1
|
de Araújo RS, Mussalem MGVB, Carrijo GS, Bani JVDF, Ferreira LM. Adipose Tissue Derivatives in Peripheral Nerve Regeneration after Transection: A Systematic Review. Bioengineering (Basel) 2024; 11:697. [PMID: 39061779 PMCID: PMC11274242 DOI: 10.3390/bioengineering11070697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/08/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Peripheral nerve injury (PNI) is increasingly prevalent and challenging to treat despite advances in microsurgical techniques. In this context, adipose tissue derivatives, such as adipose-derived stem cells, nanofat, and stromal vascular fraction have been gaining attention as potential allies in peripheral nerve regeneration. OBJECTIVES This study aims to explore the use of adipose tissue derivatives in nerve regeneration following peripheral nerve transection in murine models. Thus, we assess and synthesize the key techniques and methods used for evaluating the obtained nerve regeneration to guide future experimental research and clinical interventions. METHODOLOGY A systematic review was conducted in February 2024, adhering to the Cochrane and PRISMA 2020 guidelines, using the PubMed, SciELO, and LILACS databases. The focus was on experimental studies involving adipose tissue derivatives in nerve regeneration in animal models post-transection. Only experimental trials reporting nerve regeneration outcomes were included; studies lacking a comparator group or evaluation methods were excluded. RESULTS Out of 273 studies initially identified from MEDLINE, 19 were selected for detailed analysis. The average study included 32.5 subjects, with about 10.2 subjects per intervention subgroup. The predominant model was the sciatic nerve injury with a 10 mm gap. The most common intervention involved unprocessed adipose-derived stem cells, utilized in 14 articles. CONCLUSIONS This review underscores the significant potential of current methodologies in peripheral nerve regeneration, particularly highlighting the use of murine models and thorough evaluation techniques.
Collapse
Affiliation(s)
- Rafael Silva de Araújo
- Federal University of São Paulo, Department of Plastic Surgery, São Paulo 04038-001, Brazil; (M.G.V.B.M.); (J.V.d.F.B.); (L.M.F.)
| | | | | | - João Victor de Figueiredo Bani
- Federal University of São Paulo, Department of Plastic Surgery, São Paulo 04038-001, Brazil; (M.G.V.B.M.); (J.V.d.F.B.); (L.M.F.)
| | - Lydia Masako Ferreira
- Federal University of São Paulo, Department of Plastic Surgery, São Paulo 04038-001, Brazil; (M.G.V.B.M.); (J.V.d.F.B.); (L.M.F.)
| |
Collapse
|
2
|
Intramuscular Stem Cell Injection in Combination with Bioengineered Nerve Repair or Nerve Grafting Reduces Muscle Atrophy. Plast Reconstr Surg 2022; 149:905e-913e. [PMID: 35271540 DOI: 10.1097/prs.0000000000009031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Peripheral nerve injuries represent a clinical challenge, especially when they are accompanied by loss of neural tissue. In this study, the authors attempted to attain a better outcome after a peripheral nerve injury by both repairing the nerve lesion and treating the denervated muscle at the same time. METHODS Rat sciatic nerves were transected to create 10-mm gaps. Repair was performed in five groups (n = 5 rats for each), as follows: group 1, nerve repair using poly-3-hydroxybutyrate strips to connect the proximal and distal stumps, in combination with control growth medium injection in the gastrocnemius muscle; group 2, nerve repair with poly-3-hydroxybutyrate strip seeded with Schwann cell-like differentiated adipose stem cells (differentiated adipose stem cell strip) in combination with growth medium intramuscular injection; group 3, differentiated adipose stem cell strip in combination with intramuscular injection of differentiated adipose stem cells; group 4, repair using autograft (reverse sciatic nerve graft) in combination with intramuscular injection of growth medium; and group 5, autograft in combination with intramuscular injection of differentiated adipose stem cells. Six weeks after nerve injury, the effects of the stem cells on muscle atrophy were assessed. RESULTS Poly-3-hydroxybutyrate strips seeded with differentiated adipose stem cells showed a high number of βIII-tubulin-positive axons entering the distal stump and abundant endothelial cells. Group 1 animals exhibited more muscle atrophy than all the other groups, and group 5 animals had the greatest muscle weights and muscle fibers size. CONCLUSION Bioengineering nerve repair in combination with intramuscular stem cell injection is a promising technique to treat nerve lesions and associated muscle atrophy. CLINICAL RELEVANCE STATEMENT Nerve injuries and resulting muscle atrophy are a clinical challenge. To optimize functional recovery after a nerve lesion, the authors treated the nerve and muscle at the same time by using regenerative medicine with adipose stem cells and obtained encouraging results for future clinical applications.
Collapse
|
3
|
Hayat U, Raza A, Bilal M, Iqbal HM, Wang JY. Biodegradable polymeric conduits: Platform materials for guided nerve regeneration and vascular tissue engineering. J Drug Deliv Sci Technol 2022; 67:103014. [DOI: 10.1016/j.jddst.2021.103014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Razavi S, Jahromi M, Vatankhah E, Seyedebrahimi R. Differential effects of rat ADSCs encapsulation in fibrin matrix and combination delivery of BDNF and Gold nanoparticles on peripheral nerve regeneration. BMC Neurosci 2021; 22:50. [PMID: 34384370 PMCID: PMC8359623 DOI: 10.1186/s12868-021-00655-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/03/2021] [Indexed: 12/31/2022] Open
Abstract
Background Fibrin as an extracellular matrix feature like biocompatibility, creates a favorable environment for proliferation and migration of cells and it can act as a reservoir for storage and release of growth factors in tissue engineering. Methods In this study, the inner surface of electrospun poly (lactic-co-glycolic acid) (PLGA) nanofibrous conduit was biofunctionalized with laminin containing brain derived neurotrophic factor (BDNF) and gold nanoparticles in chitosan nanoparticle. The rats were randomly divided into five groups, including autograft group as the positive control, PLGA conduit coated by laminin and filled with DMEM/F12, PLGA conduit coated by laminin and filled with rat-adipose derived stem cells (r-ADSCs), PLGA conduit coated by laminin containing gold-chitosan nanoparticles (AuNPs-CNPs), BDNF-chitosan nanoparticles (BDNF-CNPs) and filled with r-ADSCs or filled with r-ADSCs suspended in fibrin matrix, and they were implanted into a 10 mm rat sciatic nerve gap. Eventually, axonal regeneration and functional recovery were assessed after 12 weeks. Results After 3 months post-surgery period, the results showed that in the PLGA conduit filled with r-ADSCs without fibrin matrix group, positive effects were obtained as compared to other implanted groups by increasing the sciatic functional index significantly (p < 0.05). In addition, the diameter nerve fibers had a significant difference mean in the PLGA conduit coated by laminin and conduit filled with r-ADSCs in fibrin matrix groups relative to the autograft group (p < 0.001). However, G-ratio and amplitude (AMP) results showed that fibrin matrix might have beneficial effects on nerve regeneration but, immunohistochemistry and real-time RT-PCR outcomes indicated that the implanted conduit which filled with r-ADSCs, with or without BDNF-CNPs and AuNPs-CNPs had significantly higher expression of S100 and MBP markers than other conduit implanted groups (p < 0.05). Conclusions It seems, in this study differential effects of fibrin matrix, could be interfered it with other factors thereby and further studies are required to determine the distinctive effects of fibrin matrix combination with other exogenous factors in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maliheh Jahromi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Vatankhah
- Department of Biological Systems, Faculty of New Technologies Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Reihaneh Seyedebrahimi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
5
|
Meena P, Kakkar A, Kumar M, Khatri N, Nagar RK, Singh A, Malhotra P, Shukla M, Saraswat SK, Srivastava S, Datt R, Pandey S. Advances and clinical challenges for translating nerve conduit technology from bench to bed side for peripheral nerve repair. Cell Tissue Res 2020; 383:617-644. [PMID: 33201351 DOI: 10.1007/s00441-020-03301-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Injuries to the peripheral nervous system remain a large-scale clinical problem. These injuries often lead to loss of motor and/or sensory function that significantly affects patients' quality of life. The current neurosurgical approach for peripheral nerve repair involves autologous nerve transplantation, which often leads to clinical complications. The most pressing need is to increase the regenerative capacity of existing tubular constructs in the repair of large nerve gaps through development of tissue-engineered approaches that can surpass the performance of autografts. To fully realize the clinical potential of nerve conduit technology, there is a need to reconsider design strategies, biomaterial selection, fabrication techniques and the various potential modifications to optimize a conduit microenvironment that can best mimic the natural process of regeneration. In recent years, a significant progress has been made in the designing and functionality of bioengineered nerve conduits to bridge long peripheral nerve gaps in various animal models. However, translation of this work from lab to commercial scale has not been achieve. The current review summarizes recent advances in the development of tissue engineered nerve guidance conduits (NGCs) with regard to choice of material, novel fabrication methods, surface modifications and regenerative cues such as stem cells and growth factors to improve regeneration performance. Also, the current clinical potential and future perspectives to achieve therapeutic benefits of NGCs will be discussed in context of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Poonam Meena
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Anupama Kakkar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Mukesh Kumar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Nitin Khatri
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rakesh Kumar Nagar
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Aarti Singh
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Poonam Malhotra
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Manish Shukla
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Sumit Kumar Saraswat
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Supriya Srivastava
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Rajan Datt
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India
| | - Siddharth Pandey
- Department of Life Sciences, Datt Mediproducts Pvt. Ltd., Roz Ka Meo Industrial Area, District Mewat, Nuh, 122103, District Haryana, India.
| |
Collapse
|
6
|
Ex-Vivo Stimulation of Adipose Stem Cells by Growth Factors and Fibrin-Hydrogel Assisted Delivery Strategies for Treating Nerve Gap-Injuries. Bioengineering (Basel) 2020; 7:bioengineering7020042. [PMID: 32380789 PMCID: PMC7357460 DOI: 10.3390/bioengineering7020042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral nerve injuries often result in lifelong disabilities despite advanced surgical interventions, indicating the urgent clinical need for effective therapies. In order to improve the potency of adipose-derived stem cells (ASC) for nerve regeneration, the present study focused primarily on ex-vivo stimulation of ASC by using growth factors, i.e., nerve growth factor (NGF) or vascular endothelial growth factor (VEGF) and secondly on fibrin-hydrogel nerve conduits (FNC) assisted ASC delivery strategies, i.e., intramural vs. intraluminal loading. ASC were stimulated by NGF or VEGF for 3 days and the resulting secretome was subsequently evaluated in an in vitro axonal outgrowth assay. For the animal study, a 10 mm sciatic nerve gap-injury was created in rats and reconstructed using FNC loaded with ASC. Secretome derived from NGF-stimulated ASC promoted significant axonal outgrowth from the DRG-explants in comparison to all other conditions. Thus, NGF-stimulated ASC were further investigated in animals and found to enhance early nerve regeneration as evidenced by the increased number of β-Tubulin III+ axons. Notably, FNC assisted intramural delivery enabled the improvement of ASC’s therapeutic efficacy in comparison to the intraluminal delivery system. Thus, ex-vivo stimulation of ASC by NGF and FNC assisted intramural delivery may offer new options for developing effective therapies.
Collapse
|
7
|
Restoration of Neurological Function Following Peripheral Nerve Trauma. Int J Mol Sci 2020; 21:ijms21051808. [PMID: 32155716 PMCID: PMC7084579 DOI: 10.3390/ijms21051808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical “gold standard” technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2–3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery. It also discusses preliminary data from the clinical application of a novel technique that restores neurological function across long nerve gaps, when repairs are performed at long times post-trauma, and in older patients, even under all three of these conditions. Thus, it appears that function can be restored under conditions where sensory nerve grafts are not effective.
Collapse
|
8
|
Duffy P, McMahon S, Wang X, Keaveney S, O'Cearbhaill ED, Quintana I, Rodríguez FJ, Wang W. Synthetic bioresorbable poly-α-hydroxyesters as peripheral nerve guidance conduits; a review of material properties, design strategies and their efficacy to date. Biomater Sci 2019; 7:4912-4943. [DOI: 10.1039/c9bm00246d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Implantable tubular devices known as nerve guidance conduits (NGCs) have drawn considerable interest as an alternative to autografting in the repair of peripheral nerve injuries.
Collapse
Affiliation(s)
- Patrick Duffy
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| | - Seán McMahon
- Ashland Specialties Ireland Ltd
- Synergy Centre
- Dublin
- Ireland
| | - Xi Wang
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| | - Shane Keaveney
- School of Mechanical & Materials Engineering
- UCD Centre for Biomedical Engineering
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
- Dublin
| | - Eoin D. O'Cearbhaill
- School of Mechanical & Materials Engineering
- UCD Centre for Biomedical Engineering
- UCD Conway Institute of Biomolecular and Biomedical Research
- University College Dublin
- Dublin
| | - Iban Quintana
- IK4-Tekniker
- Surface Engineering and Materials Science Unit
- Eibar
- Spain
| | | | - Wenxin Wang
- The Charles Institute of Dermatology
- School of Medicine
- University College Dublin
- Dublin
- Ireland
| |
Collapse
|
9
|
Wang W, Degrugillier L, Tremp M, Prautsch K, Sottaz L, Schaefer DJ, Madduri S, Kalbermatten D. Nerve Repair With Fibrin Nerve Conduit and Modified Suture Placement. Anat Rec (Hoboken) 2018; 301:1690-1696. [PMID: 30353694 DOI: 10.1002/ar.23921] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/21/2018] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Sutureless nerve repair has been regarded as a promising technique for nerve repair as the suture materials often results in neuroma formation and scar tissue that impede nerve regeneration. The aim of this study was to analyze the mechanical stability and morphological outcome of sutureless repair using fibrin glue conduit and an alternative approach of modified suture placement. Using rat sciatic nerve, we tested the following experimental conditions: conventional suture repair; single suture combined with fibrin glue repair, and fibrin conduit reinforced with modified suture or fibrin glue. Nerve detachment anatomical measures such as axon density, myelin, and fiber caliber were analyzed for evaluation of nerve regeneration. Muscle atrophy were evaluated by muscle wet weight and H&E staining. All animals in sutureless repair group exhibited complete detachment or elongation by two or four weeks after repair. No detachment was found in any other groups. Animals treated with fibrin conduit reinforced with modified suture showed better axonal regeneration with good alignment. There were no significant differences in axon caliber among the groups. Muscle atrophy was found in all groups and there was no significant difference in muscle wet-weight among the groups. In summary, sutureless nerve repair with fibrin glue was mechanically unstable for resistance of mechanical stretches, fibrin glue conduit with modified suture placement is mechanically stable and resulted in better morphological outcome. Anat Rec, 301:1690-1696, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wenjin Wang
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland.,Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai, 200011, China
| | - Lucas Degrugillier
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Mathias Tremp
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Katharina Prautsch
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Lima Sottaz
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| | - Srinivas Madduri
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland.,Department of Biomedicine, University of Basel, CH-4031, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, CH-4123, Allschwil, Switzerland
| | - Daniel Kalbermatten
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Basel, CH-4031, Basel, Switzerland
| |
Collapse
|
10
|
Di Summa PG, Schiraldi L, Cherubino M, Oranges CM, Kalbermatten DF, Raffoul W, Madduri S. Adipose Derived Stem Cells Reduce Fibrosis and Promote Nerve Regeneration in Rats. Anat Rec (Hoboken) 2018; 301:1714-1721. [PMID: 29710394 PMCID: PMC6667902 DOI: 10.1002/ar.23841] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/31/2017] [Accepted: 01/27/2018] [Indexed: 01/17/2023]
Abstract
Peripheral nerve regeneration is critical and challenging in the adult humans. High level of collagen infiltration (i.e., scar tissue), in the niche of injury, impedes axonal regeneration and path finding. Unfortunately, studies focusing on the modulation of scar tissue in the nerves are scarce. To address part of this problem, we have evaluated the differentiated adipose derived stem cells (dASCs) for their antifibrotic and regenerative effects in a 10 mm nerve gap model in rats. Three different animal groups (N = 5) were treated with fibrin nerve conduits (empty), or seeded with dASCs (F + dASCs) and autograft, respectively. Histological analysis of regenerated nerves, at 12 weeks postoperatively, reveled the high levels of collagen infiltration (i.e., 21.5% ± 6.1% and 24.1% ± 2.9%) in the middle and distal segment of empty conduit groups in comparison with stem cells treated (16.6% ± 2.1% and 12.1% ± 2.9%) and autograft (15.0% ± 1.7% and 12.8% ± 1.0%) animals. Thus, the dASCs treatment resulted in significant reduction of fibrotic tissue formation. Consequently, enhanced axonal regeneration and remyelination was found in the animals treated with dASCs. Interestingly, these effects of dASCs appeared to be equivalent to that of autograft treatment. Thus, the dASCs hold great potential for preventing the scar tissue formation and for promoting nerve regeneration in the adult organisms. Future experiments will focus on the validation of these findings in a critical nerve injury model. Anat Rec, 301:1714–1721, 2018. © 2018 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists
Collapse
Affiliation(s)
- Pietro G Di Summa
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Luigi Schiraldi
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Mario Cherubino
- Department of Biotechnology, University of Insubria, Varese, Italy
| | - Carlo M Oranges
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel 4031, Switzerland
| | - Daniel F Kalbermatten
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel 4031, Switzerland
| | - Wassim Raffoul
- Department of Plastic, Reconstructive and Hand Surgery, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Srinivas Madduri
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel 4031, Switzerland.,Department of Biomedicine, University of Basel, Basel 4031, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil 4123, Switzerland
| |
Collapse
|
11
|
Kappos EA, Baenziger‐Sieber P, Tremp M, Engels PE, Thommen S, Sprenger L, Benz RM, Schaefer DJ, Schaeren S, Kalbermatten DF. Epineural adipose-derived stem cell injection in a sciatic rodent model. Brain Behav 2018; 8:e01027. [PMID: 29920989 PMCID: PMC6043702 DOI: 10.1002/brb3.1027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/03/2018] [Accepted: 05/13/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The aim was to evaluate the regenerative effect of epineural injection of rat ASCs (rASCs) in three different settings of acute and chronic compression in a rat sciatic nerve model. METHODS Acute compression (60 s) with a vessel clamp over a distance of 1 mm (group 1) or 10 mm (group 2), as well as chronic compression with a permanent remaining, nonabsorbable polymeric clip over a distance of 1 mm (group 3) was performed. Depending on the group, either 5 × 106 rASCs or the same volume (25 μl) of culture medium (CM) was injected with a 30G needle in the epineurium at the time of compression. Outcome measures were functional gait evaluations, imaging analysis, histomorphometric analyses, and muscle weight. RESULTS The rats in group 2 had a better function than those with group 1 at one and especially at 2 weeks. After 4 weeks however, almost all rats were close to a normal function. There was a similar Muscle Weight Ratio (MWR) after 2 weeks in all groups, whereas after 4 weeks, the MWR in group 3 was lower compared with group 1 and 2. Histomorphometric analysis showed a better myelination in group 1 & 2 compared to group 3 after 4 weeks. ASCs have a beneficial effect on myelin thickness (G-Ratio). CONCLUSIONS We successfully evaluated the regenerative effect of epineural injection of rASCs in three different settings of acute and chronic compression. However, there were no significant differences in outcomes between the ASC-treated groups and control groups.
Collapse
Affiliation(s)
- Elisabeth A. Kappos
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - Patricia Baenziger‐Sieber
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - Mathias Tremp
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - Patricia E. Engels
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| | - Sarah Thommen
- Basel Institute for Clinical Epidemiology and BiostatisticsUniversity Hospital BaselBaselSwitzerland
| | - Lima Sprenger
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Robyn M. Benz
- Department of RadiologyUniversity Hospital BaselBaselSwitzerland
| | - Dirk J. Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Stefan Schaeren
- Department of Spinal SurgeryUniversity Hospital of BaselBaselSwitzerland
| | - Daniel Felix Kalbermatten
- Department of Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
- Department of NeuropathologyInstitute of PathologyUniversity Hospital BaselBaselSwitzerland
| |
Collapse
|
12
|
Sciatic Nerve Regeneration in Wistar Albino Rats Evaluated by in vivo Conductivity and in vitro 1H NMR Relaxometry. ACTA MEDICA MARISIENSIS 2018. [DOI: 10.2478/amma-2018-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Objective: The aim of this study was to evaluate and quantify functional and structural nerve regeneration after reconstruction using either direct suture or silicon graft.
Methods: Thirty-two adult Wistar Albino rats were divided in two equal groups. The left sciatic nerve was cross-sectioned and reconstructed using either direct suture (DS group) or a silicone graft (SG group). At 4, 6, 8 and 10 weeks two rats were randomly chosen from each group for in vivo measurement of nerve electric conductivity and subsequently sacrificed together with other two rats from the same group for in vitro 1H NMR relaxometry measurements. The T2 distributions were assigned to 1H located in different pools corresponding to the nerve structure.
Results: In the injured nerve we observed a significant increase in the stimulation threshold and a decrease in conduction velocity when compared with the healthy nerve in both groups. Whereas the conduction velocity increased progressively from 4 to 10 weeks in the DS group, the opposite evolution was observed in the SG group. In both groups, the first two peaks corresponding to water bound to collagen and epineurium had smaller transverse relaxation times in the injured nerves, while there was no change in the peaks corresponding to perineurium and free water between healthy and injured nerves.
Conclusions: Significant differences were observed between direct suture and nerve graft reconstructions from both a functional and structural point of view. In the case of direct suture reconstruction, the nerve was functionally healed at 10 weeks after injury.
Collapse
|
13
|
D’Arpa S, Zabbia G, Cannizzaro C, Salimbeni G, Plescia F, Mariolo AV, Cassata G, Cicero L, Puleio R, Martorana A, Moschella F, Cordova A. Seeding nerve sutures with minced nerve-graft (MINE-G): a simple method to improve nerve regeneration in rats. Acta Chir Belg 2018; 118:27-35. [PMID: 28738725 DOI: 10.1080/00015458.2017.1353237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The aim of this study was to assess the effect of seeding the distal nerve suture with nerve fragments in rats. METHODS On 20 rats, a 15 mm sciatic nerve defect was reconstructed with a nerve autograft. In the Study Group (10 rats), a minced 1 mm nerve segment was seeded around the nerve suture. In the Control Group (10 rats), a nerve graft alone was used. At 4 and 12 weeks, a walking track analysis with open field test (WTA), hystomorphometry (number of myelinated fibers (n), fiber density (FD) and fiber area (FA) and soleus and gastrocnemius muscle weight ratios (MWR) were evaluated. The Student t-test was used for statistical analysis. RESULTS At 4 and 12 weeks the Study Group had a significantly higher n and FD (p = .043 and .033). The SMWR was significantly higher in the Study Group at 12 weeks (p = .0207). CONCLUSIONS Seeding the distal nerve suture with nerve fragments increases the number of myelinated fibers, the FD and the SMWR. The technique seems promising and deserves further investigation to clarify the mechanisms involved and its functional effects.
Collapse
Affiliation(s)
- Salvatore D’Arpa
- Plastische Heelkunde, Universitair Ziekenhuis Gent, Gent, Belgium
| | - Giovanni Zabbia
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care ‘GIUSEPPE D’ALESSANDRO’, University of Palermo, Palermo, Italy
| | | | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care ‘GIUSEPPE D’ALESSANDRO’, University of Palermo, Palermo, Italy
| | - Alessio Vincenzo Mariolo
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Giovanni Cassata
- Laboratory Animal House/Unit, Institute of Experimental Zooprophylactic of Sicily, Palermo, Italy
| | - Luca Cicero
- Laboratory Animal House/Unit, Institute of Experimental Zooprophylactic of Sicily, Palermo, Italy
| | - Roberto Puleio
- Histopathology and Immunohistochemistry Laboratory, Institute Experimental Zooprophylactic of Sicily, Palermo, Italy
| | - Anna Martorana
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Francesco Moschella
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Adriana Cordova
- Division of Plastic and Reconstructive Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
14
|
Berkovitch Y, Cohen T, Peled E, Schmidhammer R, Florian H, Teuschl AH, Wolbank S, Yelin D, Redl H, Seliktar D. Hydrogel composition and laser micropatterning to regulate sciatic nerve regeneration. J Tissue Eng Regen Med 2018; 12:1049-1061. [PMID: 29096406 DOI: 10.1002/term.2606] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 11/07/2022]
Abstract
Treatment of peripheral nerve injuries has evolved over the past several decades to include the use of sophisticated new materials endowed with trophic and topographical cues that are essential for in vivo nerve fibre regeneration. In this research, we explored the use of an advanced design strategy for peripheral nerve repair, using biological and semi-synthetic hydrogels that enable controlled environmental stimuli to regenerate neurons and glial cells in a rat sciatic nerve resection model. The provisional nerve growth conduits were composed of either natural fibrin or adducts of synthetic polyethylene glycol and fibrinogen or gelatin. A photo-patterning technique was further applied to these 3D hydrogel biomaterials, in the form of laser-ablated microchannels, to provide contact guidance for unidirectional growth following sciatic nerve injury. We tested the regeneration capacity of subcritical nerve gap injuries in rats treated with photo-patterned materials and compared these with injuries treated with unpatterned hydrogels, either stiff or compliant. Among the factors tested were shear modulus, biological composition, and micropatterning of the materials. The microchannel guidance patterns, combined with appropriately matched degradation and stiffness properties of the material, proved most essential for the uniform tissue propagation during the nerve regeneration process.
Collapse
Affiliation(s)
- Yulia Berkovitch
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel.,The Interdisciplinary Program for Biotechnology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Talia Cohen
- The Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eli Peled
- The Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Orthopedic Surgery Division, Rambam Health Care Campus and The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Robert Schmidhammer
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Hildner Florian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas H Teuschl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dvir Yelin
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Dror Seliktar
- The Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Schiraldi L, Sottaz L, Madduri S, Campisi C, Oranges CM, Raffoul W, Kalbermatten DF, di Summa PG. Split-sciatic nerve surgery: A new microsurgical model in experimental nerve repair. J Plast Reconstr Aesthet Surg 2017; 71:557-565. [PMID: 29229422 DOI: 10.1016/j.bjps.2017.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/01/2017] [Accepted: 11/07/2017] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Sciatic experimental surgery in rat often leads to hindlimb autophagy, with considerable ethical and research issues. In this work, the distal part of the sciatic nerve was split following the natural bifurcation between tibial and peroneal branches, before applying regenerative stem cells in a fibrin conduit on the peroneal segment. The new microsurgical model was tested in terms of animal morbidity and consistency of research outcomes, particularly comparing to the standard total sciatic axotomy procedure. MATERIALS AND METHODS After dissection of sciatic the nerve, the tibial and peroneal fibres were split upwards and a total axotomy was performed in the peroneal side. The 1 cm nerve gap between the proximal sciatic nerve and peroneal nerve was crossed using fibrin conduits. The tibial nerve was not included. Experimental groups involved either empty or fibrin conduit seeded with Schwann cell-like differentiated adipose derived stem cells (dASC) (Fib + dASC). Autografts and sham rats were used as controls (total n = 20). At 12 weeks post-implantation, an extensive histomorphometric analysis was performed. Functional aspects of regeneration were analysed by walking track analysis. RESULTS No major autophagy occurred using the split-sciatic technique. A detailed histomorphometric analysis showed consistent results with previous literature using fibrin conduits in a full sciatic axotomy experimental setting. Walking track analysis reflected the histological regeneration pattern, displaying superior regeneration in both autograft and dASC groups. CONCLUSION Split-Sciatic nerve surgery reduced animal morbidity, while being representative of the whole nerve as regeneration outcomes were consistent with previous data obtained on the whole sciatic nerve. The decreased autophagy rate allowed for a more efficient functional evaluation.
Collapse
Affiliation(s)
- Luigi Schiraldi
- Centre Hospitalier Universitaire Vaudois, Department of Plastic, Reconstructive and Hand Surgery, Lausanne, Vaud, Switzerland
| | - Lima Sottaz
- University Hospital Basel, Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel, Switzerland
| | - Srinivas Madduri
- Universitatsspital Basel, Center for Bioengineering and Regenerative Medicine (CBRM), Basel, Switzerland
| | - Corrado Campisi
- "San Martino" Hospital - University of Genoa, Department of Surgery, L.go Rosanna Benzi 8, 16132 Genoa, Italy
| | - Carlo M Oranges
- University Hospital Basel, Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel, Switzerland
| | - Wassim Raffoul
- Centre Hospitalier Universitaire Vaudois, Department of Plastic, Reconstructive and Hand Surgery, Lausanne, Vaud, Switzerland
| | - Daniel F Kalbermatten
- University Hospital Basel, Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, Basel, Switzerland
| | - Pietro G di Summa
- Centre Hospitalier Universitaire Vaudois, Department of Plastic, Reconstructive and Hand Surgery, Lausanne, Vaud, Switzerland.
| |
Collapse
|
16
|
Liu X, Miller AL, Park S, Waletzki BE, Zhou Z, Terzic A, Lu L. Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14677-14690. [PMID: 28406608 DOI: 10.1021/acsami.7b02072] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nerve regeneration after injury is a critical medical issue. In previous work, we have developed an oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel incorporated with positive charges as a promising nerve conduit. In this study, we introduced cross-linkable bonds to graphene oxide and carbon nanotube to obtain the functionalized graphene oxide acrylate (GOa) and carbon nanotube poly(ethylene glycol) acrylate (CNTpega). An electrically conductive hydrogel was then fabricated by covalently embedding GOa and CNTpega within OPF hydrogel through chemical cross-linking followed by in situ reduction of GOa in l-ascorbic acid solution. Positive charges were incorporated by 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTAC) to obtain rGOaCNTpega-OPF-MTAC composite hydrogel with both surface charge and electrical conductivity. The distribution of CNTpega and GOa in the hydrogels was substantiated by transmission electron microscopy (TEM), and strengthened electrical conductivities were determined. Excellent biocompatibility was demonstrated for the carbon embedded composite hydrogels. Biological evaluation showed enhanced proliferation and spreading of PC12 cells on the conductive hydrogels. After induced differentiation using nerve growth factor (NGF), cells on the conductive hydrogels were effectively stimulated to have robust neurite development as observed by confocal microscope. A synergistic effect of electrical conductivity and positive charges on nerve cells was also observed in this study. Using a glass mold method, the composite hydrogel was successfully fabricated into conductive nerve conduits with surficial positive charges. These results suggest that rGOa-CNTpega-OPF-MTAC composite hydrogel holds great potential as conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - A Lee Miller
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Sungjo Park
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Brian E Waletzki
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Zifei Zhou
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Andre Terzic
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, ‡Department of Orthopedic Surgery, and §Department of Cardiovascular Diseases and Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota 55905, United States
| |
Collapse
|
17
|
Berkovitch Y, Seliktar D. Semi-synthetic hydrogel composition and stiffness regulate neuronal morphogenesis. Int J Pharm 2017; 523:545-555. [DOI: 10.1016/j.ijpharm.2016.11.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 11/25/2022]
|
18
|
Bhatnagar D, Bushman JS, Murthy NS, Merolli A, Kaplan HM, Kohn J. Fibrin glue as a stabilization strategy in peripheral nerve repair when using porous nerve guidance conduits. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:79. [PMID: 28389905 PMCID: PMC5384961 DOI: 10.1007/s10856-017-5889-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
Porous conduits provide a protected pathway for nerve regeneration, while still allowing exchange of nutrients and wastes. However, pore sizes >30 µm may permit fibrous tissue infiltration into the conduit, which may impede axonal regeneration. Coating the conduit with Fibrin Glue (FG) is one option for controlling the conduit's porosity. FG is extensively used in clinical peripheral nerve repair, as a tissue sealant, filler and drug-delivery matrix. Here, we compared the performance of FG to an alternative, hyaluronic acid (HA) as a coating for porous conduits, using uncoated porous conduits and reverse autografts as control groups. The uncoated conduit walls had pores with a diameter of 60 to 70 µm that were uniformly covered by either FG or HA coatings. In vitro, FG coatings degraded twice as fast as HA coatings. In vivo studies in a 1 cm rat sciatic nerve model showed FG coating resulted in poor axonal density (993 ± 854 #/mm2), negligible fascicular area (0.03 ± 0.04 mm2), minimal percent wet muscle mass recovery (16 ± 1 in gastrocnemius and 15 ± 5 in tibialis anterior) and G-ratio (0.73 ± 0.01). Histology of FG-coated conduits showed excessive fibrous tissue infiltration inside the lumen, and fibrin capsule formation around the conduit. Although FG has been shown to promote nerve regeneration in non-porous conduits, we found that as a coating for porous conduits in vivo, FG encourages scar tissue infiltration that impedes nerve regeneration. This is a significant finding considering the widespread use of FG in peripheral nerve repair.
Collapse
Affiliation(s)
- Divya Bhatnagar
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Jared S Bushman
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
- School of Pharmacy, University of Wyoming, 1000 E University Ave Dept. 3375, Laramie, WY, 82071, USA
| | - N Sanjeeva Murthy
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Antonio Merolli
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Hilton M Kaplan
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers-The State University of New Jersey, 145 Bevier Road, Piscataway, NJ, 08854, USA.
| |
Collapse
|
19
|
Biscola NP, Cartarozzi LP, Ulian-Benitez S, Barbizan R, Castro MV, Spejo AB, Ferreira RS, Barraviera B, Oliveira ALR. Multiple uses of fibrin sealant for nervous system treatment following injury and disease. J Venom Anim Toxins Incl Trop Dis 2017; 23:13. [PMID: 28293254 PMCID: PMC5348778 DOI: 10.1186/s40409-017-0103-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/23/2017] [Indexed: 12/14/2022] Open
Abstract
Lesions to the nervous system often produce hemorrhage and tissue loss that are difficult, if not impossible, to repair. Therefore, scar formation, inflammation and cavitation take place, expanding the lesion epicenter. This significantly worsens the patient conditions and impairment, increasing neuronal loss and glial reaction, which in turn further decreases the chances of a positive outcome. The possibility of using hemostatic substances that also function as a scaffold, such as the fibrin sealant, reduces surgical time and improve postoperative recovery. To date, several studies have demonstrated that human blood derived fibrin sealant produces positive effects in different interventions, becoming an efficient alternative to suturing. To provide an alternative to homologous fibrin sealants, the Center for the Study of Venoms and Venomous Animals (CEVAP, Brazil) has proposed a new bioproduct composed of certified animal components, including a thrombin-like enzyme obtained from snake venom and bubaline fibrinogen. Thus, the present review brings up to date literature assessment on the use of fibrin sealant for nervous system repair and positions the new heterologous bioproduct from CEVAP as an alternative to the commercial counterparts. In this way, clinical and pre-clinical data are discussed in different topics, ranging from central nervous system to peripheral nervous system applications, specifying positive results as well as future enhancements that are necessary for improving the use of fibrin sealant therapy.
Collapse
Affiliation(s)
- Natalia Perussi Biscola
- Graduate Program in Tropical Diseases, Botucatu Medical School, Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Luciana Politti Cartarozzi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Suzana Ulian-Benitez
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil.,Neuro Development Lab, School of Biosciences, University of Birmingham, Birmingham, England UK
| | - Roberta Barbizan
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil.,The School of Medicine at Mucuri (FAMMUC), Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), 39803-371 Teófilo Otoni, MG Brazil
| | - Mateus Vidigal Castro
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Aline Barroso Spejo
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| | - Rui Seabra Ferreira
- Graduate Program in Tropical Diseases, Botucatu Medical School, Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Benedito Barraviera
- Graduate Program in Tropical Diseases, Botucatu Medical School, Univ Estadual Paulista (UNESP), Botucatu, SP Brazil.,Center for the Study of Venoms and Venomous Animals (CEVAP), Univ Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Alexandre Leite Rodrigues Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Laboratory of Nerve Regeneration, CEP 13083-970 Campinas, SP Brazil
| |
Collapse
|
20
|
Busuttil F, Rahim AA, Phillips JB. Combining Gene and Stem Cell Therapy for Peripheral Nerve Tissue Engineering. Stem Cells Dev 2017; 26:231-238. [PMID: 27960587 DOI: 10.1089/scd.2016.0188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Despite a substantially increased understanding of neuropathophysiology, insufficient functional recovery after peripheral nerve injury remains a significant clinical challenge. Nerve regeneration following injury is dependent on Schwann cells, the supporting cells in the peripheral nervous system. Following nerve injury, Schwann cells adopt a proregenerative phenotype, which supports and guides regenerating nerves. However, this phenotype may not persist long enough to ensure functional recovery. Tissue-engineered nerve repair devices containing therapeutic cells that maintain the appropriate phenotype may help enhance nerve regeneration. The combination of gene and cell therapy is an emerging experimental strategy that seeks to provide the optimal environment for axonal regeneration and reestablishment of functional circuits. This review aims to summarize current preclinical evidence with potential for future translation from bench to bedside.
Collapse
Affiliation(s)
- Francesca Busuttil
- 1 Department of Pharmacology, UCL School of Pharmacy, University College London , London, United Kingdom
| | - Ahad A Rahim
- 1 Department of Pharmacology, UCL School of Pharmacy, University College London , London, United Kingdom
| | - James B Phillips
- 2 Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London , London, United Kingdom
| |
Collapse
|
21
|
Liu X, Miller Ii AL, Park S, Waletzki BE, Terzic A, Yaszemski MJ, Lu L. Covalent crosslinking of graphene oxide and carbon nanotube into hydrogels enhances nerve cell responses. J Mater Chem B 2016; 4:6930-6941. [PMID: 32263560 PMCID: PMC8844883 DOI: 10.1039/c6tb01722c] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Healing of nerve injuries is a critical medical issue. Biodegradable polymeric conduits are a promising therapeutic solution to provide guidance for axon growth in a given space, thus helping nerve heal. Extensive studies in the past decade reported that conductive materials could effectively increase neurite and axon extension in vitro and nerve regeneration in vivo. In this study, graphene oxide and carbon nanotubes were covalently functionalized with double bonds to obtain crosslinkable graphene oxide acrylate (GOa) sheets and carbon nanotube poly(ethylene glycol) acrylate (CNTpega). An electrically conductive reduced GOa-CNTpega-oligo(polyethylene glycol fumarate) (OPF) hydrogel (rGOa-CNTpega-OPF) was successfully fabricated by chemically crosslinking GOa sheets and CNTpega with OPF chains followed by in situ chemical reduction in l-ascorbic acid solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging showed homogenous distribution of GOa/CNTpega carbon content in the rGOa-CNTpega-OPF composite hydrogel, resulting in a significant increase of electrical conductivity compared with neutral OPF without carbon content. Cell studies showed excellent biocompatibility and distinguished PC12 cell proliferation and spreading on the rGOa-CNTpega-OPF composite hydrogel. Fluorescent microscopy imaging demonstrated robustly stimulated neurite development in these cells on a conductive rGOa-CNTpega-OPF composite hydrogel compared with that on neutral OPF hydrogels. These results illustrated a promising potential for the rGOa-CNTpega-OPF composite hydrogel to serve as conduits for neural tissue engineering.
Collapse
Affiliation(s)
- Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Advances in peripheral nervous system regenerative therapeutic strategies: A biomaterials approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:425-32. [DOI: 10.1016/j.msec.2016.04.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/20/2016] [Accepted: 04/14/2016] [Indexed: 01/02/2023]
|
23
|
Liu Q, Huang J, Shao H, Song L, Zhang Y. Dual-factor loaded functional silk fibroin scaffolds for peripheral nerve regeneration with the aid of neovascularization. RSC Adv 2016. [DOI: 10.1039/c5ra22054h] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dual-factor loaded functional silk fibroin scaffolds enhanced peripheral nerve regeneration with the aid of neovascularization.
Collapse
Affiliation(s)
- Qiangqiang Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Jianwen Huang
- Department of Urology
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
- Shanghai 200233
- P. R. China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| | - Lujie Song
- Department of Urology
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital
- Shanghai 200233
- P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials
- College of Materials Science and Engineering
- Donghua University
- Shanghai 201620
- P. R. China
| |
Collapse
|
24
|
Kaplan HM, Mishra P, Kohn J. The overwhelming use of rat models in nerve regeneration research may compromise designs of nerve guidance conduits for humans. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:226. [PMID: 26296419 PMCID: PMC4545171 DOI: 10.1007/s10856-015-5558-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 08/13/2015] [Indexed: 06/04/2023]
Abstract
Rats are not the best model for the evolving complexities we face in designing nerve repair strategies today. The development of effective nerve guidance conduits for nerve regeneration is severely limited by the rat sciatic nerve model as the almost exclusive research model in academia. An immense effort is underway to develop an alternative to autologous nerve grafts for the repair of nerve defects, aiming particularly at larger gap repairs of 5-30 cm or more. This must involve combinations of ever more complex components, which in the vast majority of cases begin their testing in the rat model. Three major problems are at play: (1) The majority of nerve regeneration data is now being generated in the rat, which is likely to skew treatment outcomes and lead to inappropriate evaluation of risks and benefits. (2) The rat is a particularly poor model for the repair of human critical gap defects due to both its small size and its species-specific neurobiological regenerative profile. (3) Translation from rat to human has proven unreliable for nerve regeneration, as for many other applications. We explore each of these facets and their implications, in order to highlight the need for appropriate awareness in animal model selection when translating nerve regeneration modalities of ever-increasing complexity-from relatively simple devices to drug-device-biologic combinations.
Collapse
Affiliation(s)
- Hilton M. Kaplan
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Road, LSB-101, Piscataway, NJ 08854 USA
| | - Prakhar Mishra
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Road, LSB-101, Piscataway, NJ 08854 USA
| | - Joachim Kohn
- New Jersey Center for Biomaterials, Rutgers University, 145 Bevier Road, LSB-101, Piscataway, NJ 08854 USA
| |
Collapse
|
25
|
Kuffler DP. Platelet-Rich Plasma Promotes Axon Regeneration, Wound Healing, and Pain Reduction: Fact or Fiction. Mol Neurobiol 2015; 52:990-1014. [PMID: 26048672 DOI: 10.1007/s12035-015-9251-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/25/2022]
Abstract
Platelet-rich plasma (PRP) has been tested in vitro, in animal models, and clinically for its efficacy in enhancing the rate of wound healing, reducing pain associated with injuries, and promoting axon regeneration. Although extensive data indicate that PRP-released factors induce these effects, the claims are often weakened because many studies were not rigorous or controlled, the data were limited, and other studies yielded contrary results. Critical to assessing whether PRP is effective are the large number of variables in these studies, including the method of PRP preparation, which influences the composition of PRP; type of application; type of wounds; target tissues; and diverse animal models and clinical studies. All these variables raise the question of whether one can anticipate consistent influences and raise the possibility that most of the results are correct under the circumstances where PRP was tested. This review examines evidence on the potential influences of PRP and whether PRP-released factors could induce the reported influences and concludes that the preponderance of evidence suggests that PRP has the capacity to induce all the claimed influences, although this position cannot be definitively argued. Well-defined and rigorously controlled studies of the potential influences of PRP are required in which PRP is isolated and applied using consistent techniques, protocols, and models. Finally, it is concluded that, because of the purported benefits of PRP administration and the lack of adverse events, further animal and clinical studies should be performed to explore the potential influences of PRP.
Collapse
Affiliation(s)
- Damien P Kuffler
- Institute of Neurobiology, University of Puerto Rico, Medical Sciences Campus, 201 Blvd. Del Valle, San Juan, 00901, Puerto Rico,
| |
Collapse
|
26
|
Longo MVL, Marques de Faria JC, Isaac C, Nepomuceno AC, Teixeira NH, Gemperli R. Comparisons of the results of peripheral nerve defect repair with fibrin conduit and autologous nerve graft: An experimental study in rats. Microsurgery 2015; 36:59-65. [DOI: 10.1002/micr.22413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 03/10/2015] [Accepted: 03/16/2015] [Indexed: 01/27/2023]
Affiliation(s)
| | | | - Cesar Isaac
- Plastic Surgery Department; Hospital Das Clinicas, University of Sao; Sao Paulo Brazil
| | | | | | - Rolf Gemperli
- Plastic Surgery Department; Hospital Das Clinicas, University of Sao; Sao Paulo Brazil
| |
Collapse
|
27
|
Song Y, Forsgren S, Liu JX, Yu JG, Stål P. Unilateral muscle overuse causes bilateral changes in muscle fiber composition and vascular supply. PLoS One 2014; 9:e116455. [PMID: 25545800 PMCID: PMC4278887 DOI: 10.1371/journal.pone.0116455] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/08/2014] [Indexed: 12/28/2022] Open
Abstract
Unilateral strength training can cause cross-transfer strength effects to the homologous contralateral muscles. However, the impact of the cross-over effects on the muscle tissue is unclear. To test the hypothesis that unilateral muscle overuse causes bilateral alterations in muscle fiber composition and vascular supply, we have used an experimental rabbit model with unilateral unloaded overstrain exercise via electrical muscle stimulation (E/EMS). The soleus (SOL) and gastrocnemius (GA) muscles of both exercised (E) and contralateral non-exercised (NE) legs (n = 24) were morphologically analyzed after 1 w, 3 w and 6 w of EMS. Non-exercised rabbits served as controls (n = 6). After unilateral intervention the muscles of both E and NE legs showed myositis and structural and molecular tissue changes that to various degrees mirrored each other. The fiber area was bilaterally smaller than in controls after 3 w of E/EMS in both SOL (E 4420 and NE 4333 µm2 vs. 5183 µm2, p<0.05) and GA (E 3572 and NE 2983 µm2 vs. 4697 µm2, p<0.02) muscles. After 6 w of E/EMS, the percentage of slow MyHCI fibers was lower than in controls in the NE legs of SOL (88.1% vs. 98.1%, p<0.009), while the percentage of fast MyHCIIa fibers was higher in the NE legs of GA (25.7% vs. 15.8%, p = 0.02). The number of capillaries around fibers in the E and NE legs was lower (SOL 13% and 15%, respectively, GA 25% and 23%, respectively, p<0.05) than in controls. The overall alterations were more marked in the fast GA muscle than in the slow SOL muscle, which on the other hand showed more histopathological muscle changes. We conclude that unilateral repetitive unloaded overuse exercise via EMS causes myositis and muscle changes in fiber type proportions, fiber area and fiber capillarization not only in the exercised leg, but also in the homologous muscles in the non-exercised leg.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Sture Forsgren
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Jing-Xia Liu
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | - Ji-Guo Yu
- Department of Surgical and Perioperative Sciences, Sports Medicine Unit, Umeå University, Umeå, Sweden
| | - Per Stål
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
28
|
Ramburrun P, Kumar P, Choonara YE, Bijukumar D, du Toit LC, Pillay V. A review of bioactive release from nerve conduits as a neurotherapeutic strategy for neuronal growth in peripheral nerve injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:132350. [PMID: 25143934 PMCID: PMC4131113 DOI: 10.1155/2014/132350] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/04/2014] [Indexed: 02/07/2023]
Abstract
Peripheral nerve regeneration strategies employ the use of polymeric engineered nerve conduits encompassed with components of a delivery system. This allows for the controlled and sustained release of neurotrophic growth factors for the enhancement of the innate regenerative capacity of the injured nerves. This review article focuses on the delivery of neurotrophic factors (NTFs) and the importance of the parameters that control release kinetics in the delivery of optimal quantities of NTFs for improved therapeutic effect and prevention of dose dumping. Studies utilizing various controlled-release strategies, in attempt to obtain ideal release kinetics, have been reviewed in this paper. Release strategies discussed include affinity-based models, crosslinking techniques, and layer-by-layer technologies. Currently available synthetic hollow nerve conduits, an alternative to the nerve autografts, have proven to be successful in the bridging and regeneration of primarily the short transected nerve gaps in several patient cases. However, current research emphasizes on the development of more advanced nerve conduits able to simulate the effectiveness of the autograft which includes, in particular, the ability to deliver growth factors.
Collapse
Affiliation(s)
- Poornima Ramburrun
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Divya Bijukumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Lisa C. du Toit
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
29
|
Barton MJ, Morley JW, Stoodley MA, Lauto A, Mahns DA. Nerve repair: toward a sutureless approach. Neurosurg Rev 2014; 37:585-95. [PMID: 25015388 DOI: 10.1007/s10143-014-0559-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 02/04/2014] [Accepted: 04/13/2014] [Indexed: 12/16/2022]
Abstract
Peripheral nerve repair for complete section injuries employ reconstructive techniques that invariably require sutures in their application. Sutures are unable to seal the nerve, thus incapable of preventing leakage of important intraneural fluids from the regenerating nerve. Furthermore, sutures are technically demanding to apply for direct repairs and often induce detrimental scarring that impedes healing and functional recovery. To overcome these limitations, biocompatible and biodegradable glues have been used to seal and repair peripheral nerves. Although creating a sufficient seal, they can lack flexibility and present infection risks or cytotoxicity. Other adhesive biomaterials have recently emerged into practice that are usually based on proteins such as albumin and collagen or polysaccharides like chitosan. These adhesives form their union to nerve tissue by either photothermal (tissue welding) or photochemical (tissue bonding) activation with laser light. These biomaterial adhesives offer significant advantages over sutures, such as their capacity to unite and seal the epineurium, ease of application, reduced invasiveness and add the potential for drug delivery in situ to facilitate regeneration. This paper reviews a number of different peripheral nerve repair (or reconstructive) techniques currently used clinically and in experimental procedures for nerve injuries with or without tissue deficit.
Collapse
Affiliation(s)
- Matthew J Barton
- Griffith Health Institute, Griffith University, Gold Coast Campus, Queensland, 4222, Australia,
| | | | | | | | | |
Collapse
|
30
|
Kuffler DP. An assessment of current techniques for inducing axon regeneration and neurological recovery following peripheral nerve trauma. Prog Neurobiol 2014; 116:1-12. [DOI: 10.1016/j.pneurobio.2013.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 12/11/2013] [Accepted: 12/17/2013] [Indexed: 12/20/2022]
|
31
|
Carriel V, Alaminos M, Garzón I, Campos A, Cornelissen M. Tissue engineering of the peripheral nervous system. Expert Rev Neurother 2014; 14:301-18. [DOI: 10.1586/14737175.2014.887444] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
32
|
Tremp M, Meyer Zu Schwabedissen M, Kappos EA, Engels PE, Fischmann A, Scherberich A, Schaefer DJ, Kalbermatten DF. The regeneration potential after human and autologous stem cell transplantation in a rat sciatic nerve injury model can be monitored by MRI. Cell Transplant 2013; 24:203-11. [PMID: 24380629 DOI: 10.3727/096368913x676934] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Traumatic nerve injuries are a major clinical challenge. Tissue engineering using a combination of nerve conduits and cell-based therapies represents a promising approach to nerve repair. The aim of this study was to examine the regeneration potential of human adipose-derived stem cells (hASCs) after transplantation in a nonautogenous setting and to compare them with autogenous rat ASCs (rASCs) for early peripheral nerve regeneration. Furthermore, the use of MRI to assess the continuous process of nerve regeneration was elaborated. The sciatic nerve injury model in female Sprague-Dawley rats was applied, and a 10-mm gap created by using a fibrin conduit seeded with the following cell types: rASCs, Schwann cell (SC)-like cells from rASC, rat SCs (rSCs), hASCs from the superficial and deep abdominal layer, as well as human stromal vascular fraction (1 × 10(6) cells). As a negative control group, culture medium only was used. After 2 weeks, nerve regeneration was assessed by immunocytochemistry. Furthermore, MRI was performed after 2 and 4 weeks to monitor nerve regeneration. Autogenous ASCs and SC-like cells led to accelerated peripheral nerve regeneration, whereas the human stem cell groups displayed inferior results. Nevertheless, positive trends could be observed for hASCs from the deep abdominal layer. By using a clinical 3T MRI scanner, we were able to visualize the graft as a small black outline and small hyperintensity indicating the regenerating axon front. Furthermore, a strong correlation was found between the length of the regenerating axon front measured by MRI and the length measured by immunocytochemistry (r = 0.74, p = 0.09). We successfully transplanted and compared human and autologous stem cells for peripheral nerve regeneration in a rat sciatic nerve injury model. Furthermore, we were able to implement the clinical 3T MRI scanner to monitor the efficacy of cellular therapy over time.
Collapse
Affiliation(s)
- Mathias Tremp
- Department of Plastic, Reconstructive, Aesthetic and Handsurgery, University of Basel Hospital, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Daly WT, Knight AM, Wang H, de Boer R, Giusti G, Dadsetan M, Spinner RJ, Yaszemski MJ, Windebank AJ. Comparison and characterization of multiple biomaterial conduits for peripheral nerve repair. Biomaterials 2013; 34:8630-9. [DOI: 10.1016/j.biomaterials.2013.07.086] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/23/2013] [Indexed: 12/26/2022]
|
34
|
Abstract
Since the last update on nerve conduits and allograft in 2000, investigations have established the efficacy of these alternatives to autograft in the repair of small sensory neural gaps. However, limited insights into the biology of the regenerating nerve continue to preclude intelligent conduit design. Ongoing discoveries in neuroscience and biomaterial engineering hold promise for the eventual development of allograft and conduits with potential of surpassing nerve autografts in clinical efficacy. In this review, we summarize the history, recent advances, and emerging developments in nerve conduits and allograft.
Collapse
Affiliation(s)
- Michael Y Lin
- Department of Orthopaedic Surgery, University of California Irvine, 2226 Gillespie Neuroscience Research Facility, Irvine, CA 92697, USA
| | | | | |
Collapse
|
35
|
Zhu G, Lou W. Regeneration of facial nerve defects with xenogeneic acellular nerve grafts in a rat model. Head Neck 2013; 36:481-6. [PMID: 23729307 DOI: 10.1002/hed.23321] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Because of ease of harvest and low immunogenicity, xenogeneic acellular nerve graft (XANG) may be an alternative to autologous nerve to repair facial nerve defects. METHODS Facial nerve defects of Wistar rats were repaired by XANG, and nerve gap regeneration was investigated by electrophysiological test, horseradish peroxidase (HRP) retrograde tracing and histomorphometric analysis, as compared to autograft. RESULTS Twenty weeks after the grafting, electrophysiology showed that whisker pad muscles responded to the electrical stimuli given at the site proximal to the transplantation in 2 groups. Some HRP-labeled facial motorneurons were located on the facial nucleus of the operated side, and an abundance of myelinated axons were found at the middle of the grafts and obvious motor endplates in the target muscles in 2 groups, although they were inferior to the contralateral side in numbers. CONCLUSION XANG represents an alternative approach for the reconstruction of peripheral facial nerve defects.
Collapse
Affiliation(s)
- Guochen Zhu
- Department of Otolaryngology, Wuxi Second People's Hospital, Affiliated with Nanjing Medical University, Wuxi, Jiangsu, China
| | | |
Collapse
|
36
|
Long term peripheral nerve regeneration using a novel PCL nerve conduit. Neurosci Lett 2013; 544:125-30. [DOI: 10.1016/j.neulet.2013.04.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 01/09/2023]
|
37
|
Song Y, Stål PS, Yu JG, Forsgren S. Bilateral increase in expression and concentration of tachykinin in a unilateral rabbit muscle overuse model that leads to myositis. BMC Musculoskelet Disord 2013; 14:134. [PMID: 23587295 PMCID: PMC3637117 DOI: 10.1186/1471-2474-14-134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/03/2013] [Indexed: 12/23/2022] Open
Abstract
Background Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. Methods The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1–6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Results Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. Conclusions The observations show an up-regulation of the tachykinin system bilaterally during muscle derangement/myositis in response to pronounced unilateral muscle overuse. This up-regulation occurred in inflammatory areas and was related not only to increased tachykinin innervation but also to tachykinin expression in blood vessel walls and inflammatory cells. Importantly, the tachykinin system appears to be an important factor not only ipsilaterally but also contralaterally in these processes.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Integrative Medical Biology, Section for Anatomy, Umeå University, Umeå, Sweden
| | | | | | | |
Collapse
|
38
|
Carriel V, Garrido-Gómez J, Hernández-Cortés P, Garzón I, García-García S, Sáez-Moreno JA, Del Carmen Sánchez-Quevedo M, Campos A, Alaminos M. Combination of fibrin-agarose hydrogels and adipose-derived mesenchymal stem cells for peripheral nerve regeneration. J Neural Eng 2013; 10:026022. [PMID: 23528562 DOI: 10.1088/1741-2560/10/2/026022] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The objective was to study the effectiveness of a commercially available collagen conduit filled with fibrin-agarose hydrogels alone or with fibrin-agarose hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs) in a rat sciatic nerve injury model. APPROACH A 10 mm gap was created in the sciatic nerve of 48 rats and repaired using saline-filled collagen conduits or collagen conduits filled with fibrin-agarose hydrogels alone (acellular conduits) or with hydrogels containing ADMSCs (ADMSC conduits). Nerve regeneration was assessed in clinical, electrophysiological and histological studies. MAIN RESULTS Clinical and electrophysiological outcomes were more favorable with ADMSC conduits than with the acellular or saline conduits, evidencing a significant recovery of sensory and motor functions. Histological analysis showed that ADMSC conduits produce more effective nerve regeneration by Schwann cells, with higher remyelination and properly oriented axonal growth that reached the distal areas of the grafted conduits, and with intensely positive expressions of S100, neurofilament and laminin. Extracellular matrix was also more abundant and better organized around regenerated nerve tissues with ADMSC conduits than those with acellular or saline conduits. SIGNIFICANCE Clinical, electrophysiological and histological improvements obtained with tissue-engineered ADMSC conduits may contribute to enhancing axonal regeneration by Schwann cells.
Collapse
Affiliation(s)
- Víctor Carriel
- Department of Histology (Tissue Engineering Group), University of Granada, Avenida de Madrid 11, E-18012 Granada, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Marked Effects of Tachykinin in Myositis Both in the Experimental Side and Contralaterally: Studies on NK-1 Receptor Expressions in an Animal Model. ISRN INFLAMMATION 2013; 2013:907821. [PMID: 24049666 PMCID: PMC3765760 DOI: 10.1155/2013/907821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/18/2012] [Indexed: 01/16/2023]
Abstract
Muscle injury and inflammation (myositis) in a rabbit model of an unilateral muscle overuse were examined. It is unknown if the tachykinin system has a functional role in this situation. In this study, therefore, the neurokinin-1 receptor (NK-1R) expression patterns were evaluated. White blood cells, nerve fascicles, fine nerve fibers, and blood vessel walls in myositis areas showed NK-1R immunoreaction. NK-1R mRNA reactions were observable for white blood cells and blood vessel walls of these areas. NK-1R immunoreaction and NK-1R mRNA reactions were also seen for muscle fibers showing degenerative and regenerative features. There were almost no NK-1R immunoreactions in normal muscle tissue. Interestingly, marked NK-1R expressions were seen for myositis areas of both the experimental side and the contralateral nonexperimental side. EIA analyses showed that the concentration of substance P in the muscle tissue was clearly increased bilaterally at the experimental end stage, as compared to the situation for normal muscle tissue. These observations show that the tachykinin system is very much involved in the processes that occur in muscle injury/myositis. The effects can be related to proinflammatory effects and/or tissue repair. The fact that there are also marked NK-1R expressions contralaterally indicate that the tachykinin system has crossover effects.
Collapse
|
40
|
Zhang P, Han N, Wang T, Xue F, Kou Y, Wang Y, Yin X, Lu L, Tian G, Gong X, Chen S, Dang Y, Peng J, Jiang B. Biodegradable conduit small gap tubulization for peripheral nerve mutilation: a substitute for traditional epineurial neurorrhaphy. Int J Med Sci 2013; 10:171-5. [PMID: 23329889 PMCID: PMC3547215 DOI: 10.7150/ijms.5312] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/24/2012] [Indexed: 12/19/2022] Open
Abstract
Nerve regeneration and re-innervation are usually difficult after peripheral nerve injury. Epineurium neurorrhaphy to recover the nerve continuity is the traditional choice of peripheral nerve mutilation without nerve defects, whereas the functional recovery remains quite unsatisfactory. Based on previous research in SD rats and Rhesus Monkeys, a multiple centers clinical trial about biodegradable conduit small gap tubulization for peripheral nerve mutilation to substitute traditional epineurial neurorrhaphy was carried out. Herein, the authors reviewed the literature that focused on peripheral nerve injury and possible clinical application, and confirmed the clinical possibilities of biodegradable conduit small gap tubulization to substitute traditional epineurial neurorrhaphy for peripheral nerve mutilation. The biodegradable conduit small gap tubulization to substitute traditional epineurial neurorrhaphy for peripheral nerve mutilation may be a revolutionary innovation in peripheral nerve injury and repair field.
Collapse
Affiliation(s)
- Peixun Zhang
- Department of Trauma & Orthopedics, Peking University People's Hospital, Beijing, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Advances in natural biomaterials for nerve tissue repair. Neurosci Lett 2012; 519:103-14. [DOI: 10.1016/j.neulet.2012.02.027] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 12/22/2022]
|
42
|
Fibrin conduit supplemented with human mesenchymal stem cells and immunosuppressive treatment enhances regeneration after peripheral nerve injury. Neurosci Lett 2012; 516:171-6. [PMID: 22465323 DOI: 10.1016/j.neulet.2012.03.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Revised: 02/28/2012] [Accepted: 03/14/2012] [Indexed: 12/21/2022]
Abstract
To address the need for the development of bioengineered replacement of a nerve graft, a novel two component fibrin glue conduit was combined with human mesenchymal stem cells (MSC) and immunosupressive treatment with cyclosporine A. The effects of MSC on axonal regeneration in the conduit and reaction of activated macrophages were investigated using sciatic nerve injury model. A 10mm gap in the sciatic nerve of a rat was created and repaired either with fibrin glue conduit containing diluted fibrin matrix or fibrin glue conduit containing fibrin matrix with MSC at concentration of 80×10(6) cells/ml. Cells were labeled with PKH26 prior to transplantation. The animals received daily injections of cyclosporine A. After 3 weeks the distance of regeneration and area occupied by regenerating axons and ED1 positives macrophages was measured. MSC survived in the conduit and enhanced axonal regeneration only when transplantation was combined with cyclosporine A treatment. Moreover, addition of cyclosporine A to the conduits with transplanted MSC significantly reduced the ED1 macrophage reaction.
Collapse
|
43
|
Toll EC, Seifalian AM, Birchall MA. The role of immunophilin ligands in nerve regeneration. Regen Med 2012; 6:635-52. [PMID: 21916598 DOI: 10.2217/rme.11.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tacrolimus (FK506) is a widely used immunosuppressant in organ transplantation. However, it also has neurotrophic activity that occurs independently of its immunosuppressive effects. Other neurotrophic immunophilin ligands that do not exhibit immunosuppression have subsequently been developed and studied in various models of nerve injury. This article reviews the literature on the use of tacrolimus and other immunophilin ligands in peripheral nerve, cranial nerve and spinal cord injuries. The most convincing evidence of enhanced nerve regeneration is seen with systemic administration of tacrolimus in peripheral nerve injury, although clinical use is limited due to its immunosuppressive side effects. Local tacrolimus delivery to the site of nerve repair in peripheral and cranial nerve injury is less effective but requires further investigation. Tacrolimus can enhance outcomes in nerve allograft reconstruction and accelerates reinnervation of complex functional allograft transplants. Other non-immunosuppressive immunophilins ligands such as V-10367 and FK1706 demonstrate enhanced neuroregeneration in the peripheral nervous system and CNS. Mixed results are found in the application of immunophilin ligands to treat spinal cord injury. Immunophilin ligands have great potential in the treatment of nerve injury, but further preclinical studies are necessary to permit translation into clinical trials.
Collapse
Affiliation(s)
- Edward C Toll
- Division of Surgery and Interventional Science, University College London, UK.
| | | | | |
Collapse
|
44
|
Daly W, Yao L, Zeugolis D, Windebank A, Pandit A. A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 2011; 9:202-21. [PMID: 22090283 DOI: 10.1098/rsif.2011.0438] [Citation(s) in RCA: 395] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Microsurgical techniques for the treatment of large peripheral nerve injuries (such as the gold standard autograft) and its main clinically approved alternative--hollow nerve guidance conduits (NGCs)--have a number of limitations that need to be addressed. NGCs, in particular, are limited to treating a relatively short nerve gap (4 cm in length) and are often associated with poor functional recovery. Recent advances in biomaterials and tissue engineering approaches are seeking to overcome the limitations associated with these treatment methods. This review critically discusses the advances in biomaterial-based NGCs, their limitations and where future improvements may be required. Recent developments include the incorporation of topographical guidance features and/or intraluminal structures, which attempt to guide Schwann cell (SC) migration and axonal regrowth towards their distal targets. The use of such strategies requires consideration of the size and distribution of these topographical features, as well as a suitable surface for cell-material interactions. Likewise, cellular and molecular-based therapies are being considered for the creation of a more conductive nerve microenvironment. For example, hurdles associated with the short half-lives and low stability of molecular therapies are being surmounted through the use of controlled delivery systems. Similarly, cells (SCs, stem cells and genetically modified cells) are being delivered with biomaterial matrices in attempts to control their dispersion and to facilitate their incorporation within the host regeneration process. Despite recent advances in peripheral nerve repair, there are a number of key factors that need to be considered in order for these new technologies to reach the clinic.
Collapse
Affiliation(s)
- W Daly
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland, Newcastle Road, Dangan, Galway, Republic of Ireland
| | | | | | | | | |
Collapse
|
45
|
Muscle recovery after repair of short and long peripheral nerve gaps using fibrin conduits. Neurosci Lett 2011; 500:41-6. [DOI: 10.1016/j.neulet.2011.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/18/2011] [Accepted: 06/01/2011] [Indexed: 02/07/2023]
|
46
|
di Summa PG, Kalbermatten DF, Pralong E, Raffoul W, Kingham PJ, Terenghi G. Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts. Neuroscience 2011; 181:278-91. [PMID: 21371534 DOI: 10.1016/j.neuroscience.2011.02.052] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 12/12/2022]
Abstract
Although autologous nerve graft is still the first choice strategy in nerve reconstruction, it has the severe disadvantage of the sacrifice of a functional nerve. Cell transplantation in a bioartificial conduit is an alternative strategy to improve nerve regeneration. Nerve fibrin conduits were seeded with various cell types: primary Schwann cells (SC), SC-like differentiated bone marrow-derived mesenchymal stem cells (dMSC), SC-like differentiated adipose-derived stem cells (dASC). Two further control groups were fibrin conduits without cells and autografts. Conduits were used to bridge a 1 cm rat sciatic nerve gap in a long term experiment (16 weeks). Functional and morphological properties of regenerated nerves were investigated. A reduction in muscle atrophy was observed in the autograft and in all cell-seeded groups, when compared with the empty fibrin conduits. SC showed significant improvement in axon myelination and average fiber diameter of the regenerated nerves. dASC were the most effective cell population in terms of improvement of axonal and fiber diameter, evoked potentials at the level of the gastrocnemius muscle and regeneration of motoneurons, similar to the autografts. Given these results and other advantages of adipose derived stem cells such as ease of harvest and relative abundance, dASC could be a clinically translatable route towards new methods to enhance peripheral nerve repair.
Collapse
Affiliation(s)
- P G di Summa
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital of Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Martínez de Albornoz P, Delgado PJ, Forriol F, Maffulli N. Non-surgical therapies for peripheral nerve injury. Br Med Bull 2011; 100:73-100. [PMID: 21429947 DOI: 10.1093/bmb/ldr005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Non-surgical approaches have been developed to enhance nerve recovery, which are complementary to surgery and are an adjunct to the reinnervation process. SOURCES OF DATA A search of PubMed, Medline, CINAHL, DH data and Embase databases was performed using the keywords 'peripheral nerve injury' and 'treatment'. AREAS OF CONTROVERSY Most of the conservative therapies are focused to control neuropathic pain after nerve tissue damage. Only physical therapy modalities have been studied in humans and their effectiveness is not proved. GROWING POINTS Many modalities have been experimented with to promote nerve healing and restore function in animal models and in vitro studies. Despite this, none have been actually translated into clinical practice. AREAS TIMELY FOR DEVELOPING RESEARCH The hypotheses proved in animals and in vitro should be translated to human clinical practice.
Collapse
Affiliation(s)
- Pilar Martínez de Albornoz
- Department of Trauma and Orthopaedic Surgery, FREMAP Hospital, Ctra de Pozuelo 61, 28220 Majadahonda, Madrid, Spain
| | | | | | | |
Collapse
|