reproduction, as well as beneficial for maintenance of human health. As a flowering plant, safflower has synthesized a striking variety of flavonoids with various pharmacologic properties. However, far less research has been carried out on the genes involved in the biosynthetic pathways that generate these amazing flavonoids, especially characterized quinochalcones. In this study, we first cloned and investigated the participation of a presumed flavanone 3-hydroxylase gene (F3H) from safflower (CtF3H) in a flavonoid biosynthetic pathway. RESULTS Bioinformation analysis showed that CtF3H shared high conserved residues and confidence with F3H from other plants. Subcellular localization uncovered the nuclear and cytosol localization of CtF3H in onion epidermal cells. The functional expressions of CtF3H in Escherichia coli BL21(DE3)pLysS cells in the pMAL-C5x vector led to the production of dihydrokaempferol when naringenin was the substrate. Furthermore, the transcriptome expression of CtF3H showed a diametrically opposed expression pattern in a quinochalcone-type safflower line (with orange-yellow flowers) and a flavonol-type safflower line (with white flowers) under external stimulation by methyl jasmonate (MeJA), which has been identified as an elicitor of flavonoid metabolites. Further metabolite analysis showed the increasing tendency of quinochalcones and flavonols, such as hydroxysafflor yellow A, kaempferol-3-O-β-D-glucoside, kaempferol-3-O-β-rutinoside, rutin, carthamin, and luteolin, in the quinochalcone-type safflower line. Also, the accumulation of kaempferol-3-O-β-rutinoside and kaempferol-3-O-β-D-glucoside in flavonols-typed safflower line showed enhanced accumulation pattern after MeJA treatment. However, other flavonols, such as kaempferol, dihydrokaempferol and quercetin-3-O-β-D-glucoside, in flavonols-typed safflower line presented down accumulation respond to MeJA stimulus. CONCLUSIONS Our results showed that the high expression of CtF3H in quinochalcone-type safflower line was associated with the accumulation of both quinochalcones and flavonols, whereas its low expression did not affect the increased accumulation of glycosylated derivatives (kaempferol-3-O-β-rutinoside and rutin) in flavonols-typed safflower line but affect the upstream precursors (D-phenylalanine, dihydrokaempferol, kaempferol), which partly revealed the function of CtF3H in different phenotypes and chemotypes of safflower lines.
Collapse
Affiliation(s)
- YanHua Tu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Fei Liu
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - DanDan Guo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - LiJiao Fan
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - ZhenXian Zhu
- School of Biological and Environmental Sciences, Nanjing Forestry University, Nanjing, 210095, People's Republic of China
| | - YingRu Xue
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Yue Gao
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| | - MeiLi Guo
- School of Pharmacy, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|