1
|
Xiong J, Xue EY, Ng DKP. Synthesis, Cellular Uptake, and Photodynamic Activity of Oligogalactosyl Zinc(II) Phthalocyanines. Chempluschem 2023; 88:e202200285. [PMID: 36229229 DOI: 10.1002/cplu.202200285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Indexed: 02/04/2023]
Abstract
A series of di-α-substituted zinc(II) phthalocyanines with different number of galactose moieties, ranging from 1 to 8, namely Pc-galn (n=1, 2, 4, and 8) were designed and synthesized. The synthesis involved the copper-catalyzed azide-alkyne cycloaddition reaction of a mono- or dialkynyl zinc(II) phthalocyanine with an acetyl-protected galactosyl azide or its dendritic derivative with four acetyl-protected galactosyl groups, followed by removal of the acetyl protecting groups via alkaline hydrolysis. In N,N-dimethylformamide, these oligogalactosyl phthalocyanines were non-aggregated as shown by the strong Q-band absorption and fluorescence emission. Owing to the di-α-substitution, they also behaved as efficient singlet oxygen generators upon light irradiation with a singlet oxygen quantum yield of 0.84. The spectroscopic and photophysical properties were not affected by the number of galactosyl units. In contrast, the compounds became significantly aggregated and quenched in phosphate-buffered saline. Their cellular uptake was then studied using a range of cell lines, which generally followed the order Pc-gal1 >Pc-gal2 ≈Pc-gal4 >Pc-gal8 . Interestingly, the di-galactosyl analogue exhibited selective uptake against HeLa human cervical carcinoma cells through an energy-dependent pathway instead of the expected asialoglycoprotein receptor. Upon light irradiation, it could effectively kill the cells with a half-maximal inhibitory concentration of 0.58 μM.
Collapse
Affiliation(s)
- Junlong Xiong
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P. R. China
| | - Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P. R. China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, P. R. China
| |
Collapse
|
2
|
Bahiraei M, Derakhshandeh K, Mahjub R. Hydrophobic ion pairing with cationic derivatives of α-, ß and γ- cyclodextrin as a novel approch for development of a Self Nano-Emulsifying Drug Delivey System (SNEDDS) for oral delivery of Heparin. Drug Dev Ind Pharm 2022; 47:1809-1823. [DOI: 10.1080/03639045.2022.2064485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Masoomeh Bahiraei
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
- Medicinal Plant and Natural Product Research Center, Hamadan, University of Medical Sciences, Hamadan, Iran
| | - Reza Mahjub
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
- Medicinal Plant and Natural Product Research Center, Hamadan, University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Fang G, Tang B. Advanced delivery strategies facilitating oral absorption of heparins. Asian J Pharm Sci 2020; 15:449-460. [PMID: 32952668 PMCID: PMC7486512 DOI: 10.1016/j.ajps.2019.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/23/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Heparins show great anticoagulant effect with few side effects, and are administered by subcutaneous or intravenous route in clinics. To improve patient compliance, oral administration is an alternative route. Nonetheless, oral administration of heparins still faces enormous challenges due to the multiple obstacles. This review briefly analyzes a series of barriers ranging from poorly physicochemical properties of heparins, to harsh biological barriers including gastrointestinal degradation and pre-systemic metabolism. Moreover, several approaches have been developed to overcome these obstacles, such as improving stability of heparins in the gastrointestinal tract, enhancing the intestinal epithelia permeability and facilitating lymphatic delivery of heparins. Overall, this review aims to provide insights concerning advanced delivery strategies facilitating oral absorption of heparins.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Bo Tang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| |
Collapse
|
4
|
Eleraky NE, Swarnakar NK, Mohamed DF, Attia MA, Pauletti GM. Permeation-Enhancing Nanoparticle Formulation to Enable Oral Absorption of Enoxaparin. AAPS PharmSciTech 2020; 21:88. [PMID: 32016650 DOI: 10.1208/s12249-020-1618-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/26/2019] [Indexed: 11/30/2022] Open
Abstract
This study tests the hypothesis that association complexes formed between enoxaparin and cetyltrimethylammonium bromide (CTAB) augment permeation across the gastrointestinal mucosa due to improved encapsulation of this hydrophilic macromolecule within biocompatible poly (lactide-co-glycolide, PLGA RG 503) nanoparticles. When compared with free enoxaparin, association with CTAB increased drug encapsulation efficiency within PLGA nanoparticles from 40.3 ± 3.4 to 99.1 ± 1.0%. Drug release from enoxaparin/CTAB PLGA nanoparticles was assessed in HBSS, pH 7.4 and FASSIFV2, pH 6.5, suggesting effective protection of PLGA-encapsulated enoxaparin from unfavorable intestinal conditions. The stability of the enoxaparin/CTAB ion pair complex was pH-dependent, resulting in more rapid dissociation under simulated plasma conditions (i.e., pH 7.4) than in the presence of a mild acidic gastrointestinal environment (i.e., pH 6.5). The intestinal flux of enoxaparin complexes across in vitro Caco-2 cell monolayers was greater when encapsulated within PLGA nanoparticles. Limited changes in transepithelial transport of PLGA-encapsulated enoxaparin complexes in the presence of increasing CTAB concentrations suggest a significant contribution of size-dependent passive diffusion as the predominant transport mechanism facilitating intestinal absorption. Graphical abstract.
Collapse
|
5
|
Chitosan based polymer-lipid hybrid nanoparticles for oral delivery of enoxaparin. Int J Pharm 2018; 547:499-505. [DOI: 10.1016/j.ijpharm.2018.05.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/03/2018] [Accepted: 05/31/2018] [Indexed: 11/24/2022]
|
6
|
Park JW, Jeon OC, Kim SK, Al-Hilal T, Lim KM, Moon HT, Kim CY, Byun Y. Pharmacokinetic evaluation of an oral tablet form of low-molecular-weight heparin and deoxycholic acid conjugate as a novel oral anticoagulant. Thromb Haemost 2017; 105:1060-71. [DOI: 10.1160/th10-07-0484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 02/10/2011] [Indexed: 11/05/2022]
Abstract
SummaryThis study was designed to develop a solid oral dosage form of deoxycholic acid (DOCA)-conjugated low-molecular-weight heparin (LMWH) and to evaluate its oral absorption, distribution, and metabolic stability for the prospect of providing an orally bioavailable LMWH. The LMWH derivative (LHD) was synthesised and then formulated with solubilisers and other pharmaceutical excipients to form a solid tablet. Its absorption and distribution after oral administration were evaluated in mice, rats, and monkeys. The in vitro metabolic stability of LHD was examined by liver microsome assays. More than 80% of LHD was released from the tablet within 60 minutes, guaranteeing rapid tablet disintegration after oral administration. Oral bioavailability of LHD in mice, rats and monkeys were 16.1 ± 3.0, 15.6 ± 6.1, and 15.8 ± 2.5%, respectively. After the oral administration of 131I-tyramine-LHD, most of the absorbed drug remained in the blood circulation and was eliminated mainly through the kidneys. LHD was hardly metabolised by the liver microsomes and showed a stable metabolic pattern similar to that of LMWH. In a rat thrombosis model, 10 mg/kg of orally administered LHD reduced thrombus formation by 60.8%, which was comparable to the antithrombotic effect of the subcutaneously injected LMWH (100 IU/ kg). Solid tablets of LHD exhibited high oral absorption and statistically significant therapeutic effects in preventing venous thromboembolism. Accordingly, LHD tablets are expected to satisfy the unmet medical need for an oral heparin-based anticoagulant as an alternative to injectable heparin and oral warfarin.
Collapse
|
7
|
Hallan SS, Kaur V, Jain V, Mishra N. Development and characterization of polymer lipid hybrid nanoparticles for oral delivery of LMWH. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 45:1631-1639. [PMID: 28071140 DOI: 10.1080/21691401.2016.1276920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study aimed to develop an improved oral delivery system for low-molecular-weight heparin (LMWH), novel polymer lipid hybrid nanoparticles were developed. LMWH loaded chitosan polymer lipid hybrid nanoparticles (LMWH-CS-PLNs) were developed using double emulsification and solvent evaporation method. The performance of developed formulations was evaluated by using in vitro and in vivo behavior, such as drug release studies, in vitro permeation study, in vivo venous thrombolytic study, in vitro uptake studies by using intestinal epithelium resembling Caco-2 cell lines. The new CS-PLNs might provide an effective strategy for oral delivery of LMWH with improved encapsulation efficiency as compared to CS-NPs and SA-LNPs.
Collapse
Affiliation(s)
| | - Veerpal Kaur
- a Nanomedicine Research Centre, I.S.F. College of Pharmacy , Moga , India
| | - Vikas Jain
- b Dr. Reddy's Laboratories Limited , Hyderabad , India
| | - Neeraj Mishra
- a Nanomedicine Research Centre, I.S.F. College of Pharmacy , Moga , India
| |
Collapse
|
8
|
Strategies to Overcome Heparins' Low Oral Bioavailability. Pharmaceuticals (Basel) 2016; 9:ph9030037. [PMID: 27367704 PMCID: PMC5039490 DOI: 10.3390/ph9030037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/15/2016] [Accepted: 06/23/2016] [Indexed: 01/10/2023] Open
Abstract
Even after a century, heparin is still the most effective anticoagulant available with few side effects. The poor oral absorption of heparins triggered the search for strategies to achieve oral bioavailability since this route has evident advantages over parenteral administration. Several approaches emerged, such as conjugation of heparins with bile acids and lipids, formulation with penetration enhancers, and encapsulation of heparins in micro and nanoparticles. Some of these strategies appear to have potential as good delivery systems to overcome heparin’s low oral bioavailability. Nevertheless, none have reached the market yet. Overall, this review aims to provide insights regarding the oral bioavailability of heparin.
Collapse
|
9
|
Pérez YA, Urista CM, Martínez JI, Nava MDCD, Rodríguez FAR. Functionalized Polymers for Enhance Oral Bioavailability of Sensitive Molecules. Polymers (Basel) 2016; 8:E214. [PMID: 30979310 PMCID: PMC6432083 DOI: 10.3390/polym8060214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/30/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023] Open
Abstract
Currently, many sensitive molecules have been studied for effective oral administration. These substances are biologically active compounds that mainly suffer early degradation in the gastrointestinal tract (GIT) and physicochemical instability, inactivation and poor solubility and permeability. The sensibility of the biomolecules has limited their oral administration in the body and today is an important research topic to achieve desired effects in medicine field. Under this perspective, various enhancement approaches have been studied as alternatives to increase their oral bioavailability. Some of these strategies include functionalized polymers to provide specific useful benefits as protection to the intestinal tract by preventing its degradation by stomach enzymes, to increase their absorption, permeability, stability, and to make a proper release in the GIT. Due to specific chemical groups, shapes and sizes, morphologies, mechanical properties, and degradation, recent advances in functionalized polymers have opened the door to great possibilities to improve the physicochemical characteristics of these biopharmaceuticals. Today, many biomolecules are found in basic studies, preclinical steps, and others are late stage clinical development. This review summarizes the contribution of functionalized polymers to enhance oral bioavailability of sensitive molecules and their application status in medicine for different diseases. Future trends of these polymers and their possible uses to achieve different formulation goals for oral delivery are also covered in this manuscript.
Collapse
Affiliation(s)
- Yolanda Alvarado Pérez
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - Claudia Muro Urista
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - Javier Illescas Martínez
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - María Del Carmen Díaz Nava
- Departamento de Ingeniería Química e Investigación, Instituto Tecnológico de Toluca, Apartado Postal 890, 52149 Metepec, MEX, Mexico.
| | - Francisco A Riera Rodríguez
- Departamento de Ingeniería Química y Tecnología de Medio Ambiente, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain.
| |
Collapse
|
10
|
Xu H, Ren B, Zhao W, Xin X, Lu Y, Pei Y, Dong H, Pei Z. Regioselective mono and multiple alkylation of diols and polyols catalyzed by organotin and its applications on the synthesis of value-added carbohydrate intermediates. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.04.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
11
|
Abstract
INTRODUCTION Anticoagulants have been prescribed to patients to prevent deep vein thrombosis or pulmonary embolism. However, because of several problems in anticoagulant therapy, much attention has been directed at developing an ideal anticoagulant, and numerous attempts have been made to develop new anticoagulant delivery systems in recent years. AREAS COVERED This review discusses the challenges associated with the recent development of anticoagulants and their delivery systems. Various delivery methods have been developed to improve the use of anticoagulants. Recent advances in anticoagulant delivery and antidote development are also discussed in the context of their current progression states. EXPERT OPINION There have been many different approaches to developing the delivery system of anticoagulants. One approach has been to expand the use of new oral agents and develop their antidotes. Reducing the size of heparins to use smaller heparins for delivery, and developing oral or topical heparins are also some of the approaches used. Various physical formulations or chemical modifications are other ways that have enhanced the therapeutic potential of anticoagulant agents. On the whole, recent advances have contributed to increasing the efficacy and safety of anticoagulant clinically and have benefited the field of anticoagulant delivery.
Collapse
Affiliation(s)
- Jooho Park
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Youngro Byun
- a Research Institute of Pharmaceutical Sciences, College of Pharmacy , Seoul National University , Seoul , Republic of Korea.,b Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy , Seoul National University , Seoul , Republic of Korea
| |
Collapse
|
12
|
Trends in the development of oral anticoagulants. Ther Deliv 2015; 6:685-703. [DOI: 10.4155/tde.15.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Anticoagulation remains the therapy of choice for the prevention and treatment of venous and arterial thromboembolic disorders which can cause major organ damage or death. Heparins represent the antithrombotic drugs of choice in short and medium-term prophylaxis and therapy of thromboembolic diseases. Fondaparinux, a synthetic and structural analog of the antithrombin-binding pentasaccharide domain of heparin, has selective anti-Xa activity and longer half-life. However, anticoagulants are poorly absorbed by oral route because of their high molecular weight, hydrophilicity and negative charges. Long-term anticoagulation therapy is problematic because of side effects and frequent monitoring. Formulation approaches are particularly promising.
Collapse
|
13
|
Kim JY, Jeon OC, Moon HT, Hwang SR, Byun Y. Preclinical safety evaluation of low molecular weight heparin-deoxycholate conjugates as an oral anticoagulant. J Appl Toxicol 2015; 36:76-93. [PMID: 25900269 DOI: 10.1002/jat.3146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 11/06/2022]
Abstract
The preclinical safety of a newly developed oral anticoagulant, the low molecular weight heparin-deoxycholate conjugate (OH09208), was evaluated by a comprehensive evaluating program in compliance with standard guidelines. The single dose oral toxicity study in rats receiving 2000 and 5000 mg kg(-1) of OH09208 did not reveal any mortality, unusual body weight changes or necropsy findings. The results of the 4-week oral toxicity study with a 4-week recovery program in rats receiving OH09208 in doses of 100, 300 and 1000 mg kg(-1) day(-1) did not reveal any mortality, or indicate any unusual clinical signs, or show any toxicokinetic relationships to the administration of OH09208. Although the increase in liver enzymes in one male dog treated with 300 mg kg(-1) day(-1) and one female dog treated with 1000 mg kg(-1) day(-1) could not be excluded from the effect of the test substance, no other toxicologically significant changes were observed in the 4-week oral toxicity study with a 4-week recovery in beagle dogs. Thus, while the no-observed-adverse-effect level value from the 4-week study in both male and female rats was 1000 mg kg(-1) day(-1), those from the 4-week study in male and female beagle dogs were 300 and 1000 mg kg(-1) day(-1), respectively. Furthermore, OH09208 did not induce anaphylactic reactions in guinea pigs, micronucleated bone marrow cells in male ICR mice, chromosomal aberration in Chinese hamster lung cell lines, bacterial reverse mutation, and any abnormalities in hERG current assay, mouse central nervous system and dog cardiovascular studies. Overall, there were no unexpected toxicities in this preclinical study that might have precluded the safe administration of OH09208 to humans.
Collapse
Affiliation(s)
- Ji-young Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ok-Cheol Jeon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyun Tae Moon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, Dong-gu, Gwangju, South Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
14
|
Ralay-Ranaivo B, Desmaële D, Bianchini EP, Lepeltier E, Bourgaux C, Borgel D, Pouget T, Tranchant JF, Couvreur P, Gref R. Novel self assembling nanoparticles for the oral administration of fondaparinux: synthesis, characterization and in vivo evaluation. J Control Release 2014; 194:323-31. [PMID: 25127657 PMCID: PMC4224687 DOI: 10.1016/j.jconrel.2014.07.060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/30/2014] [Accepted: 07/31/2014] [Indexed: 11/09/2022]
Abstract
Fondaparinux (Fpx) is the anticoagulant of choice in the treatment of short- and medium-term thromboembolic disease. To overcome the low oral bioavailability of Fpx, a new nanoparticulate carrier has been developed. The nanoparticles (NPs) contain squalenyl derivatives, known for their excellent oral bioavailability. They spontaneously self-assemble upon both electrostatic and hydrophobic interactions between the polyanionic Fpx and cationic squalenyl (CSq) derivatives. The preparation conditions were optimized to obtain monodisperse, stable NPs with a mean diameter in the range of 150–200 nm. The encapsulation efficiencies were around 80%. Fpx loadings reached 39 wt.%. According to structural and morphological analysis, Fpx and CSq organized in spherical multilamellar (“onion-type”) nanoparticles. Furthermore, in vivo studies in rats suggested that Fpx was well absorbed from the orally administered NPs, which totally dissociated when reaching the blood stream, leading to the release of free Fpx. The Fpx:CSq NPs improved the plasmatic concentration of Fpx in a dose-dependent manner. However, the oral bioavailability of these new NPs remained low (around 0.3%) but of note, the Cmax obtained after oral administration of 50 mg/kg NPs was close to the prophylactic plasma concentration needed to treat venous thromboembolism. Moreover, the oral bioavailability of Fpx could be dramatically increased up to 9% by including the nanoparticles into gastroresistant capsules. This study opens up new perspectives for the oral administration of Fpx and paves the way towards elaborating squalene-based NPs which self assemble without the need of covalently grafting the drug to Sq.
Collapse
Affiliation(s)
- Bettina Ralay-Ranaivo
- UMR CNRS 8612, Institut Galien Paris-Sud, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France
| | - Didier Desmaële
- UMR CNRS 8612, Institut Galien Paris-Sud, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France
| | - Elsa P Bianchini
- EA 4531, Faculté de pharmacie de Châtenay-Malabry, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France
| | - Elise Lepeltier
- UMR CNRS 8612, Institut Galien Paris-Sud, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France
| | - Claudie Bourgaux
- UMR CNRS 8612, Institut Galien Paris-Sud, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France
| | - Delphine Borgel
- EA 4531, Faculté de pharmacie de Châtenay-Malabry, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France
| | - Thierry Pouget
- LVMH Recherche Parfums et Cosmétique, 185 Av. de Verdun, 45804 Saint Jean de Braye, France
| | | | - Patrick Couvreur
- UMR CNRS 8612, Institut Galien Paris-Sud, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France
| | - Ruxandra Gref
- UMR CNRS 8612, Institut Galien Paris-Sud, 5 Rue J.B. Clément, 92296 Châtenay-Malabry Cedex, France.
| |
Collapse
|
15
|
Fan B, Xing Y, Zheng Y, Sun C, Liang G. pH-responsive thiolated chitosan nanoparticles for oral low-molecular weight heparin delivery: in vitro and in vivo evaluation. Drug Deliv 2014; 23:238-47. [PMID: 24865290 DOI: 10.3109/10717544.2014.909908] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of present study was to investigate a pH-responsive and mucoadhesive nanoparticle system for oral bioavailability enhancement of low-molecular weight heparin (LMWH). The thioglycolic acid (TGA) was first covalently attached to chitosan (CS) with 396.97 ± 54.54 μmol thiol groups per gram of polymer and then the nanoparticles were prepared with thiolated chitosan (TCS) and pH-sensitive polymer hydroxypropyl methylcellulose phthalate (HPMCP) by ionic cross-linking method. The obtained nanoparticles were characterized for the shape, particle size, zeta potential, drug entrapment efficiency and loading capacity. In vitro results revealed the acid stability of pH-responsive nanoparticles, which had a significant control over LMWH release and could effectively protect entrapped drugs in simulated gastric conditions. By the attachment of the thiol ligand, an improvement of permeation-enhancing effect on freshly excised carp intestine (1.86-fold improvement) could be found. The mucoadhesive properties were evaluated using fluorescently labeled TCS or CS nanoparticles. As compared with the controls, a significant improvement of mucoadhesion on rat intestinal mucosa was observed in TCS/HPMCP nanoparticles via confocal laser scanning microscopy. The activated partial thromboplastin time (APTT) was significantly prolonged and an increase in the oral bioavailability of LMWH was turned out to be pronounced after oral delivered LMWH-loaded TCS/HPMCP nanoparticles in rats, which suggested enhanced anticoagulant effects and improved absorption of LMWH. In conclusion, pH-responsive TCS/HPMCP nanoparticles hold promise for oral delivery of LMWH.
Collapse
Affiliation(s)
- Bo Fan
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Yang Xing
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Ying Zheng
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Chuan Sun
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| | - Guixian Liang
- a School of Pharmaceutical Science , Shanxi Medical University , Taiyuan , Shanxi , People's Republic of China
| |
Collapse
|
16
|
SnCl4/Sn catalyzed chemoselective reduction of glycopyranosyl azides for the synthesis of diversely functionalized glycopyranosyl chloroacetamides. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Bagre AP, Jain K, Jain NK. Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 2013; 456:31-40. [PMID: 23994363 DOI: 10.1016/j.ijpharm.2013.08.037] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
The objective of present research work was to develop alginate coated chitosan core shell nanoparticles (Alg-CS-NPs) for oral delivery of low molecular weight heparin, enoxaparin. Chitosan nanoparticles (CS-NPs) were synthesized by ionic gelation of chitosan using sodium tripolyphosphate. Core shell nanoparticles were prepared by coating CS-NPs with alginate solution under mild agitation. The Alg-CS-NPs were characterized for surface morphology, surface coating, particle size, polydispersity index, zeta potential, drug loading and entrapment efficiency using SEM, Zeta-sizer, FTIR and DSC techniques. Alginate coating increased the size of optimized chitosan nanoparticles from around 213 nm to about 335 nm as measured by dynamic light scattering in zeta sizer and further confirmed by SEM analysis. The performance of optimized enoxaparin loaded Alg-CS-NPs was evaluated by in vitro drug release studies, in vitro permeation study across intestinal epithelium, in vivo venous thrombosis model, particulate uptake by intestinal epithelium using fluorescence microscopy and pharmacokinetic studies in rats. Coating of alginate over the CS-NPs improved the release profile of enoxaparin from the nanoparticles for successful oral delivery. In vitro permeation studies elucidated that more than 75% enoxaparin permeated across the intestinal epithelium with Alg-CS-NPs. The Alg-CS-NPs significantly increased (p<0.05) the oral bioavailability of enoxaparin in comparison to plain enoxaparin solution as revealed by threefold increase in AUC of plasma drug concentration time curve and around 60% reduction in thrombus formation in rat venous thrombosis model. The core shell Alg-CS-NPs showed promising potential for oral delivery and significantly enhanced the in vivo oral absorption of enoxaparin.
Collapse
Affiliation(s)
- Archana Pataskar Bagre
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Central University, Sagar (M.P.) 470003, India
| | | | | |
Collapse
|
18
|
İskenderoğlu C, Acartürk F, Erdoğan D, Bardakçı Y. In vitroandin vivoinvestigation of low molecular weight heparin–alginate beads for oral administration. J Drug Target 2013; 21:389-406. [DOI: 10.3109/1061186x.2012.763040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Baldwin AD, Robinson KG, Militar J, Derby CD, Kiick KL, Akins RE. In situ crosslinkable heparin-containing poly(ethylene glycol) hydrogels for sustained anticoagulant release. J Biomed Mater Res A 2012; 100:2106-18. [PMID: 22615105 PMCID: PMC4096162 DOI: 10.1002/jbm.a.34050] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Accepted: 11/29/2011] [Indexed: 11/08/2022]
Abstract
Low-molecular weight heparin (LMWH) is widely used in anticoagulation therapies and for the prevention of thrombosis. LMWH is administered by subcutaneous injection usually once or twice per day. This frequent and invasive delivery modality leads to compliance issues for individuals on prolonged therapeutic courses, particularly pediatric patients. Here, we report a long-term delivery method for LMWH via subcutaneous injection of long-lasting hydrogels. LMWH is modified with reactive maleimide groups so that it can be crosslinked into continuous networks with four-arm thiolated poly(ethylene glycol) (PEG-SH). Maleimide-modified LMWH (Mal-LMWH) retains bioactivity as indicated by prolonged coagulation time. Hydrogels comprising PEG-SH and Mal-LMWH degrade via hydrolysis, releasing bioactive LMWH by first-order kinetics with little initial burst release. Separately dissolved Mal-LMWH and PEG-SH solutions were co-injected subcutaneously in New Zealand White rabbits. The injected solutions successfully formed hydrogels in situ and released LMWH as measured via chromogenic assays on plasma samples, with accumulation of LMWH occurring at day 2 and rising to near-therapeutic dose equivalency by day 5. These results demonstrate the feasibility of using LMWH-containing, crosslinked hydrogels for sustained and controlled release of anticoagulants.
Collapse
Affiliation(s)
- Aaron D. Baldwin
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
| | - Karyn G. Robinson
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Jaimee Militar
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Christopher D. Derby
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, 201 DuPont Hall, University of Delaware, Newark, DE 19716, USA
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19716, USA
| | - Robert E. Akins
- Tissue Engineering and Regenerative Medicine Laboratory, Nemours Biomedical Research, Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| |
Collapse
|
20
|
Bersani S, Salmaso S, Mastrotto F, Ravazzolo E, Semenzato A, Caliceti P. Star-Like Oligo-Arginyl-Maltotriosyl Derivatives as Novel Cell-Penetrating Enhancers for the Intracellular Delivery of Colloidal Therapeutic Systems. Bioconjug Chem 2012; 23:1415-25. [DOI: 10.1021/bc200666u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sara Bersani
- Deprtament of Pharmaceutical and
Pharmacological Sciences, University of Padova, Via F. Marzolo, 5 35131 Padova, Italy
| | - Stefano Salmaso
- Deprtament of Pharmaceutical and
Pharmacological Sciences, University of Padova, Via F. Marzolo, 5 35131 Padova, Italy
| | - Francesca Mastrotto
- Deprtament of Pharmaceutical and
Pharmacological Sciences, University of Padova, Via F. Marzolo, 5 35131 Padova, Italy
| | - Elena Ravazzolo
- Deprtament of Pharmaceutical and
Pharmacological Sciences, University of Padova, Via F. Marzolo, 5 35131 Padova, Italy
| | - Alessandra Semenzato
- Deprtament of Pharmaceutical and
Pharmacological Sciences, University of Padova, Via F. Marzolo, 5 35131 Padova, Italy
| | - Paolo Caliceti
- Deprtament of Pharmaceutical and
Pharmacological Sciences, University of Padova, Via F. Marzolo, 5 35131 Padova, Italy
| |
Collapse
|
21
|
Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Biomimetic Solid Lipid Nanoparticles for Oral Bioavailability Enhancement of Low Molecular Weight Heparin and Its Lipid Conjugates: In Vitro and in Vivo Evaluation. Mol Pharm 2011; 8:1314-21. [DOI: 10.1021/mp200109m] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rishi Paliwal
- Drug Delivery Research Laboratory and ‡Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., India, 470003
| | - Shivani R. Paliwal
- Drug Delivery Research Laboratory and ‡Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., India, 470003
| | - Govind P. Agrawal
- Drug Delivery Research Laboratory and ‡Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., India, 470003
| | - Suresh P. Vyas
- Drug Delivery Research Laboratory and ‡Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour Vishwavidyalaya, Sagar, M.P., India, 470003
| |
Collapse
|
22
|
Rodrigo AC, Barnard A, Cooper J, Smith DK. Self-assembling ligands for multivalent nanoscale heparin binding. Angew Chem Int Ed Engl 2011; 50:4675-9. [PMID: 21506216 DOI: 10.1002/anie.201100019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/10/2011] [Indexed: 11/08/2022]
Affiliation(s)
- Ana C Rodrigo
- Department of Chemistry, University of York, Heslington, UK
| | | | | | | |
Collapse
|
23
|
Rodrigo AC, Barnard A, Cooper J, Smith DK. Self-Assembling Ligands for Multivalent Nanoscale Heparin Binding. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Recent advances in search of oral heparin therapeutics. Med Res Rev 2011; 32:388-409. [DOI: 10.1002/med.20217] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | - Suresh P. Vyas
- Drug Delivery Research Laboratory; Department of Pharmaceutical Sciences; Dr. H. S. Gour Vishwavidyalaya; Sagar M.P. 470003 India
| |
Collapse
|
25
|
Park JW, Kim SK, Al-Hilal TA, Jeon OC, Moon HT, Byun Y. Strategies for oral delivery of macromolecule drugs. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-3058-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Encapsulation of low molecular weight heparins: Influence on the anti-Xa/anti-IIa ratio. J Control Release 2009; 139:8-14. [DOI: 10.1016/j.jconrel.2009.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 05/13/2009] [Accepted: 05/21/2009] [Indexed: 11/23/2022]
|
27
|
Zhong W, Skwarczynski M, Fujita Y, Simerska P, Good MF, Toth I. Design and Synthesis of Lipopeptide - Carbohydrate Assembled Multivalent Vaccine Candidates Using Native Chemical Ligation. Aust J Chem 2009. [DOI: 10.1071/ch09065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Development of a synthetic vaccine against group A streptococcal infection is increasingly paramount due to the induction of autoimmunity by the main virulent factor – M protein. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with carriers and adjuvants. One of the promising approaches to deliver antigenic peptides is to assemble peptides on a suitable template which directs the attached peptides to form a well defined tertiary structure. For self-adjuvanting human vaccines, the conjugation of immunostimulatory lipids has been demonstrated as a potentially safe method. This study describes the design and optimized synthesis of two lipopeptide conjugated carbohydrate templates and the assembling of peptide antigens. These lipopeptide–carbohydrate assembled multivalent vaccine candidates were obtained in high yield and purity when native chemical ligation was applied. Circular dichroism studies indicated that the template-assembled peptides form four α-helix bundles. The developed technique extends the use of carbohydrate templates and lipopeptide conjugates for producing self-adjuvanting and topology-controlled vaccine candidates.
Collapse
|
28
|
Zhong W, Skwarczynski M, Toth I. Lipid Core Peptide System for Gene, Drug, and Vaccine Delivery. Aust J Chem 2009. [DOI: 10.1071/ch09149] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A vast number of biologically active compounds await efficient delivery to become therapeutic agents. Lipidation has been demonstrated to be a convenient and useful approach to improve the stability and transport across biological membranes of potential drug molecules. The lipid core peptide (LCP) system has emerged as a promising lipidation tool because of its versatile features. This review discusses the progress in the development of the LCP system to improve cell permeability of nucleotides, physicochemical properties of potential drugs, and vaccine immunogenicity. Emphasis was put on the application of the LCP system to deliver antigens for the prevention of group A streptococcus infection, novel techniques of conjugation of target molecules to the LCP, and new alterations of the LCP system itself.
Collapse
|
29
|
Motlekar NA, Youan BBC. The quest for non-invasive delivery of bioactive macromolecules: a focus on heparins. J Control Release 2006; 113:91-101. [PMID: 16777255 PMCID: PMC1539865 DOI: 10.1016/j.jconrel.2006.04.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 04/06/2006] [Indexed: 11/24/2022]
Abstract
The development of a non-invasive drug delivery system for unfractionated heparin (UFH) and low molecular weight heparins (LMWHs) has been the elusive goal of several research groups since the initial discovery of this glycosaminogylcan by McLean in 1916. After a brief update on current parenteral formulations of UFH and LMWHs, this review revisits past and current strategies intended to identify alternative routes of administration (e.g. oral, sublingual, rectal, nasal, pulmonary and transdermal). The following strategies have been used to improve the bioavailability of this bioactive macromolecule by various routes: (i) enhancement in cell-membrane permeabilization, (ii) modification of the tight-junctions, (iii) increase in lipophilicity and (iv) protection against acidic pH of the stomach. Regardless of the route of administration, a simplified unifying principle for successful non-invasive macromolecular drug delivery may be: "to reversibly overcome the biological, biophysical and biochemical barriers and to safely and efficiently improve the in vivo spatial and temporal control of the drug in order to achieve a clinically acceptable therapeutic advantage". Future macromolecular drug delivery research should embrace a more systemic approach taking into account recent advances in genomics/proteomics and nanotechnology.
Collapse
Affiliation(s)
- Nusrat A. Motlekar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | - Bi-Botti C. Youan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
- * Corresponding author. Tel.: +1 806 356 4015x236; fax: +1 806 354 4034. E-mail address: (B.-B.C. Youan)
| |
Collapse
|