1
|
Boulechfar S, Zellagui A, Bensouici C, Lahouel M, Desdous A. GC-MS based metabolic profile and toxicological evaluation of three Algerian propolis. Nat Prod Res 2025; 39:1718-1722. [PMID: 38146614 DOI: 10.1080/14786419.2023.2298382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/12/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
This study aimed to investigate the chemical composition and toxicity of methanolic extracts of three Algerian propolis collected from Oum el Bouaghi (MEPO), El Harrouch (MEPH) and Collo (MEPC) regions. The chemical profile was characterised by GC-MS. The toxicity of the extracts was tested using brine shrimp model. The GC-MS analysis revealed the presence of ferulic acid (23.8%), pinostrobin chalcone (15.8%) and α-eudesmol (11.3%) as major compounds in MEPO, pinostrobin chalcone (22.2%), 9-octadecenoic acid, methyl ester, (E)- (17.4%), and γ-gurjunenepoxide-(2) (11.7%) were the most abundant components in MEPH, whereas MEPC was dominated by 1-heptatriacotanol (17.8%), pinostrobin chalcone (14.7%), totarol (13.7%) and 9-octadecenoic acid, methyl ester, (E)- (13.0%). The brine shrimp lethality test indicated that the extracts had moderate toxicity in which MEPC exhibited the highest activity with LC50 of 201.61 ± 7.27 µg/mL. All extracts showed no toxicity at 25 µg/mL concentration and below.
Collapse
Affiliation(s)
- Safia Boulechfar
- Department of Nature and Life Sciences, Faculty of Sciences, 20th August University, Skikda, Algeria
- Laboratory of Biomolecules and Plant Breeding, Department of Nature and Life Sciences, Faculty of Exact Sciences, Nature and Life Sciences, University of Larbi Ben Mhidi, Oum El Bouaghi, Algeria
| | - Amar Zellagui
- Laboratory of Biomolecules and Plant Breeding, Department of Nature and Life Sciences, Faculty of Exact Sciences, Nature and Life Sciences, University of Larbi Ben Mhidi, Oum El Bouaghi, Algeria
| | | | - Mesbah Lahouel
- Molecular Toxicology Laboratory, Mohammed Seddik Benyahia University, Jijel, Algeria
| | - Abderrachid Desdous
- Department of Molecular and cell Biology, Faculty of Nature and Life Sciences, Mohammed Seddik Benyahia University, Jijel, Algeria
| |
Collapse
|
2
|
Oršolić N, Jazvinšćak Jembrek M. Potential Strategies for Overcoming Drug Resistance Pathways Using Propolis and Its Polyphenolic/Flavonoid Compounds in Combination with Chemotherapy and Radiotherapy. Nutrients 2024; 16:3741. [PMID: 39519572 PMCID: PMC11547968 DOI: 10.3390/nu16213741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Conventional cancer treatments include surgical resection, chemotherapy, hyperthermia, immunotherapy, hormone therapy, and locally targeted therapies such as radiation therapy. Standard cancer therapies often require the use of multiple agents, which can activate nuclear factor kappa B (NF-κB) in tumor cells, leading to reduced cell death and increased drug resistance. Moreover, the use of multiple agents also contributes to added toxicity, resulting in poor treatment outcomes. Cancer cells gradually develop resistance to almost all chemotherapeutics through various mechanisms, such as drug efflux, alterations in drug metabolism and transport, changes in signal transduction pathways, enhanced DNA repair capacity, evasion of apoptosis, increased mutations, reactivation of drug targets, interaction with the cancer microenvironment, cancer cell-stroma interactions, epithelial-mesenchymal transition (EMT)-mediated chemoresistance, epigenetic modifications, metabolic alterations, and the effect of cancer stem cells (CSCs). Developing new strategies to improve chemotherapy sensitivity while minimizing side effects is essential for achieving better therapeutic outcomes and enhancing patients' quality of life. One promising approach involves combining conventional cancer treatments with propolis and its flavonoids. These natural compounds may enhance tumor response to treatment while reducing toxicity. Propolis and its components can sensitize cancer cells to chemotherapeutic agents, likely by inhibiting NF-κB activation, reprogramming tumor-associated macrophages (TAMs; an M2-like phenotype), and thereby reducing the release of matrix metalloproteinase (MMP)-9, cytokines, chemokines, and the vascular endothelial growth factor (VEGF). By reducing TAMs, propolis and its components may also overcome EMT-mediated chemoresistance, disrupt the crosstalk between macrophages and CSCs, inhibit the maintenance of stemness, and reverse acquired immunosuppression, thus promoting an antitumor response mediated by cytotoxic T-cells. This review highlights the potential of flavonoids to modulate the responsiveness of cancer to conventional treatment modalities. The evidence suggests that novel therapeutic strategies incorporating flavonoids could be developed to improve treatment outcomes. The positive effects of combining propolis with chemotherapeutics include reduced cytotoxicity to peripheral blood leukocytes, liver, and kidney cells. Therefore, polyphenolic/flavonoid components may hold potential for use in combination with chemotherapeutic agents in the clinical treatment of various types of cancers.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 244, HR-10000 Zagreb, Croatia
| |
Collapse
|
3
|
Nna VU, McGrowder D, Nwokocha C. Nutraceutical management of metabolic syndrome as a palliative and a therapeutic to coronavirus disease (COVID) crisis. Arch Physiol Biochem 2023; 129:1123-1142. [PMID: 33770443 DOI: 10.1080/13813455.2021.1903041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022]
Abstract
The global market for medicinal plants and herbs is on the increase due to their desirability, efficacy, and less adverse effects as complementary and alternative medications to the orthodox pharmaceuticals, perhaps due to their natural components and qualities. Metabolic syndromes are managed with changes in diet, exercise, lifestyle modifications and the use of pharmacological agents. Plants are now known to have potent antioxidant and cholinergic activities which are relevant to the management of several metabolic syndromes, which are unfortunately, co-morbidity factors in the coronavirus disease crisis. This review will focus on the biological activities of some plant products used as complementary and alternative medicines in the management of metabolic syndromes, and on their reported antiviral, antithrombotic, angiotensin-converting enzyme inhibitory properties, which are integral to their usage in the management of viral infections and may give an avenue for prophylactic and therapeutics especially in the absence of vaccines/formulated antiviral therapies.
Collapse
Affiliation(s)
- Victor Udo Nna
- Department of Physiology, College of Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Donovan McGrowder
- Department of Pathology, The University of the West Indies, Mona, Jamaica
| | - Chukwuemeka Nwokocha
- Department of Basic Medical Sciences (Physiology Section), The University of the West Indies, Mona, Jamaica
| |
Collapse
|
4
|
Wang C, Zhao H, Xu K, Du Y, Liu J, Wang J, Jiang Y. Fecal metabolomics reveals the positive effect of ethanol extract of propolis on T2DM mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Zulhendri F, Lesmana R, Tandean S, Christoper A, Chandrasekaran K, Irsyam I, Suwantika AA, Abdulah R, Wathoni N. Recent Update on the Anti-Inflammatory Activities of Propolis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238473. [PMID: 36500579 PMCID: PMC9740431 DOI: 10.3390/molecules27238473] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 12/09/2022]
Abstract
In recent years, research has demonstrated the efficacy propolis as a potential raw material for pharmaceuticals and nutraceuticals. There is limited report detailing the mechanisms of action of propolis and its bioactive compounds in relation to their anti-inflammatory properties. Thus, the aim of the present review is to examine the latest experimental evidence (2017-2022) regarding the anti-inflammatory properties of propolis. A systematic scoping review methodology was implemented. After applying the exclusion criteria, a total of 166 research publications were identified and retrieved from Scopus, Web of Science, and Pubmed. Several key themes related to the anti-inflammatory properties of propolis were subsequently identified, namely in relation to cancers, oral health, metabolic syndrome, organ toxicity and inflammation, immune system, wound healing, and pathogenic infections. Based on the latest experimental evidence, propolis is demonstrated to possess various mechanisms of action in modulating inflammation towards the regulatory balance and anti-inflammatory environment. In general, we summarize that propolis acts as an anti-inflammatory substance by inhibiting and downregulating TLR4, MyD88, IRAK4, TRIF, NLRP inflammasomes, NF-κB, and their associated pro-inflammatory cytokines such as IL-1β, IL-6, IFN-γ, and TNF-α. Propolis also reduces the migration of immune cells such as macrophages and neutrophils, possibly by downregulating the chemokines CXCL9 and CXCL10.
Collapse
Affiliation(s)
- Felix Zulhendri
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Kebun Efi, Kabanjahe 22171, Indonesia
| | - Ronny Lesmana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Physiology Division, Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
- Biological Activity Division, Central Laboratory, Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence: (R.L.); (S.T.)
| | - Steven Tandean
- Department of Neurosurgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia
- Correspondence: (R.L.); (S.T.)
| | - Andreas Christoper
- Postgraduate Program of Medical Science, Faculty of Medicine, Universitas Padjadjaran, Bandung 45363, Indonesia
| | | | - Ilham Irsyam
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Sumatera Utara, Medan 20222, Indonesia
| | - Auliya A. Suwantika
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rizky Abdulah
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung 45363, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Research Center of Biopolymers for Drug and Cosmetic Delivery, Bandung 45363, Indonesia
| |
Collapse
|
6
|
LC–MS/MS analysis, antioxidant and anticancer effects of phenolic-rich extracts from Algerian propolis: a comparative study. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Pant K, Thakur M, Chopra HK, Dar BN, Nanda V. Assessment of fatty acids, amino acids, minerals, and thermal properties of bee propolis from Northern India using a multivariate approach. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Sahlan M, Rizka Alia Hapsari N, Diah Pratami K, Cahya Khayrani A, Lischer K, Alhazmi A, Mohammedsaleh ZM, Shater AF, Saleh FM, Alsanie WF, Sayed S, Gaber A. Potential hepatoprotective effects of flavonoids contained in propolis from South Sulawesi against chemotherapy agents. Saudi J Biol Sci 2021; 28:5461-5468. [PMID: 34588856 PMCID: PMC8459154 DOI: 10.1016/j.sjbs.2021.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/03/2021] [Accepted: 08/08/2021] [Indexed: 02/01/2023] Open
Abstract
The use of doxorubicin and epirubicin as chemotherapy agent causes side effects such as liver damage due to oxidative stress by reactive oxygen species (ROS) that cause increased of ALT and AST level as liver parameter. One source of natural antioxidants as ROS neutralizer comes from flavonoid that contain in propolis. Most researchers claim that flavonoid can be used to protect the liver. The aim of this study was to test the hepatoprotective effect of flavonoid in propolis from South Sulawesi against doxorubicin and epirubicin. The experiment included male Sprague dawley rats divided into nine groups. The rats received the microcapsule propolis or the quercetin orally for 15 days. The hepatotoxicity was promoted by injection epirubicin and doxorubicin (i.v.) with a cumulative dose of 9 mg/kg. In this study, total polyphenol and flavonoid tests of propolis have been carried out, there were 1.1% polyphenols and 2.7% flavonoids, the antioxidant activity tests showed IC50 value of 9849 ppm and LCMS/MS tests supported the presence of phenolic compounds in propolis from South Sulawesi. Liver parameter was measured and the results showed that the propolis 200 mg/kg group produced the lowest ALT and had potential protective effect against doxorubicin and epirubicin-induced hepatotoxicity.
Collapse
Affiliation(s)
- Muhamad Sahlan
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia.,Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia
| | - Nur Rizka Alia Hapsari
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia
| | | | - Apriliana Cahya Khayrani
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia
| | - Kenny Lischer
- Department of Chemical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia.,Research Center for Biomedical Engineering, Faculty of Engineering, Universitas Indonesia, West Java, 16424, Depok, Indonesia
| | - Alaa Alhazmi
- Medical Laboratory Technology Department, Jazan University, Jazan, Saudi Arabia.,SMIRES for Consultation in Specialized Medical Laboratories, Jazan University, Jazan, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdullah F Shater
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Walaa F Alsanie
- Center of Biomedical Sciences Research (CBSR), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.,Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, B.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed Gaber
- Center of Biomedical Sciences Research (CBSR), Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.,Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
9
|
Irigoiti Y, Navarro A, Yamul D, Libonatti C, Tabera A, Basualdo M. The use of propolis as a functional food ingredient: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Fitria A, Hanifah S, Chabib L, Uno AM, Munawwarah H, Atsil N, Pohara HA, Weuanggi DA, Syukri Y. Design and characterization of propolis extract loaded self-nano emulsifying drug delivery system as immunostimulant. Saudi Pharm J 2021; 29:625-634. [PMID: 34194270 PMCID: PMC8233540 DOI: 10.1016/j.jsps.2021.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 12/26/2022] Open
Abstract
This current study aims to optimize, characterize, and observe the stability of the self-nano emulsifying drug delivery system (SNEDDS) of propolis extract (PE) for improving the immune response. Optimization of the selected composition of SNEDDS was conducted using a D-optimal mixture design. SNEDDS was prepared by loading 150 mg/mL of PE in oil, surfactant, and cosurfactant phases. The thermodynamic stability test was carried out with phase separation parameters followed by the robustness to dilution and accelerated stability test. The immunostimulant activity was examined in vitro and in vivo by determining the phagocytic activity, cell proliferation, production of nitrite oxide levels of RAW 264.7 cells, phagocytic activity of macrophages, and the number of leukocytes, neutrophils, and lymphocytes. The formula optimization showed that the formula containing Capryol-90, Cremophor RH40, and PEG 400 at a ratio of 30: 34: 36 was optimum. The verification response of the optimum formula with drug loading showed that the transmittance, droplet size, and zeta potential were 96.90 ± 0.00%, 28.7 ± 1.20 nm, and -56.5 ± 2.05 mV, respectively. The thermodynamic stability test and robustness to dilution did not find any separation phase. The accelerated stability test results were classified as stable. The in vitro and in vivo immunostimulant activity test showed that PE-loaded SNEDDS exhibited a higher immunostimulant effect than PE. In conclusion, the optimum and stable composition of PE loaded SNEDDS was found with a simple and accurate method using the D-Optimal mixture design and demonstrated an immunostimulant activity.
Collapse
Affiliation(s)
- Annisa Fitria
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Suci Hanifah
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Lutfi Chabib
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Adnan Muhammad Uno
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | | | - Nur Atsil
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | | | | | - Yandi Syukri
- Department of Pharmacy, Universitas Islam Indonesia, Yogyakarta, Indonesia
| |
Collapse
|
11
|
Boufadi MY, Soubhye J, Van Antwerpen P. Anti-inflammatory, antioxidant effects, and bioaccessibility of Tigzirt propolis. J Food Biochem 2021; 45:e13663. [PMID: 33605470 DOI: 10.1111/jfbc.13663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/27/2022]
Abstract
This work aims to assess the anti-inflammatory effects of Tigzirt propolis native to Algeria. We divided 48 male Wistar rats into 8 groups. We orally administered ethyl acetate extract of propolis (EAP), pure polyphenols compounds, or diclofenac 5 days before induction of inflammation by of carrageenan (100 μg/ml, i.p.). We determined the development of paw edema, biological parameters, myeloperoxidase activity, TNF-α, and prostaglandin E2 and measured the oxidative status parameters, as well. Finally, we analyzed the absorption and bioaccessibility of propolis in rats' plasma using GC-MS after orally dosing rats (250 mg/kg). The pretreatment by 200 and 250 mg/kg of propolis significantly reduced the edema rates after the third hour. Propolis can restore the disruption of homeostasis as well as markers of inflammation induced by carrageenan in Wistar rats, and an increase of the enzymatic activities. Furthermore, the inflammation was better resolved in rats that received propolis than in those treated with pure polyphenols. PRACTICAL APPLICATIONS: Propolis is a natural mixture that bees produce by mixing gathered resin and gums to bee saliva and wax. Our research investigated the effect of Tigzirt propolis on the inhibition of biomarkers of inflammation and the development of paw edema. Propolis extract helped to reduce PGE2, TNF-α, myeloperoxidase, and malondialdehyde levels and increase the total antioxidant levels in plasma. Our findings emphasized the use of phenolic extract of propolis in industries such as nutraceuticals for the prevention of inflammatory diseases. It can also protect the body against damage under oxidative stress.
Collapse
Affiliation(s)
- Mokhtaria Yasmina Boufadi
- Laboratory of Beneficial Microorganisms, Functional Food and Health (LMBAFS), Faculty of Natural Sciences and Life, Abdelhamid Ibn Badis University, Mostaganem, Algeria.,Laboratory of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Jalal Soubhye
- Laboratory of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium.,Analytical Platform of the Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
12
|
Yong H, Liu J. Active packaging films and edible coatings based on polyphenol‐rich propolis extract: A review. Compr Rev Food Sci Food Saf 2021; 20:2106-2145. [DOI: 10.1111/1541-4337.12697] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering Yangzhou University Yangzhou PR China
| | - Jun Liu
- College of Food Science and Engineering Yangzhou University Yangzhou PR China
| |
Collapse
|
13
|
Biochemical Composition of Propolis and Its Efficacy in Maintaining Postharvest Storability of Fresh Fruits and Vegetables. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8869624] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Propolis, also called “bee-glue,” is a natural resinous substance produced by honeybees from plant exudates, beeswax, and bee secretions in order to defend the hives. It has numerous phenolic compounds with more than 250 identified chemical compounds in its composition, which are also known to significantly vary according to the plant sources and season. Moreover, it has a long history in the traditional and scientific medicine as having antibacterial, anticancer, anti-inflammatory, anti-infective, and wound healing effects since 300 BC. In addition to its nutritional and health-promoting effects, it has been reported to improve the postharvest storability of fresh fruits, vegetables, and processed food products. Herein, the biochemical composition and the efficacy of propolis in maintaining the postharvest storability of fresh food products were discussed to provide comprehensive guide to farmers and food processing and storage sectors and to scientists. This review paper also highlights the important points to which special attention should be given in further studies in order to be able to use propolis to develop biopreservatives industrially and for quality preservation during storage.
Collapse
|
14
|
Zhang XH, Ma YX, Yi C, Qing XD, Liu Z, Zheng JJ, Lin F, Lv TF. Chemometrics-enhanced HPLC–DAD as a rapid and interference-free strategy for simultaneous quantitative analysis of flavonoids in Chinese propolis. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03543-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|