1
|
Amissah OB, Basnet R, Chen W, Habimana JDD, Baiden BE, Owusu OA, Saeed BJ, Li Z. Enhancing antitumor response by efficiently generating large-scale TCR-T cells targeting a single epitope across multiple cancer antigens. Cell Immunol 2024; 399-400:104827. [PMID: 38733699 DOI: 10.1016/j.cellimm.2024.104827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The need to contrive interventions to curb the rise in cancer incidence and mortality is critical for improving patients' prognoses. Adoptive cell therapy is challenged with quality large-scale production, heightening its production cost. Several cancer types have been associated with the expression of highly-immunogenic CTAG1 and CTAG2 antigens, which share common epitopes. Targeting two antigens on the same cancer could improve the antitumor response of TCR-T cells. In this study, we exploited an efficient way to generate large-fold quality TCR-T cells and also demonstrated that the common epitopes of CTAG1 and CTAG2 antigens provide an avenue for improved cancer-killing via dual-antigen-epitope targeting. Our study revealed that xeno/sera-free medium could expand TCR-T cells to over 500-fold, posing as a better replacement for FBS-supplemented media. Human AB serum was also shown to be a good alternative in the absence of xeno/sera-free media. Furthermore, TCR-T cells stimulated with beads-coated T-activator showed a better effector function than soluble T-activator stimulated TCR-T cells. Additionally, TCR-T cells that target multiple antigens in the same cancer yield better anticancer activity than those targeting a single antigen. This showed that targeting multiple antigens with a common epitope may enhance the antitumor response efficacy of T cell therapies.
Collapse
Affiliation(s)
- Obed Boadi Amissah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Rajesh Basnet
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wenfang Chen
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Jean de Dieu Habimana
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Belinda Edwina Baiden
- College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Osei Asibey Owusu
- Department of Clinical and Medical Sciences, University of Exeter, Exeter, UK
| | - Babangida Jabir Saeed
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Zhiyuan Li
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan District, Beijing 100049, China; GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, GIBH-CUHK Joint Research Laboratory on Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China.
| |
Collapse
|
2
|
Karoubi N, Khamisipour G, Babaei N, Obeidi N, Doosti A. Static electromagnetic field and recombinant human fibroblasts encoding miR-451 and miR-16 increased cell trans-differentiation to CD 71+ and CD 235a+ erythroid like progenitor. BIOIMPACTS : BI 2023; 14:27817. [PMID: 38327634 PMCID: PMC10844592 DOI: 10.34172/bi.2023.27817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/10/2023] [Accepted: 06/18/2023] [Indexed: 02/09/2024]
Abstract
Introduction Ex vivo blood production is an urgent need of most countries, and creating production protocols can save the lives of many patients. Despite the recent advances in blood production in ex vivo conditions, its high-scale production is not yet possible, and requires further studies. Therefore, by transfecting fibroblast cells with miR-16, and miR-451 genes, as well as applying low frequency electromagnetic fields (ELF-EMF) treatment, we tried to increase the differentiation of these cells into CD71+ and CD235a+ erythroid like progenitors. Methods After preparation, and cultivation of human dermal transgenic fibroblast cells, they were transfected by Plenti3-hsa-miR451, Plenti3-hsa-miR16 and Plenti3-backbone inserted into E. coli Stbl4 genome. Then, transgenic fibroblast cells were treated with 10mT ELF-EMF every day for 20 minutes for 7 days. Using a flow cytometer, the expressions of CD71, and CD235a were studied in these cells, and the expressions of genes involved in hematopoiesis were studied using the RT-PCR technique. Results The results indicated an increase in the differentiation of fibroblast cells treated with 10mT ELF-EMF to erythroid like progenitors. Furthermore, the percentage of CD71+ and CD235a+ cells was the highest in irradiated cells encoding miR-16 and miR-451, which indicates their differentiation into erythroid like progenitors. Also, in the transgenic cells treated with ELF-EMF, an increase in the expressions of α-chain, β-chain, γ-chain and GATA1 genes was observed, which indicates the potential of these cells for hematopoiesis. However, there was no significant difference in the expression of CD34 and CD38 genes in these cell lines. Conclusion Both ELF-EMF and upregulations of miR-16 and miR-451 lead to improved differentiation of fibroblast cells into erythroid like progenitors.
Collapse
Affiliation(s)
- Nafiseh Karoubi
- Department of Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Gholamreza Khamisipour
- Department of Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nahid Babaei
- Department of Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Narges Obeidi
- Department of Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Department of Hematology, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Abbas Doosti
- Department of Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
3
|
Soboleva S, Miharada K. Induction of enucleation in primary and immortalized erythroid cells. Int J Hematol 2022; 116:192-198. [PMID: 35610497 DOI: 10.1007/s12185-022-03386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Enucleation is a crucial event during the erythropoiesis, implicating drastic morphologic and transcriptomic/proteomic changes. While many genes deletion lead to failed or impaired enucleation have been identified, directly triggering the erythroid maturation, particularly enucleation, is still challenging. Inducing enucleation at the desired timing is necessary to develop efficient methods to generate mature, fully functional red blood cells in vitro for future transfusion therapies. However, there are considerable differences between primary erythroid cells and cultured cell sources, particularly pluripotent stem cell-derived erythroid cells and immortalized erythroid cell lines. For instance, the difference in the proliferative status between those cell types could be a critical factor, as cell cycle exit is closely connected to the terminal maturation of primary. In this review, we will discuss previous findings on the enucleation machinery and current challengings to trigger the enucleation of infinite erythroid cell sources.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
4
|
Soboleva S, Kurita R, Kajitani N, Åkerstrand H, Miharada K. Establishment of an immortalized human erythroid cell line sustaining differentiation potential without inducible gene expression system. Hum Cell 2021; 35:408-417. [PMID: 34817797 DOI: 10.1007/s13577-021-00652-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/17/2021] [Indexed: 11/30/2022]
Abstract
Ex vivo manufactured red blood cells (RBC) generated from immortalized erythroid cell lines which can continuously grow are expected to become a significant alternative in future transfusion therapies. The ectopic expression of human papilloma virus (HPV) E6/E7 gene has successfully been employed to establish these cell lines. To induce differentiation and maturation of the immortalized cell lines, terminating the HPV-E6/E7 expression through a gene induction system has been believed to be essential. Here, we report that erythroid cell lines established from human bone marrow using simple expression of HPV-E6/E7 are capable of normal erythroid differentiation, without turning gene expression off. Through simply changing cell culture conditions, a newly established cell line, Erythroid Line from Lund University (ELLU), is able to differentiate toward mature cells, including enucleated reticulocytes. ELLU is heterogeneous and, unexpectedly, clones expressing adult hemoglobin rapidly differentiate and produce fragile cells. Upon differentiation, other ELLU clones shift from fetal to adult hemoglobin expression, giving rise to more mature cells. Our findings propose that it is not necessary to employ gene induction systems to establish immortalized erythroid cell lines sustaining differentiation potential and describe novel cellular characteristics for desired functionally competent clones.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Naoko Kajitani
- Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Hugo Åkerstrand
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
5
|
Nath A, Rayabaram J, Ijee S, Bagchi A, Chaudhury AD, Roy D, Chambayil K, Singh J, Nakamura Y, Velayudhan SR. Comprehensive Analysis of microRNAs in Human Adult Erythropoiesis. Cells 2021; 10:3018. [PMID: 34831239 PMCID: PMC8616439 DOI: 10.3390/cells10113018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which play an important role in various cellular and developmental processes. The study of miRNAs in erythropoiesis is crucial to uncover the cellular pathways that are modulated during the different stages of erythroid differentiation. Using erythroid cells derived from human CD34+ hematopoietic stem and progenitor cells (HSPCs)and small RNA sequencing, our study unravels the various miRNAs involved in critical cellular pathways in erythroid maturation. We analyzed the occupancy of erythroid transcription factors and chromatin accessibility in the promoter and enhancer regions of the differentially expressed miRNAs to integrate miRNAs in the transcriptional circuitry of erythropoiesis. Analysis of the targets of the differentially expressed miRNAs revealed novel pathways in erythroid differentiation. Finally, we described the application of Clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) based editing of miRNAs to study their function in human erythropoiesis.
Collapse
Affiliation(s)
- Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Janakiram Rayabaram
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Anurag Dutta Chaudhury
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| | - Debanjan Roy
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
- Manipal Academy of Higher Education, Manipal 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
| | - Jyoti Singh
- National Centre for Cell Science, University of Pune Campus, Pune 411007, India;
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 305-0074, Japan;
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, India; (A.N.); (S.I.); (A.B.); (K.C.)
- Department of Haematology, Christian Medical College, Vellore 632004, India; (J.R.); (A.D.C.); (D.R.)
| |
Collapse
|
6
|
Lonetti A, Indio V, Dianzani I, Ramenghi U, Da Costa L, Pospíšilová D, Migliaccio AR. The Glucocorticoid Receptor Polymorphism Landscape in Patients With Diamond Blackfan Anemia Reveals an Association Between Two Clinically Relevant Single Nucleotide Polymorphisms and Time to Diagnosis. Front Physiol 2021; 12:745032. [PMID: 34721069 PMCID: PMC8549833 DOI: 10.3389/fphys.2021.745032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022] Open
Abstract
NR3C1, the gene encoding the glucocorticoid receptor, is polymorphic presenting numerous single nucleotide polymorphisms (SNPs) some of which are emerging as leading cause in the variability of manifestation and/or response to glucocorticoids in human diseases. Since 60–80% of patients with Diamond Blackfan anemia (DBA), an inherited pure red cell aplasia induced by mutations in ribosomal protein genes became transfusion independent upon treatment with glucocorticoids, we investigated whether clinically relevant NR3C1 SNPs are associated with disease manifestation in DBA. The eight SNPs rs10482605, rs10482616, rs7701443, rs6189/rs6190, rs860457, rs6198, rs6196, and rs33388/rs33389 were investigated in a cohort of 91 European DBA patients. Results were compared with those observed in healthy volunteers (n=37) or present in public genome databases of Italian and European populations. Although, cases vs. control analyses suggest that the frequency of some of the minor alleles is significantly altered in DBA patients with respect to healthy controls or to the Italian or other European registries, lack of consistency among the associations across different sets suggests that overall the frequency of these SNPs in DBA is not different from that of the general population. Demographic data (47 females and 31 males) and driver mutations (44 S and 29 L genes and eight no-known mutation) are known for 81 patients while glucocorticoid response is known, respectively, for 81 (36 responsive and 45 non-responsive) and age of disease onsets for 79 (55 before and 24 after 4months of age) patients. Neither gender nor leading mutations were associated with the minor alleles or with disease manifestation. In addition, none of the SNPs met the threshold in the response vs. non-responsive groups. However, two SNPs (rs6196 and rs860457) were enriched in patients manifesting the disease before 4months of age. Although the exact biomechanistical consequences of these SNPs are unknown, the fact that their configuration is consistent with that of regulatory regions suggests that they regulate changes in glucocorticoid response during ontogeny. This hypothesis was supported by phosphoproteomic profiling of erythroid cells expanded ex vivo indicating that glucocorticoids activate a ribosomal signature in cells from cord blood but not in those from adult blood, possibly providing a compensatory mechanism to the driving mutations observed in DBA before birth.
Collapse
Affiliation(s)
- Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Valentina Indio
- Giorgio Prodi Cancer Research Center, University of Bologna, Bologna, Italy
| | - Irma Dianzani
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ugo Ramenghi
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Lydie Da Costa
- Service d'Hématologie Biologique, Hôpital Robert Debré, University of Paris, Paris, France
| | - Dagmar Pospíšilová
- Department of Pediatrics, Faculty Hospital of Palacky University, Olomouc, Czechia
| | | |
Collapse
|
7
|
Pellegrin S, Severn CE, Toye AM. Towards manufactured red blood cells for the treatment of inherited anemia. Haematologica 2021; 106:2304-2311. [PMID: 34042406 PMCID: PMC8409035 DOI: 10.3324/haematol.2020.268847] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Patients with inherited anemia and hemoglobinopathies (such as sickle cell disease and β-thalassemia) are treated with red blood cell (RBC) transfusions to alleviate their symptoms. Some of these patients may have rare blood group types or go on to develop alloimmune reactions, which can make it difficult to source compatible blood in the donor population. Laboratory-grown RBC represent a particularly attractive alternative which could satisfy an unmet clinical need. The challenge, however, is to produce - from a limited number of stem cells - the 2x1012 RBC required for a standard adult therapeutic dose. Encouraging progress has been made in RBC production from adult stem cells under good manufacturing practice. In 2011, the Douay group conducted a successful proof-of-principle mini-transfusion of autologous manufactured RBC in a single volunteer. In the UK, a trial is planned to assess whether manufactured RBC are equivalent to RBC produced naturally in donors, by testing an allogeneic mini-dose of laboratory-grown manufactured RBC in multiple volunteers. This review discusses recent progress in the erythroid culture field as well as opportunities for further scaling up of manufactured RBC production for transfusion practice.
Collapse
Affiliation(s)
- Stephanie Pellegrin
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol.
| | - Charlotte E Severn
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol.
| | - Ashley M Toye
- School of Biochemistry, Biomedical Sciences Building; National Institute for Health Research (NIHR) Blood and Transplant Research Unit in Red Blood Cell Products, University of Bristol; Bristol Institute of Transfusion Sciences, NHSBT Filton. Bristol.
| |
Collapse
|
8
|
Kronstein-Wiedemann R, Thiel J, Tonn T. Blood Pharming – eine realistische Option? TRANSFUSIONSMEDIZIN 2021. [DOI: 10.1055/a-1342-0820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ZusammenfassungDie Bluttransfusion ist ein wesentlicher und unersetzlicher Teil der modernen Medizin. Jedoch stellt vor allem bei Patienten mit sehr seltenen Blutgruppenkonstellationen der Mangel an Blutprodukten auch heute noch ein wichtiges Gesundheitsproblem weltweit dar. Um diesem Problem entgegenzutreten, versucht man seit einiger Zeit künstlich rote Blutzellen zu generieren. Diese haben potenzielle Vorteile gegenüber Spenderblut, wie z. B. ein verringertes Risiko für die Übertragung von Infektionskrankheiten. Diese Übersicht fasst die aktuellen Entwicklungen über den Prozess der Erythropoese, die Expansionsstrategien der erythrozytären Zellen, der verschiedenen Quellen für ex vivo expandierte Erythrozyten, die Hürden für die klinische Anwendung und die zukünftigen Möglichkeiten der Anwendung zusammen.
Collapse
Affiliation(s)
- Romy Kronstein-Wiedemann
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Jessica Thiel
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| | - Torsten Tonn
- DRK-Blutspendedienst Nord-Ost gGmbH/Institut Dresden
- Experimentelle Transfusionsmedizin, Medizinische Fakultät Universitätsklinikum Carl Gustav Carus
| |
Collapse
|
9
|
Soboleva S, Kurita R, Ek F, Åkerstrand H, Silvério-Alves R, Olsson R, Nakamura Y, Miharada K. Identification of potential chemical compounds enhancing generation of enucleated cells from immortalized human erythroid cell lines. Commun Biol 2021; 4:677. [PMID: 34083702 PMCID: PMC8175573 DOI: 10.1038/s42003-021-02202-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/11/2021] [Indexed: 11/09/2022] Open
Abstract
Immortalized erythroid cell lines are expected to be a promising source of ex vivo manufactured red blood cells (RBCs), however the induction of enucleation in these cell lines is inefficient at present. We utilized an imaging-based high-throughput system to identify chemical compounds that trigger enucleation of human erythroid cell lines. Among >3,300 compounds, we identified multiple histone deacetylase inhibitors (HDACi) inducing enucleated cells from the cell line, although an increase in membrane fragility of enucleated cells was observed. Gene expression profiling revealed that HDACi treatment increased the expression of cytoskeletal genes, while an erythroid-specific cell membrane protein, SPTA1, was significantly down-regulated. Restoration of SPTA1 expression using CRISPR-activation partially rescued the fragility of cells and thereby improved the enucleation efficiency. Our observations provide a potential solution for the generation of mature cells from erythroid cell lines, contributing to the future realization of the use of immortalized cell lines for transfusion therapies. In an imaging-based screen of >3,300 compounds compounds, Soboleva et al identify HDAC inhibitors as mediators of erythroid cell enucleation. They further show that the erythroid-specific cell membrane protein, SPTA1, is downregulated in HDAC inhibited cells and that restoration of SPTA1 expression using CRISPR-activation partially rescues the fragility of cells, improving enucleation efficiency.
Collapse
Affiliation(s)
- Svetlana Soboleva
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Fredrik Ek
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hugo Åkerstrand
- Division of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Rita Silvério-Alves
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Roger Olsson
- Chemical Biology and Therapeutics, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Kenichi Miharada
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden. .,International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
10
|
Bagchi A, Nath A, Thamodaran V, Ijee S, Palani D, Rajendiran V, Venkatesan V, Datari P, Pai AA, Janet NB, Balasubramanian P, Nakamura Y, Srivastava A, Mohankumar KM, Thangavel S, Velayudhan SR. Direct Generation of Immortalized Erythroid Progenitor Cell Lines from Peripheral Blood Mononuclear Cells. Cells 2021; 10:523. [PMID: 33804564 PMCID: PMC7999632 DOI: 10.3390/cells10030523] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 02/04/2023] Open
Abstract
Reliable human erythroid progenitor cell (EPC) lines that can differentiate to the later stages of erythropoiesis are important cellular models for studying molecular mechanisms of human erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells (iEPCs), HUDEP-2 and BEL-A, generated from CD34+ hematopoietic progenitors by the doxycycline (dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases is challenging as obtaining a sufficient number of CD34+ cells require bone marrow aspiration or their mobilization to peripheral blood using drugs. This study established a protocol for culturing early-stage EPCs from peripheral blood (PB) and their immortalization by expressing HEE genes. We generated two iEPCs, PBiEPC-1 and PBiEPC-2, from the peripheral blood mononuclear cells (PBMNCs) of two healthy donors. These cell lines showed stable doubling times with the properties of erythroid progenitors. PBiEPC-1 showed robust terminal differentiation with high enucleation efficiency, and it could be successfully gene manipulated by gene knockdown and knockout strategies with high efficiencies without affecting its differentiation. This protocol is suitable for generating a bank of iEPCs from patients with rare red cell genetic disorders for studying disease mechanisms and drug discovery.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vasanth Thamodaran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Smitha Ijee
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Dhavapriya Palani
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Phaneendra Datari
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Aswin Anand Pai
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Nancy Beryl Janet
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Poonkuzhali Balasubramanian
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki 3050074, Japan;
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| | - Kumarasamypet Murugesan Mohankumar
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
| | - Shaji R. Velayudhan
- Center for Stem Cell Research (A Unit of InStem, Bengaluru, India), Christian Medical College, Vellore 632002, Tamil Nadu, India; (A.B.); (A.N.); (V.T.); (S.I.); (D.P.); (V.R.); (V.V.); (A.S.); (K.M.M.); (S.T.)
- Department of Hematology, Christian Medical College, Vellore 632002, Tamil Nadu, India; (P.D.); (A.A.P.); (N.B.J.); (P.B.)
| |
Collapse
|
11
|
Liu S, Wu M, Lancelot M, Deng J, Gao Y, Roback JD, Chen T, Cheng L. BMI1 enables extensive expansion of functional erythroblasts from human peripheral blood mononuclear cells. Mol Ther 2021; 29:1918-1932. [PMID: 33484967 PMCID: PMC8116606 DOI: 10.1016/j.ymthe.2021.01.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/26/2020] [Accepted: 01/12/2021] [Indexed: 01/06/2023] Open
Abstract
Transfusion of red blood cells (RBCs) from ABO-matched but genetically unrelated donors is commonly used for treating anemia and acute blood loss. Increasing demand and insufficient supply for donor RBCs, especially those of universal blood types or free of known and unknown pathogens, has called for ex vivo generation of functional RBCs by large-scale cell culture. However, generating physiological numbers of transfusable cultured RBCs (cRBCs) ex vivo remains challenging, due to our inability to either extensively expand primary RBC precursors (erythroblasts) or achieve efficient enucleation once erythroblasts have been expanded and induced to differentiation and maturation. Here, we report that ectopic expression of the human BMI1 gene confers extensive expansion of human erythroblasts, which can be derived readily from adult peripheral blood mononuclear cells of either healthy donors or sickle cell patients. These extensively expanded erythroblasts (E3s) are able to proliferate exponentially (>1 trillion-fold in 2 months) in a defined culture medium. Expanded E3 cells are karyotypically normal and capable of terminal maturation with approximately 50% enucleation. Additionally, E3-derived cRBCs can circulate in a mouse model following transfusion similar to primary human RBCs. Therefore, we provide a facile approach of generating physiological numbers of human functional erythroblasts ex vivo.
Collapse
Affiliation(s)
- Senquan Liu
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mengyao Wu
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Division of Hematology, Huashan Hospital of Fudan University, Shanghai 200040, China
| | - Moira Lancelot
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiusheng Deng
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yongxing Gao
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John D Roback
- Center for Transfusion and Cellular Therapies, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Tong Chen
- Division of Hematology, Huashan Hospital of Fudan University, Shanghai 200040, China.
| | - Linzhao Cheng
- Blood and Cell Therapy Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China; Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Lanza F, Seghatchian J. Trends and targets of various types of stem cell derived transfusable RBC substitution therapy: Obstacles that need to be converted to opportunity. Transfus Apher Sci 2020; 59:102941. [PMID: 32958397 PMCID: PMC7474814 DOI: 10.1016/j.transci.2020.102941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A shortage of blood during the pandemic outbreak of COVID-19 is a typical example in which the maintenance of a safe and adequate blood supply becomes difficult and highly demanding. So far, human RBCs have been produced in vitro using diverse sources: hematopoietic stem cells (SCs), embryonic SCs and induced pluripotent SCs. The existing, even safest core of conventional cellular bioproducts destined for transfusion have some shortcoming in respects to: donor -dependency variability in terms of hematological /immunological and process/ storage period issues. SCs-derived transfusable RBC bioproducts, as one blood group type for all, were highly complex to work out. Moreover, the strategies for their successful production are often dependent upon the right selection of starting source materials and the composition and the stability of the right expansion media and the strict compliance to GMP regulatory processes. In this mini-review we highlight some model studies, which showed that the efficiency and the functionality of RBCs that could be produced by the various types of SCs, in relation to the in-vitro culture procedures are such that they may, potentially, be used at an industrial level. However, all cultured products do not have an unlimited life due to the critical metabolic pathways or the metabolites produced. New bioreactors are needed to remove these shortcomings and the development of a new mouse model is required. Modern clinical trials based on the employment of regenerative medicine approaches in combination with novel large-scale bioengineering tools, could overcome the current obstacles in artificial RBC substitution, possibly allowing an efficient RBC industrial production.
Collapse
Affiliation(s)
- Francesco Lanza
- Romagna Transplant Network, Hematology Unit, Ravenna Hospital & University of Ferrara-Italy, Via Randi 5, Ravenna, Italy.
| | - Jerard Seghatchian
- International Consultancy in Strategic Safety/Quality Innovations of Blood-Derived Bioproducts and Quality Audit/ Inspection, London, England, UK.
| |
Collapse
|
13
|
Ubukawa K, Goto T, Asanuma K, Sasaki Y, Guo YM, Kobayashi I, Sawada K, Wakui H, Takahashi N. Cdc42 regulates cell polarization and contractile actomyosin rings during terminal differentiation of human erythroblasts. Sci Rep 2020; 10:11806. [PMID: 32678227 PMCID: PMC7366696 DOI: 10.1038/s41598-020-68799-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/02/2020] [Indexed: 11/24/2022] Open
Abstract
The molecular mechanisms involved in the terminal differentiation of erythroblasts have been elucidated by comparing enucleation and cell division. Although various similarities and differences between erythroblast enucleation and cytokinesis have been reported, the mechanisms that control enucleation remain unclear. We previously reported that dynein and microtubule-organizing centers mediated the polarization of nuclei in human erythroblasts. Moreover, the accumulation of F-actin was noted during the enucleation of erythroblasts. Therefore, during enucleation, upstream effectors in the signal transduction pathway regulating dynein or actin, such as cell division control protein 42 homolog (Cdc42), may be crucial. We herein investigated the effects of the Cdc42 inhibitor, CASIN, on cytokinesis and enucleation in colony-forming units-erythroid (CFU-Es) and mature erythroblasts (day 10). CASIN blocked the proliferation of CFU-Es and their enucleation in a dose-dependent manner. Dynein adopted an island-like distribution in the cytoplasm of non-treated CFU-Es, but was concentrated near the nucleus as a dot and co-localized with γ-tubulin in CASIN-treated cells. CASIN blocked the accumulation of F-actin in CFU-Es and day 10 cells. These results demonstrated that Cdc42 plays an important role in cytokinesis, nuclear polarization and nuclear extrusion through a relationship with dynein and actin filament organization during the terminal differentiation of erythroblasts.
Collapse
Affiliation(s)
- Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan.
| | - Tatsufumi Goto
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Ken Asanuma
- Division of Radio Isotope, Bioscience Education and Research Support Center, Akita University, Akita, Japan
| | - Yumi Sasaki
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | | | - Hideki Wakui
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| |
Collapse
|
14
|
Nigra AD, Casale CH, Santander VS. Human erythrocytes: cytoskeleton and its origin. Cell Mol Life Sci 2020; 77:1681-1694. [PMID: 31654099 PMCID: PMC11105037 DOI: 10.1007/s00018-019-03346-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/27/2019] [Accepted: 10/16/2019] [Indexed: 01/02/2023]
Abstract
In the last few years, erythrocytes have emerged as the main determinant of blood rheology. In mammals, these cells are devoid of nuclei and are, therefore, unable to divide. Consequently, all circulating erythrocytes come from erythropoiesis, a process in the bone marrow in which several modifications are induced in the expression of membrane and cytoskeletal proteins, and different vertical and horizontal interactions are established between them. Cytoskeleton components play an important role in this process, which explains why they and the interaction between them have been the focus of much recent research. Moreover, in mature erythrocytes, the cytoskeleton integrity is also essential, because the cytoskeleton confers remarkable deformability and stability on the erythrocytes, thus enabling them to undergo deformation in microcirculation. Defects in the cytoskeleton produce changes in erythrocyte deformability and stability, affecting cell viability and rheological properties. Such abnormalities are seen in different pathologies of special interest, such as different types of anemia, hypertension, and diabetes, among others. This review highlights the main findings in mammalian erythrocytes and their progenitors regarding the presence, conformation and function of the three main components of the cytoskeleton: actin, intermediate filaments, and tubulin.
Collapse
Affiliation(s)
- Ayelén D Nigra
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), UNC-CONICET, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Cesar H Casale
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina
| | - Verónica S Santander
- Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, 5800, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
15
|
Zamani M, Yaghoubi Y, Naimi A, Hassanzadeh A, Pourakbari R, Aghebati-Maleki L, Motavalli R, Aghlmandi A, Mehdizadeh A, Nazari M, Yousefi M, Movassaghpour AA. Humanized Culture Medium for Clinical-Grade Generation of Erythroid Cells from Umbilical Cord Blood CD34 + Cells. Adv Pharm Bull 2020; 11:335-342. [PMID: 33880356 PMCID: PMC8046389 DOI: 10.34172/apb.2021.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/03/2020] [Accepted: 02/29/2020] [Indexed: 12/30/2022] Open
Abstract
Purpose: Transfusion of red blood cells (RBCs) is a supportive and common treatment in surgical care, trauma, and anemia. However, in vivo production of RBC seems to be a suitable alternative for blood transfusions due to the limitation of blood resources, the possibility of disease transmission, immune reactions, and the presence of rare blood groups. Cell cultures require serum-free or culture media supplemented with highly expensive animal serum, which can transmit xenoviruses. Platelet lysate (PL) can be considered as a suitable alternative containing a high level of growth factors and a low production cost. Methods: Three-step culture media supplemented with PL or fetal bovine serum (FBS) were used for proliferation and differentiation of CD34+ umbilical cord blood stem cells to erythrocytes in co-culture with bone marrow mesenchymal stem cells (BM-MSCs). The cells were cultivated for 15 days and cell proliferation and expansion were assessed using cell counts at different days. Erythroid differentiation genes, CD71 and glycophorin A expression levels were evaluated. Results: Maximum hematopoietic stem cells (HSCs) proliferation was observed on day 15 in PL-containing medium (99±17×103-fold). Gene expression and surface markers showed higher differentiation of cells in PL-containing medium. Conclusion: The results of this study indicate that PL can enhance erythroid proliferation and differentiation of CD34+ HSCs. PL can also be used as a proper alternative for FBS in the culture medium and HSCs differentiation.
Collapse
Affiliation(s)
- Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ali Hassanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Pourakbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsoon Aghlmandi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Nazari
- Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Movassaghpour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Guzniczak E, Otto O, Whyte G, Chandra T, Robertson NA, Willoughby N, Jimenez M, Bridle H. Purifying stem cell-derived red blood cells: a high-throughput label-free downstream processing strategy based on microfluidic spiral inertial separation and membrane filtration. Biotechnol Bioeng 2020; 117:2032-2045. [PMID: 32100873 PMCID: PMC7383897 DOI: 10.1002/bit.27319] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Cell-based therapeutics, such as in vitro manufactured red blood cells (mRBCs), are different to traditional biopharmaceutical products (the final product being the cells themselves as opposed to biological molecules such as proteins) and that presents a challenge of developing new robust and economically feasible manufacturing processes, especially for sample purification. Current purification technologies have limited throughput, rely on expensive fluorescent or magnetic immunolabeling with a significant (up to 70%) cell loss and quality impairment. To address this challenge, previously characterized mechanical properties of umbilical cord blood CD34+ cells undergoing in vitro erythropoiesis were used to develop an mRBC purification strategy. The approach consists of two main stages: (a) a microfluidic separation using inertial focusing for deformability-based sorting of enucleated cells (mRBC) from nuclei and nucleated cells resulting in 70% purity and (b) membrane filtration to enhance the purity to 99%. Herein, we propose a new route for high-throughput (processing millions of cells/min and mls of medium/min) purification process for mRBC, leading to high mRBC purity while maintaining cell integrity and no alterations in their global gene expression profile. Further adaption of this separation approach offers a potential route for processing of a wide range of cellular products.
Collapse
Affiliation(s)
- Ewa Guzniczak
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Germany.,Deutsches Zentrum für Herz-Kreislaufforschung, Partner Site Greifswald, Greifswald, Germany
| | - Graeme Whyte
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Tamir Chandra
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Neil A Robertson
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, The University of Edinburgh, Western General Hospital, Edinburgh, Scotland
| | - Nik Willoughby
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| | - Melanie Jimenez
- Biomedical Engineering Division, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland
| | - Helen Bridle
- Department of Biological Chemistry, Biophysics and Bioengineering Edinburgh Campus, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh, Scotland
| |
Collapse
|
17
|
Federici G, Varricchio L, Martelli F, Falchi M, Picconi O, Francescangeli F, Contavalli P, Girelli G, Tafuri A, Petricoin EF, Mazzarini M, Zeuner A, Migliaccio AR. Phosphoproteomic Landscaping Identifies Non-canonical cKIT Signaling in Polycythemia Vera Erythroid Progenitors. Front Oncol 2019; 9:1245. [PMID: 31824842 PMCID: PMC6883719 DOI: 10.3389/fonc.2019.01245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023] Open
Abstract
Although stem cell factor (SCF)/cKIT interaction plays key functions in erythropoiesis, cKIT signaling in human erythroid cells is still poorly defined. To provide new insights into cKIT-mediated erythroid expansion in development and disease, we performed phosphoproteomic profiling of primary erythroid progenitors from adult blood (AB), cord blood (CB), and Polycythemia Vera (PV) at steady-state and upon SCF stimulation. While AB and CB, respectively, activated transient or sustained canonical cKIT-signaling, PV showed a non-canonical signaling including increased mTOR and ERK1 and decreased DEPTOR. Accordingly, screening of FDA-approved compounds showed increased PV sensitivity to JAK, cKIT, and MEK inhibitors. Moreover, differently from AB and CB, in PV the mature 145kDa-cKIT constitutively associated with the tetraspanin CD63 and was not endocytosed upon SCF stimulation, contributing to unrestrained cKIT signaling. These results identify a clinically exploitable variegation of cKIT signaling/metabolism that may contribute to the great erythroid output occurring during development and in PV.
Collapse
Affiliation(s)
| | - Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National HIV/AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | - Orietta Picconi
- National HIV/AIDS Center, Istituto Superiore di Sanità, Rome, Italy
| | | | - Paola Contavalli
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriella Girelli
- Immunohematology and Transfusion Medicine Unit, "La Sapienza" University of Rome, Rome, Italy
| | - Agostino Tafuri
- Sant'Andrea Hospital-La Sapienza, Department of Clinic and Molecular Medicine "La Sapienza" University of Rome, Rome, Italy
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, United States
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
| | - Ann Zeuner
- Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Rita Migliaccio
- Myeloproliferative Neoplasm Research Consortium, Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
18
|
Kim SH, Lee EM, Han SY, Choi HS, Ryu KY, Baek EJ. Improvement of Red Blood Cell MaturationIn Vitroby Serum-Free Medium Optimization. Tissue Eng Part C Methods 2019; 25:232-242. [DOI: 10.1089/ten.tec.2019.0023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Seo Hui Kim
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Eun Mi Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - So Yeon Han
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hye Sook Choi
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Ki Young Ryu
- Departmemt of Obstetrics and Gynecology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Eun Jung Baek
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Goto T, Ubukawa K, Kobayashi I, Sugawara K, Asanuma K, Sasaki Y, Guo YM, Takahashi N, Sawada K, Wakui H, Nunomura W. ATP produced by anaerobic glycolysis is essential for enucleation of human erythroblasts. Exp Hematol 2019; 72:14-26.e1. [PMID: 30797950 DOI: 10.1016/j.exphem.2019.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 11/16/2022]
Abstract
More than 2million human erythroblasts extrude their nuclei every second in bone marrow under hypoxic conditions (<7% O2). Enucleation requires specific signal transduction pathways and the local assembly of contractile actomyosin rings. However, the energy source driving these events has not yet been identified. We examined whether different O2 environments (hypoxic [5% O2] and normoxic [21% O2] conditions) affected human CD34+ cell erythroblast differentiation. We also investigated the regulatory mechanisms underlying energy production in erythroblasts during terminal differentiation under 5% or 21% O2 conditions. The results obtained revealed that the enucleation ratio and intracellular levels of adenosine triphosphate (ATP), lactate dehydrogenase (LDH) M3H, and hypoxia-inducible factor 1α in erythroblasts during terminal differentiation were higher under the 5% O2 condition than under the 21% O2 condition. We also found that the enzymatic inhibition of glyceraldehyde 3-phosphate dehydrogenase and LDH, key enzymes in anaerobic glycolysis, blocked the proliferation of colony-forming units-erythroid and enucleation of erythroblasts, and also reduced ATP levels in erythroblasts under both hypoxic and normoxic conditions. Under both conditions, phosphorylation of the Ser232, Ser293, and Ser300 residues in pyruvate dehydrogenase (inactive state of the enzyme) in erythroblasts was involved in regulating the pathway governing energy metabolism during erythroid terminal differentiation. This reaction may be mediated by pyruvate dehydrogenase kinase (PDK) 4, the major PDK isozyme expressed in erythroblasts undergoing enucleation. Collectively, these results suggest that ATP produced by anaerobic glycolysis is the main source of energy for human erythroblast enucleation in the hypoxic bone marrow environment.
Collapse
Affiliation(s)
- Tatsufumi Goto
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Kumi Ubukawa
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Isuzu Kobayashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Kotomi Sugawara
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Ken Asanuma
- Division of Radio Isotope, Bioscience Education and Research Support Center, Akita University, Akita, Japan
| | - Yumi Sasaki
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| | - Yong-Mei Guo
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | - Naoto Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan
| | | | - Hideki Wakui
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan.
| | - Wataru Nunomura
- Department of Life Science, Graduate School of Engineering Science, Akita University, Akita, Japan; Research Center for Engineering Science, Graduate School of Engineering Science, Akita University, Akita, Japan
| |
Collapse
|
20
|
Christaki EE, Politou M, Antonelou M, Athanasopoulos A, Simantirakis E, Seghatchian J, Vassilopoulos G. Ex vivo generation of transfusable red blood cells from various stem cell sources: A concise revisit of where we are now. Transfus Apher Sci 2019; 58:108-112. [DOI: 10.1016/j.transci.2018.12.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
21
|
Affiliation(s)
- Jeffrey L Carson
- From the Department of Medicine, Division of General Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ ( J.L.C.); the Division of Transfusion Medicine, Department of Pathology, University of Pittsburgh, Pittsburgh (D.J.T.); and the Department of Pathology, Division of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore (P.M.N.)
| | - Darrell J Triulzi
- From the Department of Medicine, Division of General Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ ( J.L.C.); the Division of Transfusion Medicine, Department of Pathology, University of Pittsburgh, Pittsburgh (D.J.T.); and the Department of Pathology, Division of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore (P.M.N.)
| | - Paul M Ness
- From the Department of Medicine, Division of General Internal Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ ( J.L.C.); the Division of Transfusion Medicine, Department of Pathology, University of Pittsburgh, Pittsburgh (D.J.T.); and the Department of Pathology, Division of Transfusion Medicine, Johns Hopkins University School of Medicine, Baltimore (P.M.N.)
| |
Collapse
|
22
|
Cappellino LA, Kratje RB, Etcheverrigaray M, Prieto CC. Strategy for erythroid differentiation in ex vivo cultures: Lentiviral genetic modification of human hematopoietic stem cells with erythropoietin gene. J Biosci Bioeng 2017; 124:591-598. [PMID: 28688754 DOI: 10.1016/j.jbiosc.2017.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/02/2017] [Accepted: 06/15/2017] [Indexed: 01/04/2023]
Abstract
If cultured in appropriate conditions, such as supplementing culture media with costly cytokines and growth factors, hematopoietic stem/progenitor cells (HSPCs) from different origins have shown to be an adequate source of erythroid cells. This requirement turns erythroid cells production into a complicated process to be scaled-up for future applications. The aim of our work was to genetically modify HSPCs with human erythropoietin (hEPO) sequence by lentiviral transgenesis in order for cells to secrete the hormone into the culture medium. Initially, we evaluated erythroid differentiation in colony forming units (CFU) assays and further analyzed cell expansion and erythroid differentiation throughout time in suspension cultures by flow cytometry and May-Grünwald-Giemsa staining. Additionally, we studied hEPO production and its isoforms profile. The different assessment approaches demonstrated erythroid differentiation, which was attributed to the hEPO secreted by the HSPCs. Our data demonstrate that it is possible to develop culture systems in which recombinant HSPCs are self-suppliers of hEPO. This feature makes our strategy attractive to be applied in biotechnological production processes of erythroid cells that are currently under development.
Collapse
Affiliation(s)
- Luisina A Cappellino
- UNL, CONICET, Cell Culture Laboratory, FBCB, Edificio FBCB-Ciudad Universitaria UNL, C.C. 242. (S3000ZAA), Santa Fe, Argentina
| | - Ricardo B Kratje
- UNL, CONICET, Cell Culture Laboratory, FBCB, Edificio FBCB-Ciudad Universitaria UNL, C.C. 242. (S3000ZAA), Santa Fe, Argentina
| | - Marina Etcheverrigaray
- UNL, CONICET, Cell Culture Laboratory, FBCB, Edificio FBCB-Ciudad Universitaria UNL, C.C. 242. (S3000ZAA), Santa Fe, Argentina
| | - Claudio C Prieto
- UNL, Cell Culture Laboratory, FBCB, Edificio FBCB-Ciudad Universitaria UNL, C.C. 242. (S3000ZAA), Santa Fe, Argentina.
| |
Collapse
|
23
|
Zhang Y, Wang C, Wang L, Shen B, Guan X, Tian J, Ren Z, Ding X, Ma Y, Dai W, Jiang Y. Large-Scale Ex Vivo Generation of Human Red Blood Cells from Cord Blood CD34 + Cells. Stem Cells Transl Med 2017; 6:1698-1709. [PMID: 28618139 PMCID: PMC5689780 DOI: 10.1002/sctm.17-0057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022] Open
Abstract
The ex vivo generation of human red blood cells on a large scale from hematopoietic stem and progenitor cells has been considered as a potential method to overcome blood supply shortages. Here, we report that functional human erythrocytes can be efficiently produced from cord blood (CB) CD34+ cells using a bottle turning device culture system. Safety and efficiency studies were performed in murine and nonhuman primate (NHP) models. With the selected optimized culture conditions, one human CB CD34+ cell could be induced ex vivo to produce up to 200 million erythrocytes with a purity of 90.1% ± 6.2% and 50% ± 5.7% (mean ± SD) for CD235a+ cells and enucleated cells, respectively. The yield of erythrocytes from one CB unit (5 million CD34+ cells) could be, in theory, equivalent to 500 blood transfusion units in clinical application. Moreover, induced human erythrocytes had normal hemoglobin content and could continue to undergo terminal maturation in the murine xenotransplantation model. In NHP model, xenotransplantation of induced human erythrocytes enhanced hematological recovery and ameliorated the hypoxia situation in the primates with hemorrhagic anemia. These findings suggested that the ex vivo-generated erythrocytes could be an alternative blood source for traditional transfusion products in the clinic. Stem Cells Translational Medicine 2017;6:1698-1709.
Collapse
Affiliation(s)
- Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Chen Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp, Suzhou, China
| | - Lan Wang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Bin Shen
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Xin Guan
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Jing Tian
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhihua Ren
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp, Suzhou, China
| | - Xinxin Ding
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York, USA
| | - Yupo Ma
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Department of Pathology, School of Medicine, The State University of New York at Stony Brook, Stony Brook, New York, USA
| | - Wei Dai
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Department of Environment Medicine, New York University Langone Medical center, Tuxedo, New York, USA
| | - Yongping Jiang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.,Biopharmagen Corp, Suzhou, China
| |
Collapse
|
24
|
Noulin F. Malaria modeling: In vitro stem cells vs in vivo models. World J Stem Cells 2016; 8:88-100. [PMID: 27022439 PMCID: PMC4807312 DOI: 10.4252/wjsc.v8.i3.88] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/07/2015] [Accepted: 01/29/2016] [Indexed: 02/06/2023] Open
Abstract
The recent development of stem cell research and the possibility of generating cells that can be stably and permanently modified in their genome open a broad horizon in the world of in vitro modeling. The malaria field is gaining new opportunities from this important breakthrough and novel tools were adapted and opened new frontiers for malaria research. In addition to the new in vitro systems, in recent years there were also significant advances in the development of new animal models that allows studying the entire cell cycle of human malaria. In this paper, we review the different protocols available to study human Plasmodium species either by using stem cell or alternative animal models.
Collapse
|
25
|
Nelson MR, Roy K. Bone-marrow mimicking biomaterial niches for studying hematopoietic stem and progenitor cells. J Mater Chem B 2016; 4:3490-3503. [DOI: 10.1039/c5tb02644j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review discusses the considerations and approaches that have been employed for designing biomaterial based cultures for replicating the hematopoietic stem and progenitor cell niche.
Collapse
Affiliation(s)
- Michael R. Nelson
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Tech and Emory University
- The Parker H. Petit Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
- USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering at the Georgia Tech and Emory University
- The Parker H. Petit Institute for Bioengineering and Biosciences
- Georgia Institute of Technology
- Atlanta
- USA
| |
Collapse
|
26
|
Caminal M, Labrozzi JP, Oliver-Vila I, Alzaga-Gragera M, Marín-Gallén S, Pla A, García J, Vives J. Ex vivo production of red blood cells from human cord blood. BMC Proc 2015. [PMCID: PMC4685347 DOI: 10.1186/1753-6561-9-s9-p67] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
27
|
Phylogenetic and Ontogenetic View of Erythroblastic Islands. BIOMED RESEARCH INTERNATIONAL 2015; 2015:873628. [PMID: 26557707 PMCID: PMC4628717 DOI: 10.1155/2015/873628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/08/2015] [Indexed: 12/27/2022]
Abstract
Erythroblastic islands are a hallmark of mammalian erythropoiesis consisting of a central macrophage surrounded by and interacting closely with the maturing erythroblasts. The macrophages are thought to serve many functions such as supporting erythroblast proliferation, supplying iron for hemoglobin, promoting enucleation, and clearing the nuclear debris; moreover, inhibition of erythroblastic island formation is often detrimental to erythropoiesis. There is still much not understood about the role that macrophages and microenvironment play in erythropoiesis and insights may be gleaned from a comparative analysis with erythropoietic niches in nonmammalian vertebrates which, unlike mammals, have erythrocytes that retain their nucleus. The phylogenetic development of erythroblastic islands in mammals in which the erythrocytes are anucleate underlines the importance of the macrophage in erythroblast enucleation.
Collapse
|
28
|
Toda S, Nishi C, Yanagihashi Y, Segawa K, Nagata S. Clearance of Apoptotic Cells and Pyrenocytes. Curr Top Dev Biol 2015; 114:267-95. [PMID: 26431571 DOI: 10.1016/bs.ctdb.2015.07.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Apoptotic cells are engulfed and digested by macrophages to maintain homeostasis in animals. If dead cells are not engulfed swiftly, they undergo secondary necrosis and release intracellular components that activate the immune system. Apoptotic cells are efficiently cleared due to phosphatidylserine (PtdSer) exposed on the cell surface that acts as an "eat me" signal. PtdSer is exposed through the activation of phospholipid scramblase and the inactivation of phospholipid flippase, which are both caspase-mediated events. Macrophages express a variety of molecules to recognize PtdSer, and use a sophisticated mechanism to engulf apoptotic cells. In red blood cells, the nucleus is lost when it is extruded as a pyrenocyte during definitive erythropoiesis. These pyrenocytes (nuclei surrounded by plasma membrane) also expose PtdSer on their surface and are efficiently engulfed by macrophages in a PtdSer-dependent manner. Macrophages transfer the engulfed apoptotic cell or pyrenocyte into lysosomes, where the components of the dead cell or pyrenocyte are degraded. If lysosomes cannot digest the DNA from apoptotic cells or pyrenocytes, the undigested DNA accumulates in the lysosome and activates macrophages to produce type I interferon (IFN) via a STING-dependent pathway; in embryos, this causes severe anemia. Here, we discuss how macrophages clear apoptotic cells and pyrenocytes.
Collapse
Affiliation(s)
- Satoshi Toda
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chihiro Nishi
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuichi Yanagihashi
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Katsumori Segawa
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan.
| |
Collapse
|
29
|
MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 2014; 123:3963-71. [DOI: 10.1182/blood-2014-01-547976] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Key Points
An in vitro system for the engulfment of pyrenocytes was established using erythroblastic islands. MerTK, a receptor kinase, was essential for the engulfment of pyrenocytes by the central macrophages at erythroblastic islands.
Collapse
|
30
|
Singh VK, Saini A, Tsuji K, Sharma PB, Chandra R. Manufacturing blood ex vivo: a futuristic approach to deal with the supply and safety concerns. Front Cell Dev Biol 2014; 2:26. [PMID: 25364733 PMCID: PMC4206981 DOI: 10.3389/fcell.2014.00026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 05/26/2014] [Indexed: 12/13/2022] Open
Abstract
Blood transfusions are routinely done in every medical regimen and a worldwide established collection, processing/storage centers provide their services for the same. There have been extreme global demands for both raising the current collections and supply of safe/adequate blood due to increasingly demanding population. With, various risks remain associated with the donor derived blood, and a number of post collection blood screening and processing methods put extreme constraints on supply system especially in the underdeveloped countries. A logistic approach to manufacture erythrocytes ex-vivo by using modern tissue culture techniques have surfaced in the past few years. There are several reports showing the possibilities of RBCs (and even platelets/neutrophils) expansion under tightly regulated conditions. In fact, ex vivo synthesis of the few units of clinical grade RBCs from a single dose of starting material such as umbilical cord blood (CB) has been well established. Similarly, many different sources are also being explored for the same purpose, such as embryonic stem cells, induced pluripotent stem cells. However, the major concerns remain elusive before the manufacture and clinical use of different blood components may be used to successfully replace the present system of donor derived blood transfusion. The most important factor shall include the large scale of RBCs production from each donated unit within a limited time period and cost of their production, both of these issues need to be handled carefully since many of the recipients among developing countries are unable to pay even for the freely available donor derived blood. Anyways, keeping these issues in mind, present article shall be focused on the possibilities of blood production and their use in the near future.
Collapse
Affiliation(s)
- Vimal K Singh
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Abhishek Saini
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Kohichiro Tsuji
- Departments of Pediatric Hematology/Oncology, Research Hospital, The Institute of Medical Science, The University of Tokyo Hospital Tokyo, Japan
| | - P B Sharma
- Stem Cell Research Laboratory, Department of Biotechnology, Delhi Technological University Delhi, India
| | - Ramesh Chandra
- Dr B. R. Ambedkar Center for Biomedical Research, University of Delhi Delhi, India
| |
Collapse
|
31
|
van Veen T, Hunt JA. Tissue engineering red blood cells: a therapeutic. J Tissue Eng Regen Med 2014; 9:760-70. [DOI: 10.1002/term.1885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/14/2014] [Accepted: 02/18/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Theun van Veen
- Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| | - John A. Hunt
- Clinical Engineering, Institute of Ageing and Chronic Disease; University of Liverpool; UK
| |
Collapse
|
32
|
Rousseau GF, Giarratana MC, Douay L. Large-scale production of red blood cells from stem cells: what are the technical challenges ahead? Biotechnol J 2013; 9:28-38. [PMID: 24408610 DOI: 10.1002/biot.201200368] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/05/2013] [Accepted: 09/12/2013] [Indexed: 12/11/2022]
Abstract
Blood-transfusion centers regularly face the challenge of donor blood shortages, especially for rare blood groups. The possibility of producing universal red blood cells from stem cells industrially has become a possible alternative since the successful injection of blood generated in vitro into a human being in 2011. Although there remains many biological and regulatory issues concerning the efficacy and safety of this new product, the major challenge today for future clinical applications is switching from the current limited 2-dimensional production techniques to large-scale 3-dimensional bioreactors. In addition to requiring technological breakthroughs, the whole process also has to become at least five-fold more cost-efficient to match the current prices of high-quality blood products. The current review sums up the main biological advances of the past decade, outlines the key biotechnological challenges for the large-scale cost-effective production of red blood cells, proposes solutions based on strategies used in the bioindustry and presents the state-of-the-art of large-scale blood production.
Collapse
Affiliation(s)
- Guillaume F Rousseau
- UPMC University Paris 6, UMR_S938, Proliferation and Differentiation of Stem Cells, Paris, France; INSERM, UMR_S938, Proliferation and Differentiation of Stem Cells, Paris, France; Université Paris Diderot, Paris, France
| | | | | |
Collapse
|
33
|
Li X, Wu Z, Fu X, Han W. How Far Are Stem-Cell-Derived Erythrocytes from the Clinical Arena? Bioscience 2013. [DOI: 10.1525/bio.2013.63.8.6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
34
|
Betin VM, Singleton BK, Parsons SF, Anstee DJ, Lane JD. Autophagy facilitates organelle clearance during differentiation of human erythroblasts: evidence for a role for ATG4 paralogs during autophagosome maturation. Autophagy 2013; 9:881-93. [PMID: 23508006 PMCID: PMC3672297 DOI: 10.4161/auto.24172] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/19/2022] Open
Abstract
Wholesale depletion of membrane organelles and extrusion of the nucleus are hallmarks of mammalian erythropoiesis. Using quantitative EM and fluorescence imaging we have investigated how autophagy contributes to organelle removal in an ex vivo model of human erythroid differentiation. We found that autophagy is induced at the polychromatic erythroid stage, and that autophagosomes remain abundant until enucleation. This stimulation of autophagy was concomitant with the transcriptional upregulation of many autophagy genes: of note, expression of all ATG8 mammalian paralog family members was stimulated, and increased expression of a subset of ATG4 family members (ATG4A and ATG4D) was also observed. Stable expression of dominant-negative ATG4 cysteine mutants (ATG4B (C74A) ; ATG4D (C144A) ) did not markedly delay or accelerate differentiation of human erythroid cells; however, quantitative EM demonstrated that autophagosomes are assembled less efficiently in ATG4B (C74A) -expressing progenitor cells, and that cells expressing either mutant accumulate enlarged amphisomes that cannot be degraded. The appearance of these hybrid autophagosome/endosome structures correlated with the contraction of the lysosomal compartment, suggesting that the actions of ATG4 family members (particularly ATG4B) are required for the control of autophagosome fusion with late, degradative compartments in differentiating human erythroblasts.
Collapse
Affiliation(s)
- Virginie M.S. Betin
- Cell Biology Laboratories; School of Biochemistry; University of Bristol; Bristol, UK
| | - Belinda K. Singleton
- Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; Filton, Bristol UK
| | - Stephen F. Parsons
- Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; Filton, Bristol UK
| | - David J. Anstee
- Bristol Institute for Transfusion Sciences; National Health Service Blood and Transplant; Filton, Bristol UK
| | - Jon D. Lane
- Cell Biology Laboratories; School of Biochemistry; University of Bristol; Bristol, UK
| |
Collapse
|
35
|
Khodabux CM, van Hensbergen Y, Slot MC, Bakker-Verweij M, Giordano PC, Brand A. Exploring the use of expanded erythroid cells for autologous transfusion for anemia of prematurity. Transfusion 2013; 53:3230-9. [PMID: 23521158 DOI: 10.1111/trf.12169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 01/13/2013] [Accepted: 01/22/2013] [Indexed: 12/01/2022]
Abstract
BACKGROUND Autologous cord blood (CB) red blood cells (RBCs) can partly substitute transfusion needs in premature infants suffering from anemia. To explore whether expanded CB cells could provide additional autologous cells suitable for transfusion, we set up a simple one-step protocol to expand premature CB cells. STUDY DESIGN AND METHODS CB buffy coat cells and isolated CD34-positive (CD34(pos) ) cells from premature and full-term CB and adult blood were tested with several combinations of growth factors while omitting xenogeneic proteins from the culture medium. Cell differentiation was analyzed serially during 21 days using flow cytometry, progenitor assays, and high-performance liquid chromatography. RESULTS Expanded CB buffy coat cells resulted in a threefold higher number of erythroblasts than the isolated CD34(pos) cells. However, the RBCs contaminating the buffy coat remained present during the culture with uncertain quality. Premature and full-term CB CD34(pos) cells had similar fold expansion capacity and erythroid differentiation. With the use of interleukin-3, stem cell factor, and erythropoietin, the fold increases of all CD34(pos) cell sources were similar: CB 3942 ± 1554, adult peripheral mobilized blood 4702 ± 1826, and bone marrow (BM) 4143 ± 1908. The proportion of CD235a expression indicating erythroblast presence on Day 21 was slightly higher in the adult CD34(pos) cell sources: peripheral blood stem cells (96.7 ± 0.8%) and BM (98.9 ± 0.5%) compared to CB (87.7 ± 2.7%; p = 0.002). We were not able to induce further erythroid maturation in vitro. CONCLUSION This explorative study showed that fairly pure autologous erythroid-expanded cell populations could be obtained by a simple culture method, which should be optimized. Future challenges comprise obtaining ex vivo enucleation of RBCs with the use of a minimal manipulating approach, which can add up to autologous RBCs derived from CB in the treatment of anemia of prematurity.
Collapse
Affiliation(s)
- Chantal M Khodabux
- Department of Research, Sanquin Blood Bank, Leiden; Department of Immuno-Hematology and Blood Transfusion, Leiden University Medical Center, Leiden, The, Netherlands; Department of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The, Netherlands
| | | | | | | | | | | |
Collapse
|
36
|
The potential role of cell penetrating peptides in the intracellular delivery of proteins for therapy of erythroid related disorders. Pharmaceuticals (Basel) 2013; 6:32-53. [PMID: 24275786 PMCID: PMC3816679 DOI: 10.3390/ph6010032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/20/2012] [Accepted: 12/27/2012] [Indexed: 01/08/2023] Open
Abstract
The erythroid related disorders (ERDs) represent a large group of hematological diseases, which in most cases are attributed either to the deficiency or malfunction of biosynthetic enzymes or oxygen transport proteins. Current treatments for these disorders include histo-compatible erythrocyte transfusions or allogeneic hematopoietic stem cell (HSC) transplantation. Gene therapy delivered via suitable viral vectors or genetically modified HSCs have been under way. Protein Transduction Domain (PTD) technology has allowed the production and intracellular delivery of recombinant therapeutic proteins, bearing Cell Penetrating Peptides (CPPs), into a variety of mammalian cells. Remarkable progress in the field of protein transduction leads to the development of novel protein therapeutics (CPP-mediated PTs) for the treatment of monogenetic and/or metabolic disorders. The “concept” developed in this paper is the intracellular protein delivery made possible via the PTD technology as a novel therapeutic intervention for treatment of ERDs. This can be achieved via four stages including: (i) the production of genetically engineered human CPP-mediated PT of interest, since the corresponding native protein either is missing or is mutated in the erythroid progenitor cell (ErPCs) or mature erythrocytes of patients; (ii) isolation of target cells from the peripheral blood of the selected patients; (iii) ex vivo transduction of cells with the CPP-mediated PT of interest; and (iv) re-administration of the successfully transduced cells back into the same patients.
Collapse
|
37
|
Varricchio L, Tirelli V, Masselli E, Ghinassi B, Saha N, Besmer P, Migliaccio AR. The expression of the glucocorticoid receptor in human erythroblasts is uniquely regulated by KIT ligand: implications for stress erythropoiesis. Stem Cells Dev 2012; 21:2852-65. [PMID: 22533504 PMCID: PMC3623384 DOI: 10.1089/scd.2011.0676] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 04/25/2012] [Indexed: 12/20/2022] Open
Abstract
Studies in mice indicated that activation of the erythroid stress pathway requires the presence of both soluble KIT ligand (KITL) and the glucocorticoid receptor (GR). To clarify the relative role of KITL and GR in stress erythropoiesis in humans, the biological activities of soluble full length- (fl-, 26-190 aa), carboxy-terminus truncated (tr-, 26-162 aa) human (hKITL) and murine (mKITL) KITL in cultures of cord blood (CB) mononuclear cells (MNCs) and CD34(pos) cells that mimic either steady state (growth factors alone) or stress (growth factors plus dexamethasone [DXM]) erythropoeisis were investigated. In steady state cultures, the KITLs investigated were equally potent in sustaining growth of hematopoietic colonies and expansion of megakaryocytes (MK) and erythroid precursors (EBs). By contrast, under stress erythropoiesis conditions, fl-hKITL generated greater numbers of EBs (fold increase [FI]=140) than tr-hKITL or mKITL (FI=20-40). Flow cytometric analyses indicated that only EBs generated with fl-hKITL remained immature (>70% CD36(pos)/CD235a(neg/low)), and therefore capable to proliferate, until day 8-12 in response to DXM. Signaling studies indicated that all KITLs investigated induced EBs to phosphorylate signal transducer and activator of transcription 5 (STAT5) but that extracellular-signaling-regulated-kinases (ERK) activation was observed mainly in the presence of fl-hKITL. EBs exposed to fl-hKITL also expressed higher levels of GRα than those exposed to mKITL (and tr-hKITL) which were reduced upon exposure to the ERK inhibitor U0126. These data reveal a unique requirement for fl-hKITL in the upregulation of GRα and optimal EB expansion in cultures that mimic stress erythropoiesis.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Valentina Tirelli
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| | - Elena Masselli
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Barbara Ghinassi
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
| | - Nayanendu Saha
- Structural Biology and Developmental Biology Program, Sloan Kettering Institute, New York, New York
| | - Peter Besmer
- Structural Biology and Developmental Biology Program, Sloan Kettering Institute, New York, New York
| | - Anna Rita Migliaccio
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York
- Hematology/Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| |
Collapse
|