1
|
Konecny J, Misiachna A, Chvojkova M, Kleteckova L, Kolcheva M, Novak M, Prchal L, Ladislav M, Hemelikova K, Netolicky J, Hrabinova M, Kobrlova T, Karasova JZ, Pejchal J, Fibigar J, Vecera Z, Kucera T, Jendelova P, Zahumenska P, Langore E, Doderovic J, Pang YP, Vales K, Korabecny J, Soukup O, Horak M. Dizocilpine derivatives as neuroprotective NMDA receptor antagonists without psychomimetic side effects. Eur J Med Chem 2024; 280:116981. [PMID: 39442339 DOI: 10.1016/j.ejmech.2024.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
We aimed to prepare novel dibenzo [a,d][7]annulen derivatives that act on N-methyl-d-aspartate (NMDA) receptors with potential neuroprotective effects. Our approach involved modifying the tropane moiety of MK-801, a potent open-channel blocker known for its psychomimetic side effects, by introducing a seven-membered ring with substituted base moieties specifically to alleviate these undesirable effects. Our in silico analyses showed that these derivatives should have high gastrointestinal absorption and cross the blood-brain barrier (BBB). Our pharmacokinetic studies in rats supported this conclusion and confirmed the ability of leading compounds 3l and 6f to penetrate the BBB. Electrophysiological experiments showed that all compounds exhibited different inhibitory activity towards the two major NMDA receptor subtypes, GluN1/GluN2A and GluN1/GluN2B. Of the selected compounds intentionally differing in the inhibitory efficacy, 6f showed high relative inhibition (∼90 % for GluN1/GluN2A), while 3l showed moderate inhibition (∼50 %). An in vivo toxicity study determined that compounds 3l and 6f were safe at 10 mg/kg doses with no adverse effects. Behavioral studies demonstrated that these compounds did not induce hyperlocomotion or impair prepulse inhibition of startle response in rats. Neuroprotective assays using a model of NMDA-induced hippocampal neurodegeneration showed that compound 3l at a concentration of 30 μM significantly reduced hippocampal damage in rats. These results suggest that these novel dibenzo [a,d][7]annulen derivatives are promising candidates for developing NMDA receptor-targeted therapies with minimal psychotomimetic side effects.
Collapse
Affiliation(s)
- Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Anna Misiachna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Marketa Chvojkova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Lenka Kleteckova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Marharyta Kolcheva
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martin Novak
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Marek Ladislav
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Katarina Hemelikova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jakub Netolicky
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Martina Hrabinova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic
| | - Jana Zdarova Karasova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Jakub Fibigar
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Zbynek Vecera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Tomas Kucera
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Pavla Jendelova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Petra Zahumenska
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Emily Langore
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Jovana Doderovic
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic
| | - Yuan-Ping Pang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First St. SW, Rochester, 55905, MN, USA
| | - Karel Vales
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic; National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic.
| | - Martin Horak
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 4, 14220, Prague, Czech Republic.
| |
Collapse
|
2
|
Lee SH, Purgatorio R, Samarelli F, Catto M, Denora N, Morgese MG, Tucci P, Trabace L, Kim HW, Park HS, Kim SE, Lee BC, de Candia M, Altomare CD. Radiosynthesis and whole-body distribution in mice of a 18 F-labeled azepino[4,3-b]indole-1-one derivative with multimodal activity for the treatment of Alzheimer's disease. Arch Pharm (Weinheim) 2024; 357:e2300491. [PMID: 38158335 DOI: 10.1002/ardp.202300491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Recently, the azepino[4,3-b]indole-1-one derivative 1 showed in vitro nanomolar inhibition against butyrylcholinesterase (BChE), the ChE isoform that plays a role in the progression and pathophysiology of Alzheimer's disease (AD), and protects against N-methyl- d-aspartate-induced neuronal toxicity. Three 9-R-substituted (R = F, Br, OMe) congeners were investigated. The 9-F derivative (2a) was found more potent as BChE inhibitors (half-maximal inhibitory concentration value = 21 nM) than 2b (9-Br) and 2c (9-OMe), achieving a residence time (38 s), assessed by surface plasmon resonance, threefold higher than that of 1. To progress in featuring the in vivo pharmacological characterization of 2a, herein the 18 F-labeled congener 2a was synthesized, by applying the aromatic 18 F-fluorination method, and its whole-body distribution in healthy mice, including brain penetration, was evaluated through positron emission tomography imaging. [18 F]2a exhibited a rapid and high brain uptake (3.35 ± 0.26% ID g-1 at 0.95 ± 0.15 min after injection), followed by a rapid clearance (t1/2 = 6.50 ± 0.93 min), showing good blood-brain barrier crossing. After a transient liver accumulation of [18 F]2a, the intestinal and urinary excretion was quantified. Finally, ex vivo pharmacological experiments in mice showed that the unlabeled 2a affects the transmitters' neurochemistry, which might be favorable to reverse cognition impairment in mild-to-moderate AD-related dementias.
Collapse
Affiliation(s)
- Sang Hee Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Samarelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Morgese
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luigia Trabace
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Hye Won Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Hyun Soo Park
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Sang Eun Kim
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
- Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
de Candia M, Titov AA, Viayna A, Kulikova LN, Purgatorio R, Piergiovanni B, Niso M, Catto M, Voskressensky LG, Luque FJ, Altomare CD. In-vitro and in-silico studies of annelated 1,4,7,8-tetrahydroazocine ester derivatives as nanomolar selective inhibitors of human butyrylcholinesterase. Chem Biol Interact 2023; 386:110741. [PMID: 37839515 DOI: 10.1016/j.cbi.2023.110741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Based on previous finding showing 2,3,6,11-tetrahydro-1H-azocino[4,5-b]indole as suitable scaffold of novel inhibitors of acetylcholinesterase (AChE), a main target of drugs for the treatment of Alzheimer's disease and related dementias, herein we investigated diverse newly and previously synthesized β-enamino esters (and ketones) derivatives of 1,4,7,8-tetrahydroazocines (and some azonines) fused with benzene, 1H-indole, 4H-chromen-4-one and pyrimidin-4(3H)-one. Twenty derivatives of diversely annelated eight-to-nine-membered azaheterocyclic ring, prepared through domino reaction of the respective tetrahydropyridine and azepine with activated alkynes, were assayed for the inhibitory activity against AChE and butyrylcholinesterase (BChE). As a major outcome, compound 7c, an alkylamino derivative of tetrahydropyrimido[4,5-d]azocine, was found to be a highly potent BChE-selective inhibitor, which showed a noncompetitive/mixed-type inhibition mechanism against human BChE with single digit nanomolar inhibition constant (Ki = 7.8 ± 0.2 nM). The four-order magnitude BChE-selectivity of 7c clearly reflects the effect of lipophilicity upon binding to the BChE binding cavity. The ChEs' inhibition data, interpreted by chemoinformatic tools and an in-depth in-silico study (molecular docking combined with molecular dynamics calculations), not only highlighted key structural factors enhancing inhibition potency and selectivity toward BChE, but also shed light on subtle differences distinguishing the binding sites of equine BChE from the recombinant human BChE. Compound 7c inhibited P-glycoprotein with IC50 of 0.27 μM, which may support its ability to permeate blood-brain barrier, and proved to be no cytotoxic in human liver cancer cell line (HepG2) at the BChE bioactive concentrations. Overall, the biological profile allows us to envision 7c as a promising template to improve design and development of BChE-selective ligands of pharmaceutical interest, including inhibitors and fluorogenic probes.
Collapse
Affiliation(s)
- Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Alexander A Titov
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Antonio Viayna
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (ITQCUB), University of Barcelona, Av. Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Larisa N Kulikova
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Brigida Piergiovanni
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Mauro Niso
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonid G Voskressensky
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russia
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (ITQCUB), University of Barcelona, Av. Prat de la Riba 171, E-08921, Santa Coloma de Gramenet, Spain
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
4
|
de Padua RM, Kratz JM, Munkert J, Bertol JW, Rigotto C, Schuster D, Maltarollo VG, Kreis W, Simões CMO, Braga F. Effects of Lipophilicity and Structural Features on the Antiherpes Activity of Digitalis Cardenolides and Derivatives. Chem Biodivers 2022; 19:e202200411. [DOI: 10.1002/cbdv.202200411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rodrigo Maia de Padua
- UFMG: Universidade Federal de Minas Gerais Pharmaceutical Products Av. Antônio Carlos 6627 Belo Horizonte BRAZIL
| | - Jadel Müller Kratz
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Jennifer Munkert
- University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Division of Pharmaceutical Biology Staudtstraße 5 Erlangen GERMANY
| | - Jéssica Wildgrube Bertol
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Caroline Rigotto
- UFSC: Universidade Federal de Santa Catarina Pharmaceutical Sciences R. Delfino Conti, S/N Florianópolis BRAZIL
| | - Daniela Schuster
- Paracelsus Medical University Salzburg: Paracelsus Medizinische Privatuniversitat Department of Pharmaceutical and Medicinal Chemistry Strubergasse 21 Salzburg AUSTRIA
| | | | - Wolfgang Kreis
- University of Erlangen-Nuernberg: Friedrich-Alexander-Universitat Erlangen-Nurnberg Division of Pharmaceutical Biology Staudtstraße 5 Erlangen GERMANY
| | | | - Fernão Braga
- Universidade Federal de Minas Gerais Pharmaceutical Sciences Av. Antônio Carlos 6627 31270901 Belo Horizonte BRAZIL
| |
Collapse
|
5
|
Costantino AR, Charbe N, Duarte Y, Gutiérrez M, Giordano A, Prasher P, Dua K, Mandolesi S, Zacconi FC. Toward the cholinesterase inhibition potential of TADDOL derivatives: Seminal biological and computational studies. Arch Pharm (Weinheim) 2022; 355:e2200142. [PMID: 35892245 DOI: 10.1002/ardp.202200142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD) is a degenerative neurological disease characterized by gradual loss of cognitive skills and memory. The exact pathogenesis involved still remains unrevealed, but several studies indicate the involvement of an array of different enzymes, underlining the multifactorial character of the disease. Inhibition of these enzymes is therefore a powerful approach in the development of AD treatments, with promising candidates, including acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and monoamine oxidase. Interestingly, AChE is the target of a major pesticide family (organophosphates), with several reports indicating an intersection between the pesticide's activity and AD. In this study, various TADDOL derivatives were synthesized and their in vitro activities as AChE/BuChE inhibitors as well as their antioxidant activities were studied. Molecular modeling studies revealed the capability of TADDOL derivatives to bind to AChE and induce inhibition, especially compounds 2b and 3c furnishing IC50 values of 36.78 ± 8.97 and 59.23 ± 5.31 µM, respectively. Experimental biological activities and molecular modeling studies clearly demonstrate that TADDOL derivatives with specific stereochemistry have an interesting potential for the design of potent AChE inhibitors. The encouraging results for compounds 2b and 3c indicate them as promising scaffolds for selective and potent AChE inhibitors.
Collapse
Affiliation(s)
- Andrea R Costantino
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Nitin Charbe
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, Texas, USA
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Margarita Gutiérrez
- Organic Synthesis Laboratory and Biological Activity (LSO-Act-Bio), Institute of Chemistry and Natural Resources, Universidad de Talca, Talca, Chile
| | - Ady Giordano
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, Uttarakhand, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, New South Wales, Australia.,Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, New South Wales, Australia.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sandra Mandolesi
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Flavia C Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,The Research Center for Nanotechnology and Advanced Materials, CIEN-UC, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Titov AA, Kobzev MS, Catto M, Candia MD, Gambacorta N, Denora N, Pisani L, Nicolotti O, Borisova TN, Varlamov AV, Voskressensky LG, Altomare CD. Away from Flatness: Unprecedented Nitrogen-Bridged Cyclopenta[ a]indene Derivatives as Novel Anti-Alzheimer Multitarget Agents. ACS Chem Neurosci 2021; 12:340-353. [PMID: 33395258 DOI: 10.1021/acschemneuro.0c00706] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nature-inspired, bridged polycyclic molecules share low similarity with currently available drugs, containing preferentially planar and/or achiral moieties. This "Escape from Flatland" scenario, aimed at exploring pharmacological properties of atypical molecular scaffolds, finds interest in synthetic routes leading to tridimensional-shaped molecules. Herein we report on the synthesis of N-bridged cyclopenta[a]indene derivatives, achieved through microwave-assisted thermal rearrangement of allene 3-benzazecines with high diastereoselectivity. The biological evaluation disclosed selective inhibition of human acetylcholinesterase or butyrylcholinesterase, depending on the substitution around the molecular core, which was rationalized by means of docking simulations. The most potent BChE inhibitor 31 was effective in neuroprotection from glutamatergic excitotoxicity and displayed low intrinsic cytotoxicity and good brain penetration. Overall, compound 31 and its close congeners 34 and 35 acted as multitarget agents addressing different biological events involved in neurodegeneration, particularly in the progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Alexander A. Titov
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Maxim S. Kobzev
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Nicola Gambacorta
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Tatiana N. Borisova
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Alexey V. Varlamov
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Leonid G. Voskressensky
- Organic Chemistry Department, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation
| | - Cosimo D. Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| |
Collapse
|
7
|
Viayna A, Antermite SG, de Candia M, Altomare CD, Luque FJ. Interplay between Ionization and Tautomerism in Bioactive β-Enamino Ester-Containing Cyclic Compounds: Study of Annulated 1,2,3,6-Tetrahydroazocine Derivatives. J Phys Chem B 2019; 124:28-37. [PMID: 31841339 DOI: 10.1021/acs.jpcb.9b08904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Depending on the chemical scaffold, a bioactive species could reflect the interplay between ionization and tautomerism, which is often complicated by the possibility of populating different conformational states, in the case of flexible ligands. In this context, theoretical methods can be valuable to discern the role of these factors, as shown here for β-enamino esters of 1,2,3,6-tetrahydroazocino-fused ring systems, some of which had proven to be suitable scaffolds for designing novel acetylcholinesterase inhibitors. The compounds investigated herein form two clusters with distinctive experimental pKa values (i.e., α,β-diesters and β-esters ranging within 6.1-7.3 and 8.2-9.0 pKa intervals, respectively), which implies a drastic difference in the most populated species at physiological conditions. While chemoinformatic tools did not provide a consistent description of the actual pKa values, the theoretical analysis performed for the protonated and neutral species of these compounds revealed a marked change in the tautomeric preference of the tetrahydroazocine moiety upon (de)protonation. Excellent agreement between the calculated and experimental pKa values was found when the tautomeric preference of the protonated and neutral species was considered. Overall, this study highlights the potential use of high-level computational methods to disclose the mutual influence between ionization, tautomerism, and conformational preferences in multifunctional (bio)organic compounds.
Collapse
Affiliation(s)
- Antonio Viayna
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (ITQCUB) , University of Barcelona , Av. Prat de la Riba 171 , E-08921 Santa Coloma de Gramenet , Spain
| | - Salvatore G Antermite
- Department of Pharmacy-Drug Sciences , University of Bari Aldo Moro , Via E. Orabona 4 , I-70125 Bari , Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences , University of Bari Aldo Moro , Via E. Orabona 4 , I-70125 Bari , Italy
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences , University of Bari Aldo Moro , Via E. Orabona 4 , I-70125 Bari , Italy
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, Institute of Biomedicine (IBUB) and Institute of Theoretical and Computational Chemistry (ITQCUB) , University of Barcelona , Av. Prat de la Riba 171 , E-08921 Santa Coloma de Gramenet , Spain
| |
Collapse
|
8
|
Purgatorio R, de Candia M, Catto M, Carrieri A, Pisani L, De Palma A, Toma M, Ivanova OA, Voskressensky LG, Altomare CD. Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer's disease. Eur J Med Chem 2019; 177:414-424. [PMID: 31158754 DOI: 10.1016/j.ejmech.2019.05.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022]
Abstract
Due to the role of butyrylcholinesterase (BChE) in acetylcholine hydrolysis in the late stages of the Alzheimer's disease (AD), inhibitors of butyrylcholinesterase (BChE) have been recently envisaged, besides acetylcholinesterase (AChE) inhibitors, as candidates for treating mild-to-moderate AD. Herein, synthesis and AChE/BChE inhibition activity of some twenty derivatives of 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole (HHAI) is reported. Most of the newly synthesized HHAI derivatives achieved the inhibition of both ChE isoforms with IC50s in the micromolar range, with a structure-dependent selectivity toward BChE. Apparently, molecular volume and lipophilicity do increase selectivity toward BChE, and indeed the N2-(4-phenylbutyl) HHAI derivative 15d, which behaves as a mixed-type inhibitor, resulted the most potent (IC50 0.17 μM) and selective (>100-fold) inhibitor toward either horse serum and human BChE. Moreover, 15d inhibited in vitro self-induced aggregation of neurotoxic amyloid-β (Aβ) peptide and displayed neuroprotective effects in neuroblastoma SH-SY5Y cell line, significantly recovering (P < 0.001) cell viability when impaired by Aβ1-42 and hydrogen peroxide insults. Overall, this study highlighted HHAI as useful and versatile scaffold for developing new small molecules targeting some enzymes and biochemical pathways involved in the pathogenesis of AD.
Collapse
Affiliation(s)
- Rosa Purgatorio
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Marco Catto
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Maddalena Toma
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation
| | - Leonid G Voskressensky
- Organic Chemistry Department, RUDN University, Miklukho-Maklai St, 6, Moscow, 117198, Russian Federation
| | - Cosimo D Altomare
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
9
|
Titov AA, Samavati R, Alexandrova EV, Borisova TN, Dang Thi TA, Nguyen VT, Le TA, Varlamov AV, Van der Eycken EV, Voskressensky LG. Synthesis of 1-( para-methoxyphenyl)tetrazolyl-Substituted 1,2,3,4-Tetrahydroisoquinolines and Their Transformations Involving Activated Alkynes. Molecules 2018; 23:molecules23113010. [PMID: 30453635 PMCID: PMC6278526 DOI: 10.3390/molecules23113010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022] Open
Abstract
1-(p-Methoxyphenyl)tetrazolyl-substituted 6,7-dimethoxy(6,7-methylenedioxy)-1,2,3,4-tetrahydroisoquinolines formed tetrazolyl-substituted azocines in high yields by using activated alkynes. Unsubstituted at 6,7,8-aromatic fragment 1-tetrazolylisoquinoline interacted in several pathways forming tetrazolyl-substituted azocines, 1-tetrazolyl-1-R-vinylisoquinolines and 3-azaspiro[5.5]undeca-1,7,9-triene.
Collapse
Affiliation(s)
- Alexander A Titov
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia.
| | - Reza Samavati
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia.
| | - Elena V Alexandrova
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia.
| | - Tatiana N Borisova
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia.
| | - Tuyet Anh Dang Thi
- Institute of Chemistry of Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam.
| | - Van Tuyen Nguyen
- Institute of Chemistry of Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi 100000, Vietnam.
| | - Tuan Anh Le
- Faculty of Chemistry of VNU University of Science, 19 Le Thanh Tong, Hoan Kiem, Hanoi 100000, Vietnam.
| | - Alexey V Varlamov
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia.
| | - Erik V Van der Eycken
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia.
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Leonid G Voskressensky
- Organic Chemistry Department, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198 Moscow, Russia.
| |
Collapse
|
10
|
Varlamov AV, Guranova NI, Borisova TN, Sorokina EA, Aksenov AV, Voskressensky LG. Interaction of condensed tetrahydropyrido[4,3-d]pyrimidin-4-ones with dehydrobenzene – synthesis of 6-vinylpyrimidinones fused with five-membered heterocycle containing two or three heteroatoms. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2250-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Pisani L, De Palma A, Giangregorio N, Miniero DV, Pesce P, Nicolotti O, Campagna F, Altomare CD, Catto M. Mannich base approach to 5-methoxyisatin 3-(4-isopropylphenyl)hydrazone: A water-soluble prodrug for a multitarget inhibition of cholinesterases, beta-amyloid fibrillization and oligomer-induced cytotoxicity. Eur J Pharm Sci 2017; 109:381-388. [PMID: 28801274 DOI: 10.1016/j.ejps.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/13/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
Abstract
Targeting protein aggregation for the therapy of neurodegenerative diseases remains elusive for medicinal chemists, despite a number of small molecules known to interfere in amyloidogenesis, particularly of amyloid beta (Aβ) protein. Starting from previous findings in the antiaggregating activity of a class of indolin-2-ones inhibiting Aβ fibrillization, 5-methoxyisatin 3-(4-isopropylphenyl)hydrazone 1 was identified as a multitarget inhibitor of Aβ aggregation and cholinesterases with IC50s in the low μM range. With the aim of increasing aqueous solubility, a Mannich-base functionalization led to the synthesis of N-methylpiperazine derivative 2. At acidic pH, an outstanding solubility increase of 2 over the parent compound 1 was proved through a turbidimetric method. HPLC analysis revealed an improved stability of the Mannich base 2 at pH2 along with a rapid release of 1 in human serum as well as an outstanding hydrolytic stability of the parent hydrazone. Coincubation of Aβ1-42 with 2 resulted in the accumulation of low MW oligomers, as detected with PICUP assay. Cell assays on SH-SY5Y cells revealed that 2 exerts strong cytoprotective effects in both cell viability and radical quenching assays, mainly related to its active metabolite 1. These findings show that 2 drives the formation of non-toxic, off-pathway Aβ oligomers unable to trigger the amyloid cascade and toxicity.
Collapse
Affiliation(s)
- Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Annalisa De Palma
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, via G. Amendola 165/A, I-70126 Bari, Italy
| | - Daniela V Miniero
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Paolo Pesce
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Francesco Campagna
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Cosimo D Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
12
|
Pisani L, Catto M, De Palma A, Farina R, Cellamare S, Altomare CD. Discovery of Potent Dual Binding Site Acetylcholinesterase Inhibitors via Homo- and Heterodimerization of Coumarin-Based Moieties. ChemMedChem 2017; 12:1349-1358. [PMID: 28570763 DOI: 10.1002/cmdc.201700282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/01/2017] [Indexed: 01/08/2023]
Abstract
Acetylcholinesterase (AChE) inhibitors still comprise the majority of the marketed drugs for Alzheimer's disease (AD). The structural arrangement of the enzyme, which features a narrow gorge that separates the catalytic and peripheral anionic subsites (CAS and PAS, respectively), inspired the development of bivalent ligands that are able to bind and block the catalytic activity of the CAS as well as the role of the PAS in beta amyloid (Aβ) fibrillogenesis. With the aim of discovering novel AChE dual binders with improved drug-likeness, homo- and heterodimers containing 2H-chromen-2-one building blocks were developed. By exploring diverse linkages of neutral and protonatable amino moieties through aliphatic spacers of different length, a nanomolar bivalent AChE inhibitor was identified (3-[2-({4-[(dimethylamino)methyl]-2-oxo-2H-chromen-7-yl}oxy)ethoxy]-6,7-dimethoxy-2H-chromen-2-one (6 d), IC50 =59 nm) from originally weakly active fragments. To assess the potential against AD, the disease-related biological properties of 6 d were investigated. It performed mixed-type AChE enzyme kinetics (inhibition constant Ki =68 nm) and inhibited Aβ self-aggregation. Moreover, it displayed an outstanding ability to protect SH-SY5Y cells from Aβ1-42 damage.
Collapse
Affiliation(s)
- Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa De Palma
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Roberta Farina
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| | - Cosimo D Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
13
|
Voskressensky LG, Titov AA, Dzhankaziev MS, Borisova TN, Kobzev MS, Dorovatovskii PV, Khrustalev VN, Aksenov AV, Varlamov AV. First synthesis of heterocyclic allenes – benzazecine derivatives. NEW J CHEM 2017. [DOI: 10.1039/c6nj03403a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzazecines with an allene fragment were prepared for the first time and in high yields via tandem reaction of 1-phenylethynyl-1-methyl(benzyl)-1,2,3,4-tetrahydroisoquinolines with activated alkynes in trifluoroethanol.
Collapse
Affiliation(s)
| | - Alexander A. Titov
- Organic Chemistry Department
- Peoples' Friendship University of Russia
- Moscow 117198
- Russia
| | - Maksad S. Dzhankaziev
- Organic Chemistry Department
- Peoples' Friendship University of Russia
- Moscow 117198
- Russia
| | - Tatiana N. Borisova
- Organic Chemistry Department
- Peoples' Friendship University of Russia
- Moscow 117198
- Russia
| | - Maxim S. Kobzev
- Organic Chemistry Department
- Peoples' Friendship University of Russia
- Moscow 117198
- Russia
| | | | - Victor N. Khrustalev
- Organic Chemistry Department
- Peoples' Friendship University of Russia
- Moscow 117198
- Russia
- Nesmeyanov Institute of Organoelement Compounds of RAS
| | | | - Alexey V. Varlamov
- Organic Chemistry Department
- Peoples' Friendship University of Russia
- Moscow 117198
- Russia
| |
Collapse
|
14
|
de Candia M, Zaetta G, Denora N, Tricarico D, Majellaro M, Cellamare S, Altomare CD. New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity. Eur J Med Chem 2017; 125:288-298. [DOI: 10.1016/j.ejmech.2016.09.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/15/2022]
|
15
|
Farina R, Pisani L, Catto M, Nicolotti O, Gadaleta D, Denora N, Soto-Otero R, Mendez-Alvarez E, Passos CS, Muncipinto G, Altomare CD, Nurisso A, Carrupt PA, Carotti A. Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases. J Med Chem 2015; 58:5561-78. [DOI: 10.1021/acs.jmedchem.5b00599] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Roberta Farina
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Leonardo Pisani
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Marco Catto
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Orazio Nicolotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Domenico Gadaleta
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Nunzio Denora
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Ramon Soto-Otero
- Grupo
de Neuroquimica, Departamento de Bioquimica y Biologia Molecular,
Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco
I, E-15782, Santiago
de Compostela, Spain
| | - Estefania Mendez-Alvarez
- Grupo
de Neuroquimica, Departamento de Bioquimica y Biologia Molecular,
Facultad de Medicina, Universidad de Santiago de Compostela, San Francisco
I, E-15782, Santiago
de Compostela, Spain
| | - Carolina S. Passos
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Giovanni Muncipinto
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Cosimo D. Altomare
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| | - Alessandra Nurisso
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School
of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest Ansermet 30, CH-1211, Geneva 4, Switzerland
| | - Angelo Carotti
- Dipartimento
di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona 4, I-70125 Bari, Italy
| |
Collapse
|
16
|
Voskressensky LG, Borisova TN, Chervyakova TM, Matveeva MD, Galaktionova DV, Tolkunov SV, Tolkunova VS, Eresko AB, Varlamov AV. The First Example of 4,7,8,9-Tetrahydrothieno-[2,3-d]Azocine Synthesis by Domino Reaction of 4-ARYL-4,5,6,7-Tetrahydrothieno[3,2-c]Pyridines with Activated Alkynes. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1597-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Voskressensky LG, Kovaleva SA, Borisova TN, Eresko AB, Tolkunov VS, Tolkunov SV, Listratova AV, de Candia M, Altomare C, Varlamov AV. Recyclization of benzofuropyridines by the action of activated alkynes in the synthesis of spiro[benzofuropyridines], representatives of a new class of acetylcholinesterase inhibitors. Chem Heterocycl Compd (N Y) 2013. [DOI: 10.1007/s10593-013-1328-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Design, synthesis and biological evaluation of benzo[e][1,2,4]triazin-7(1H)-one and [1,2,4]-triazino[5,6,1-jk]carbazol-6-one derivatives as dual inhibitors of beta-amyloid aggregation and acetyl/butyryl cholinesterase. Eur J Med Chem 2012; 58:84-97. [DOI: 10.1016/j.ejmech.2012.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/27/2012] [Accepted: 10/03/2012] [Indexed: 11/20/2022]
|
19
|
Voskressensky LG, Kovaleva S, Borisova TN, Eresko AB, Tolkunov VS, Tolkunov SV, Khrustalev VN, Varlamov AV. Novel Synthetic Route Toward Benzofuran-pyridine–Based Spirans. SYNTHETIC COMMUN 2012. [DOI: 10.1080/00397911.2011.581880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
| | - Svetlana Kovaleva
- a Organic Chemistry Department , Russian People's Friendship University , Moscow , Russia
| | - Tatiana N. Borisova
- a Organic Chemistry Department , Russian People's Friendship University , Moscow , Russia
| | - Alexandr B. Eresko
- b L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine , Donetsk , Ukraine
| | - Valery S. Tolkunov
- b L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine , Donetsk , Ukraine
| | - Sergey V. Tolkunov
- b L. M. Litvinenko Institute of Physical Organic and Coal Chemistry, National Academy of Sciences of Ukraine , Donetsk , Ukraine
| | - Victor N. Khrustalev
- c A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences , Moscow , Russia
| | - Alexey V. Varlamov
- a Organic Chemistry Department , Russian People's Friendship University , Moscow , Russia
| |
Collapse
|
20
|
Medina S, González-Gómez Á, Domínguez G, Pérez-Castells J. Medium-sized and strained heterocycles from non-catalysed and gold-catalysed conversions of β-carbolines. Org Biomol Chem 2012; 10:7167-76. [DOI: 10.1039/c2ob25755f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Domínguez G, Pérez‐Castells J. Chemistry of β‐Carbolines as Synthetic Intermediates. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100931] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gema Domínguez
- Departamento de Química, Facultad de Farmacia, Universidad San Pablo‐CEU, Urb. Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain, Fax: +34‐913‐510496
| | - Javier Pérez‐Castells
- Departamento de Química, Facultad de Farmacia, Universidad San Pablo‐CEU, Urb. Montepríncipe, 28668 Boadilla del Monte, Madrid, Spain, Fax: +34‐913‐510496
| |
Collapse
|
22
|
The reaction of tetrahydrochromeno[3,4-c]pyridines with activated alkynes. The first synthesis of tetrahydrochromeno[4,3-d]azocines. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Fodor L, Csomós P, Csámpai A, Sohár P, Holczbauer T, Kálmán A. Expected and unexpected reactions of 1,3-benzothiazine derivatives, II. Formation of isomeric 5,6-dihydro-1,5-benzothiazocines. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2010.11.136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Lipophilicity of novel antitumour and analgesic active 8-aryl-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-dione derivatives determined by reversed-phase HPLC and computational methods. Eur J Med Chem 2010; 45:2644-9. [PMID: 20172631 DOI: 10.1016/j.ejmech.2010.01.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/25/2010] [Accepted: 01/28/2010] [Indexed: 11/23/2022]
Abstract
Eight novel antitumour and analgesic active 8-aryl-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-diones (1-8) have been obtained as a bioactive set of substances and their lipophilicity has been studied. The logk values of fifteen reference compounds and eight newly synthesised imidazotriazine-3,4-dione derivatives were determined by reversed-phase high performance liquid chromatography (RP-HPLC) using mixtures of methanol and water as mobile phases with different methanol concentrations. The relationships between logk values of a set of reference compounds (fifteen compounds) and investigated ones (eight compounds) and concentration of methanol was used for determination of the logkwater values by extrapolation. The partition coefficients (logP) values for reference compounds measured experimentally were taken from the literature. The calibration equation was then obtained for the standards of known lipophilicity (logPHPLC) and logkwater. In next step the partition coefficients of new synthesised solutes were calculated from the calibration equation. For the comparison purpose, additionally the partition coefficients (logPcalc.) of the examined imidazotriazine-3,4-diones were calculated by means of the Pallas 3.1.1.2. software. It was found that logkwater values as a lipophilicity measure of derivatives correlate well with partition coefficients measured experimentally (logPHPLC). Correlation between the logPHPLC and the logarithm of partition coefficient calculated by Pallas software (logPcalc.) is not so satisfactory as that for values determined experimentally. Furthermore, it has been found that the lipophilicity variation of investigated imidazotriazine-3,4-diones (1-8) correlates well with their acute toxicity expressed as log(1/LD50). The drug-likeness of all the bioactive 8-aryl-2,6,7,8-tetrahydroimidazo[2,1-c][1,2,4]triazine-3,4-diones was assessed on the basis of their structural properties by applying Lipniski's rule of five. The solutes have all four parameters important for the favourable pharmacokinetics in the human body that would make them likely orally active drugs in humans.
Collapse
|
25
|
Voskressensky LG, Borisova TN, Vorob’ev IV, Postika NM, Sorokina EA, Varlamov AV. Tandem transformations of 10-substituted tetrahydrobenzo[b][1,6]naphthyridines resulted from the Michael addition of the nitrogen atom of the tetrahydropyridine fragment to the triple bond of activated alkynes. Russ Chem Bull 2009. [DOI: 10.1007/s11172-008-0200-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Khan MTH. Molecular interactions of cholinesterases inhibitors using in silico methods: current status and future prospects. N Biotechnol 2009; 25:331-46. [PMID: 19491049 DOI: 10.1016/j.nbt.2009.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a low amount of acetylcholine (ACh) in hippocampus and cortex. Acetylcholinesterase (AChE) is one of the most important enzymes in many living organisms including human being and other vertebrates, insects like mosquitoes, among others. Several reports have been published where it has been clearly shown that the genesis of amyloid protein plaques associated with AD is connected to modifications of both AChE and butyrylcholinesterase (BChE), since the plaque is significantly decreased in AD patients using cholinesterase inhibitors (ChEIs). This review gives some examples of these inhibitors discovered during past couple of years that have shown very prominent interactions at the active site triad of the proteins as well as different other parts of the active site like, peripheral anionic site (PAS), oxyanionic hole, anionic subsite or acyl binding pocket (ABP). Most of the inhibition and their interactions have been visualized by X-ray crystallography, but some of the other inhibitors have been studied either by molecular docking or molecular dynamic (MD) simulations or by both the in silico methods. Some of these prominent studies have been crucially observed and reported here.
Collapse
Affiliation(s)
- Mahmud Tareq Hassan Khan
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway(1)
| |
Collapse
|
27
|
Hung TM, Ngoc TM, Youn UJ, Min BS, Na M, Thuong PT, Bae K. Anti-amnestic Activity of Pseudocoptisine from Corydalis Tuber. Biol Pharm Bull 2008; 31:159-62. [DOI: 10.1248/bpb.31.159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | | | | | | | - MinKyun Na
- College of Pharmacy, Chungnam National University
| | | | - KiHwan Bae
- College of Pharmacy, Chungnam National University
| |
Collapse
|
28
|
Hung TM, Na M, Min BS, Ngoc TM, Lee I, Zhang X, Bae K. Acetylcholinesterase inhibitory effect of lignans isolated fromSchizandra chinensis. Arch Pharm Res 2007; 30:685-90. [PMID: 17679544 DOI: 10.1007/bf02977628] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The hexane extract of the fruit of Schizandra chinensis (Schisandraceae) was found to show significant inhibition of the activity of acetylcholinesterase enzyme (AChE). In further studies, fourteen lignans were isolated, and evaluated for their inhibitory effect on AChE. The compounds having both aromatic methylenedioxy and hydroxyl groups on their cyclooctadiene ring, such as gomisin C (6), gomisin G (7), gomisin D (8), schisandrol B (11) and gomisin A (13), entirely inhibited AChE in dose dependent manners, with IC50 values of 6.71 +/- 0.53, 6.55 +/- 0.31, 7.84 +/- 0.62, 12.57 +/- 1.07 and 13.28 +/- 1.68 microM, respectively. These results indicate that the lignans could potentially be a potent class of AChE inhibitors.
Collapse
Affiliation(s)
- Tran Manh Hung
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | | | | | |
Collapse
|