1
|
Abstract
Depending on the strain, influenza A virus causes animal, zoonotic, pandemic, or seasonal influenza with varying degrees of severity. Two surface glycoprotein spikes, hemagglutinin (HA) and neuraminidase (NA), are the most important influenza A virus antigens. NA plays an important role in the propagation of influenza virus by removing terminal sialic acid from sialyl decoy receptors and thereby facilitating the release of viruses from traps such as in mucus and on infected cells. Some NA inhibitors have become widely used drugs for treatment of influenza. However, attempts to develop effective and safe NA inhibitors that can be used for treatment of anti-NA drugs-resistant influenza viruses have continued. In this chapter, we describe the following updates on influenza A NA inhibitor development: (i) N-acetylneuraminic acid (Neu5Ac)-based derivatives, (ii) covalent NA inhibitors, (iii) sulfo-sialic acid analogs, (iv) N-acetyl-6-sulfo-β-D-glucosaminide-based inhibitors, (v) inhibitors targeting the 150-loop of group 1 NAs, (vi) conjugation inhibitors, (vii) acylhydrazone derivatives, (viii) monoclonal antibodies, (ix) PVP-I, and (x) natural products. Finally, we provide future perspectives on the next-generation anti-NA drugs.
Collapse
Affiliation(s)
- Nongluk Sriwilaijaroen
- Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, Thailand
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | - Hiromasa Kiyota
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yasuo Suzuki
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.
| |
Collapse
|
2
|
Hadházi Á, Pascolutti M, Bailly B, Dyason JC, Borbás A, Thomson RJ, von Itzstein M. A sialosyl sulfonate as a potent inhibitor of influenza virus replication. Org Biomol Chem 2018; 15:5249-5253. [PMID: 28540971 DOI: 10.1039/c7ob00947j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new direction for influenza virus sialidase inhibitor development was identified using a sulfonate congener of 2-deoxy-2-β-H N-acetylneuraminic acid. Sialosyl sulfonates can be synthesised efficiently in four steps from N-acetylneuraminic acid via a microwave assisted decarboxylation. The presence of the sulfonate group significantly increases inhibition of influenza virus sialidase and viral infection when compared to the carboxylate congener, and also to the benchmark sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid, Neu5Ac2en.
Collapse
Affiliation(s)
- Ádám Hadházi
- Institute for Glycomics, Griffith University - Gold Coast Campus, Queensland 4222, Australia.
| | | | | | | | | | | | | |
Collapse
|
3
|
An acceptor analogue of β-1,4-galactosyltransferase: Substrate, inhibitor, or both? Carbohydr Res 2017; 450:54-59. [PMID: 28910600 PMCID: PMC5636615 DOI: 10.1016/j.carres.2017.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 11/30/2022]
Abstract
Many glycosyltransferase inhibitors in the literature are structurally derived from the donor or acceptor substrate of the respective enzyme. A representative example is 2-naphthyl β-d-GlcNAc, a synthetic GlcNAc glycoside that has been reported as a galactosyltransferase inhibitor. This GlcNAc derivative is attractive as a chemical tool compound for biological and biochemical studies because of its reported potency as an inhibitor, and its short and straightforward synthesis from readily available starting materials. We report that in our hands, 2-naphthyl β-d-GlcNAc behaved, unexpectedly, as an acceptor substrate of the inverting β-1,4-galactosyltransferase (β-1,4-GalT) from bovine milk. This substrate activity has not previously been described. We found that 2-naphthyl β-d-GlcNAc can be an acceptor substrate both for recombinantly expressed β-1,4-GalT, and for a commercial batch of the same enzyme, and both in the presence and absence of bovine serum albumin (BSA). As expected for a full acceptor substrate, this substrate activity was time- and concentration-dependent. Additional experiments show that the observed inhibitor/substrate switch is facilitated by a phosphatase that is an essential component of our enzyme-coupled glycosyltransferase assay. These findings suggest that the behaviour of 2-naphthyl β-d-GlcNAc and related acceptor-based glycosyltransferase inhibitors is strongly dependent on the individual assay conditions. Our results therefore have important implications for the use of 2-naphthyl β-d-GlcNAc and related glycosides as tool compounds in glycobiology and glycobiochemistry. The known β-1,4-galactosyltransferase inhibitor GlcNAc β1-(2-naphthyl) can also behave as an acceptor substrate. This acceptor substrate activity is promoted by the presence of a phosphatase in the assay mixture. A kinetic model is proposed that reconciles the substrate and inhibitory activity of GlcNAc β1-(2-naphthyl).
Collapse
|
4
|
Liu C, Dunaway-Mariano D, Mariano PS. Rational design of reversible inhibitors for trehalose 6-phosphate phosphatases. Eur J Med Chem 2017; 128:274-286. [PMID: 28192710 DOI: 10.1016/j.ejmech.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/19/2022]
Abstract
In some organisms, environmental stress triggers trehalose biosynthesis that is catalyzed collectively by trehalose 6-phosphate synthase, and trehalose 6-phosphate phosphatase (T6PP). T6PP catalyzes the hydrolysis of trehalose 6-phosphate (T6P) to trehalose and inorganic phosphate and is a promising target for the development of antibacterial, antifungal and antihelminthic therapeutics. Herein, we report the design, synthesis and evaluation of a library of aryl d-glucopyranoside 6-sulfates to serve as prototypes for small molecule T6PP inhibitors. Steady-state kinetic techniques were used to measure inhibition constants (Ki) of a panel of structurally diverse T6PP orthologs derived from the pathogens Brugia malayi, Ascaris suum, Mycobacterium tuberculosis, Shigella boydii and Salmonella typhimurium. The binding affinities of the most active inhibitor of these T6PP orthologs, 4-n-octylphenyl α-d-glucopyranoside 6-sulfate (9a), were found to be in the low micromolar range. The Ki of 9a with the B. malayi T6PP ortholog is 5.3 ± 0.6 μM, 70-fold smaller than the substrate Michaelis constant. The binding specificity of 9a was demonstrated using several representative sugar phosphate phosphatases from the HAD enzyme superfamily, the T6PP protein fold family of origin. Lastly, correlations drawn between T6PP active site structure, inhibitor structure and inhibitor binding affinity suggest that the aryl d-glucopyranoside 6-sulfate prototypes will find future applications as a platform for development of tailored second-generation T6PP inhibitors.
Collapse
Affiliation(s)
- Chunliang Liu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Debra Dunaway-Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Patrick S Mariano
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
5
|
Marqvorsen MHS, Pedersen MJ, Rasmussen MR, Kristensen SK, Dahl-Lassen R, Jensen HH. Why Is Direct Glycosylation with N-Acetylglucosamine Donors Such a Poor Reaction and What Can Be Done about It? J Org Chem 2016; 82:143-156. [PMID: 28001415 DOI: 10.1021/acs.joc.6b02305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The monosaccharide N-acetyl-d-glucosamine (GlcNAc) is an abundant building block in naturally occurring oligosaccharides, but its incorporation by chemical glycosylation is challenging since direct reactions are low yielding. This issue, generally agreed upon to be caused by an intermediate 1,2-oxazoline, is often bypassed by introducing extra synthetic steps to avoid the presence of the NHAc functional group during glycosylation. The present paper describes new fundamental mechanistic insights into the inherent challenges of performing direct glycosylation with GlcNAc. These results show that controlling the balance of oxazoline formation and glycosylation is key to achieving acceptable chemical yields. By applying this line of reasoning to direct glycosylation with a traditional thioglycoside donor of GlcNAc, which otherwise affords poor glycosylation yields, one may obtain useful glycosylation results.
Collapse
Affiliation(s)
- Mikkel H S Marqvorsen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Martin J Pedersen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Michelle R Rasmussen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Steffan K Kristensen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Rasmus Dahl-Lassen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik H Jensen
- Department of Chemistry, Aarhus University , Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
6
|
Affiliation(s)
- Yoshiko Miura
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hirokazu Seto
- Department of Chemical Engineering, Graduate
School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
7
|
Additive-controlled stereoselective glycosylations of 2,3-oxazolidinone protected glucosamine or galactosamine thioglycoside donors with phenols based on preactivation protocol. Carbohydr Res 2015; 403:104-14. [DOI: 10.1016/j.carres.2014.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/05/2014] [Accepted: 07/07/2014] [Indexed: 11/18/2022]
|
8
|
Despras G, Alix A, Urban D, Vauzeilles B, Beau JM. From chitin to bioactive chitooligosaccharides and conjugates: access to lipochitooligosaccharides and the TMG-chitotriomycin. Angew Chem Int Ed Engl 2014; 53:11912-6. [PMID: 25212734 DOI: 10.1002/anie.201406802] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Indexed: 01/28/2023]
Abstract
The direct and chemoselective N-transacylation of peracetylated chitooligosaccharides (COSs), readily obtained from chitin, to give per-N-trifluoroacetyl derivatives offers an attractive route to size-defined COSs and derived glycoconjugates. It involves the use of various acceptor building blocks and trifluoromethyl oxazoline dimer donors prepared with efficiency and highly reactive in 1,2-trans glycosylation reactions. This method was applied to the preparation of the important symbiotic glycolipids which are highly active on plants and to the TMG-chitotriomycin, a potent and specific inhibitor of insect, fungal, and bacterial N-acetylglucosaminidases.
Collapse
Affiliation(s)
- Guillaume Despras
- Université Paris-Sud and CNRS, Laboratoire de Synthèse de Biomolécules, Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182, 91405 Orsay (France)
| | | | | | | | | |
Collapse
|
9
|
Despras G, Alix A, Urban D, Vauzeilles B, Beau JM. From Chitin to Bioactive Chitooligosaccharides and Conjugates: Access to Lipochitooligosaccharides and the TMG-chitotriomycin. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
10
|
MIURA Y, SAKAMOTO S, FUKUDA T, YUI N. Inhibition of Amyloid Aggregation by Polymers Containing Glycosaminoglycan Sulfonate Side Groups. KOBUNSHI RONBUNSHU 2012. [DOI: 10.1295/koron.69.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Miura Y, Mizuno H. Interaction Analyses of Amyloid β Peptide (1–40) with Glycosaminoglycan Model Polymers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20100094] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Fukuda T, Matsumoto E, Onogi S, Miura Y. Aggregation of Alzheimer Amyloid β Peptide (1−42) on the Multivalent Sulfonated Sugar Interface. Bioconjug Chem 2010; 21:1079-86. [DOI: 10.1021/bc100053x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Tomohiro Fukuda
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Erino Matsumoto
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Shunsuke Onogi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yoshiko Miura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
13
|
Miura Y, Yasuda K, Yamamoto K, Koike M, Nishida Y, Kobayashi K. Inhibition of Alzheimer Amyloid Aggregation with Sulfated Glycopolymers. Biomacromolecules 2007; 8:2129-34. [PMID: 17585806 DOI: 10.1021/bm0701402] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycopolymers carrying sulfated saccharides with modest sugar contents (11% and 28%) were found to suppress the formation of amyloid fibrils by amyloid beta peptides (Abeta(1-42), Abeta(1-40), and Abeta(25-35)), as evaluated by thioflavin T assays and atomic force microscopy observation. Circular dichroism spectra showed that the conformation of amyloid beta peptides depended on the glycopolymer additives, and that the glycopolymer additives reduced the beta-sheet contents. Neutralization activity was confirmed by in vitro assay with HeLa cells. The sulfate group and the appropriate sugar contents were essential for the inhibitory effect.
Collapse
Affiliation(s)
- Yoshiko Miura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Hasegawa T, Numata M, Okumura S, Kimura T, Sakurai K, Shinkai S. Carbohydrate-appended curdlans as a new family of glycoclusters with binding properties both for a polynucleotide and lectins. Org Biomol Chem 2007; 5:2404-12. [PMID: 17637960 DOI: 10.1039/b703720a] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Beta-1,3-glucans having carbohydrate-appendages (alpha-D-mannoside, N-acetyl-beta-D-glucosaminide and beta-lactoside) at the C6-position of every repeating unit can be readily prepared from curdlan (a linear beta-1,3-glucan) through regioselective bromination/azidation to afford 6-azido-6-deoxycurdlan followed by chemo-selective Cu(i)-catalyzed [3 + 2]-cycloaddition with various carbohydrate modules having a terminal alkyne. The resultant carbohydrate-appended curdlans can interact with polycytosine to form stable macromolecular complexes consistent with two polysaccharide strands and one polycytosine strand. Furthermore, these macromolecular complexes show strong and specific affinity toward carbohydrate-binding proteins (lectins). Therefore, one can utilize these carbohydrate-appended curdlans as a new family of glycoclusters.
Collapse
Affiliation(s)
- Teruaki Hasegawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Brockhausen I, Benn M, Bhat S, Marone S, Riley JG, Montoya-Peleaz P, Vlahakis JZ, Paulsen H, Schutzbach JS, Szarek WA. UDP-Gal: GlcNAc-R beta1,4-galactosyltransferase--a target enzyme for drug design. Acceptor specificity and inhibition of the enzyme. Glycoconj J 2007; 23:525-41. [PMID: 17006644 DOI: 10.1007/s10719-006-7153-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 01/06/2006] [Accepted: 01/12/2006] [Indexed: 01/01/2023]
Abstract
Galactosyltransferases are important enzymes for the extension of the glycan chains of glycoproteins and glycolipids, and play critical roles in cell surface functions and in the immune system. In this work, the acceptor specificity and several inhibitors of bovine beta1,4-Gal-transferase T1 (beta4GalT, EC 2.4.1.90) were studied. Series of analogs of N-acetylglucosamine (GlcNAc) and GlcNAc-carrying glycopeptides were synthesized as acceptor substrates. Modifications were made at the 3-, 4- and 6-positions of the sugar ring of the acceptor, in the nature of the glycosidic linkage, in the aglycone moiety and in the 2-acetamido group. The acceptor specificity studies showed that the 4-hydroxyl group of the sugar ring was essential for beta4GalT activity, but that the 3-hydroxyl could be replaced by an electronegative group. Compounds having the anomeric beta-configuration were more active than those having the alpha-configuration, and O-, S- and C-glycosyl compounds were all active as substrates. The aglycone was a major determinant for the rate of Gal-transfer. Derivatives containing a 2-naphthyl aglycone were inactive as substrates although quinolinyl groups supported activity. Several compounds having a bicyclic structure as the aglycone were found to bind to the enzyme and inhibited the transfer of Gal to control substrates. The best small hydrophobic GlcNAc-analog inhibitor was found to be 1-thio-N-butyrylGlcNbeta-(2-naphthyl) with a K(i) of 0.01 mM. These studies help to delineate beta4GalT-substrate interactions and will aid in the development of biologically applicable inhibitors of the enzyme.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Medicine, Human Mobility Research Centre, Queen's University, Kingston, Ontario, K7L 2V7, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Islam T, von Itzstein M. Anti-Influenza Drug Discovery: Are We Ready for the Next Pandemic? Adv Carbohydr Chem Biochem 2007; 61:293-352. [DOI: 10.1016/s0065-2318(07)61006-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Yamaguchi S, Nishida Y, Sasaki K, Kambara M, Kim CL, Ishiguro N, Nagatsuka T, Uzawa H, Horiuchi M. Inhibition of PrPSc formation by synthetic O-sulfated glycopyranosides and their polymers. Biochem Biophys Res Commun 2006; 349:485-91. [PMID: 16949037 DOI: 10.1016/j.bbrc.2006.08.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
Sulfated glycosaminoglycans (GAGs) and sulfated glycans inhibit formation of the abnormal isoform of prion protein (PrPSc) in prion-infected cells and prolong the incubation time of scrapie-infected animals. Sulfation of GAGs is not tightly regulated and possible sites of sulfation are randomly modified, which complicates elucidation of the fundamental structures of GAGs that mediate the inhibition of PrPSc formation. To address the structure-activity relationship of GAGs in the inhibition of PrPSc formation, we screened the ability of various regioselectively O-sulfated glycopyranosides to inhibit PrPSc formation in prion-infected cells. Among the glycopyranosides and their polymers examined, monomeric 4-sulfo-N-acetyl-glucosamine (4SGN), and two glycopolymers, poly-4SGN and poly-6-sulfo-N-acetyl-glucosamine (poly-6SGN), inhibited PrPSc formation with 50% effective doses below 20 microg/ml, and their inhibitory effect became more evident with consecutive treatments. Structural comparisons suggested that a combination of an N-acetyl group at C-2 and an O-sulfate group at either O-4 or O-6 on glucopyranoside might be involved in the inhibition of PrPSc formation. Furthermore, polymeric but not monomeric 6SGN inhibited PrPSc formation, suggesting the importance of a polyvalent configuration in its effect. These results indicate that the synthetic sulfated glycosides are useful not only for the analysis of structure-activity relationship of GAGs but also for the development of therapeutics for prion diseases.
Collapse
Affiliation(s)
- Satoko Yamaguchi
- Department of Veterinary Public Health, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Suzuki Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 2005; 28:399-408. [PMID: 15744059 DOI: 10.1248/bpb.28.399] [Citation(s) in RCA: 297] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gene pool of influenza A viruses in aquatic birds provides all of the genetic diversity required for human and lower animals. Host range selection of the receptor binding specificity of the influenza virus hemagglutinin occurs during maintenance of the virus in different host cells that express different receptor sialo-sugar chains. In this paper, functional roles of the hemagglutinin and neuraminidase spikes of influenza viruses are described in the relation to 1) host range of influenza viruses, 2) receptor binding specificity of human and other animal influenza viruses, 3) recognition of sialyl sugar chains by Spanish influenza virus hemagglutinin, 4) highly pathogenic and potentially pandemic H5N1, H9N2, and H7N7 avian influenza viruses and molecular mechanism of host range variation of influenza viruses, 5) role of the neuraminidase spike for the host range of influenza viruses, and 6) Development of anti-influenza drugs.
Collapse
Affiliation(s)
- Yasuo Suzuki
- Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka , Japan.
| |
Collapse
|