1
|
Feral A, Martin AR, Desfoux A, Amblard M, Vezenkov LL. Covalent-reversible peptide-based protease inhibitors. Design, synthesis, and clinical success stories. Amino Acids 2023; 55:1775-1800. [PMID: 37330416 DOI: 10.1007/s00726-023-03286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/19/2023]
Abstract
Dysregulated human peptidases are implicated in a large variety of diseases such as cancer, hypertension, and neurodegeneration. Viral proteases for their part are crucial for the pathogens' maturation and assembly. Several decades of research were devoted to exploring these precious therapeutic targets, often addressing them with synthetic substrate-based inhibitors to elucidate their biological roles and develop medications. The rational design of peptide-based inhibitors offered a rapid pathway to obtain a variety of research tools and drug candidates. Non-covalent modifiers were historically the first choice for protease inhibition due to their reversible enzyme binding mode and thus presumably safer profile. However, in recent years, covalent-irreversible inhibitors are having a resurgence with dramatic increase of their related publications, preclinical and clinical trials, and FDA-approved drugs. Depending on the context, covalent modifiers could provide more effective and selective drug candidates, hence requiring lower doses, thereby limiting off-target effects. Additionally, such molecules seem more suitable to tackle the crucial issue of cancer and viral drug resistances. At the frontier of reversible and irreversible based inhibitors, a new drug class, the covalent-reversible peptide-based inhibitors, has emerged with the FDA approval of Bortezomib in 2003, shortly followed by 4 other listings to date. The highlight in the field is the breathtakingly fast development of the first oral COVID-19 medication, Nirmatrelvir. Covalent-reversible inhibitors can hipothetically provide the safety of the reversible modifiers combined with the high potency and specificity of their irreversible counterparts. Herein, we will present the main groups of covalent-reversible peptide-based inhibitors, focusing on their design, synthesis, and successful drug development programs.
Collapse
Affiliation(s)
- Anthony Feral
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Muriel Amblard
- IBMM, University Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
2
|
Kircheis R, Haasbach E, Lueftenegger D, Heyken WT, Ocker M, Planz O. NF-κB Pathway as a Potential Target for Treatment of Critical Stage COVID-19 Patients. Front Immunol 2020; 11:598444. [PMID: 33362782 PMCID: PMC7759159 DOI: 10.3389/fimmu.2020.598444] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/27/2020] [Indexed: 12/15/2022] Open
Abstract
Patients infected with SARS-CoV-2 show a wide spectrum of clinical manifestations ranging from mild febrile illness and cough up to acute respiratory distress syndrome, multiple organ failure, and death. Data from patients with severe clinical manifestations compared to patients with mild symptoms indicate that highly dysregulated exuberant inflammatory responses correlate with severity of disease and lethality. Epithelial-immune cell interactions and elevated cytokine and chemokine levels, i.e. cytokine storm, seem to play a central role in severity and lethality in COVID-19. The present perspective places a central cellular pro-inflammatory signal pathway, NF-κB, in the context of recently published data for COVID-19 and provides a hypothesis for a therapeutic approach aiming at the simultaneous inhibition of whole cascades of pro-inflammatory cytokines and chemokines. The simultaneous inhibition of multiple cytokines/chemokines is expected to have much higher therapeutic potential as compared to single target approaches to prevent cascade (i.e. redundant, triggering, amplifying, and synergistic) effects of multiple induced cytokines and chemokines in critical stage COVID-19 patients.
Collapse
Affiliation(s)
| | - Emanuel Haasbach
- Institute of Cell Biology and Immunology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | | | | | - Matthias Ocker
- Institute for Surgical Research, Philipps University of Marburg, Marburg, Germany
| | - Oliver Planz
- Institute of Cell Biology and Immunology, Eberhard Karls University Tuebingen, Tuebingen, Germany
| |
Collapse
|
3
|
Konnert L, Lamaty F, Martinez J, Colacino E. Recent Advances in the Synthesis of Hydantoins: The State of the Art of a Valuable Scaffold. Chem Rev 2017. [PMID: 28644621 DOI: 10.1021/acs.chemrev.7b00067] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The review highlights the hydantoin syntheses presented from the point of view of the preparation methods. Novel synthetic routes to various hydantoin structures, the advances brought to the classical methods in the aim of producing more sustainable and environmentally friendly procedures for the preparation of these biomolecules, and a critical comparison of the different synthetic approaches developed in the last twelve years are also described. The review is composed of 95 schemes, 8 figures and 528 references for the last 12 years and includes the description of the hydantoin-based marketed drugs and clinical candidates.
Collapse
Affiliation(s)
- Laure Konnert
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Frédéric Lamaty
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Jean Martinez
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| | - Evelina Colacino
- Université de Montpellier, Institut des Biomolécules Max Mousseron UMR 5247 CNRS - Universités Montpellier - ENSCM , Place E. Bataillon, Campus Triolet, cc 1703, 34095 Montpellier, France
| |
Collapse
|
4
|
The proteasome - victim or culprit in autoimmunity. Clin Immunol 2016; 172:83-89. [PMID: 27475228 DOI: 10.1016/j.clim.2016.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 12/25/2022]
Abstract
The ubiquitin proteasome system is closely connected to apoptosis, autophagy, signaling of inflammatory cytokines and generation of ligands for MHC class I antigen presentation. Proteasome function in the innate immune response becomes particularly evident in patients with proteasome-associated autoinflammatory syndromes (PRAAS), where disease causing mutations result in reduced proteasome activity. PRAAS can be classified as a novel type of interferonopathy, however the molecular mechanism and signaling pathways leading from impaired proteasome capacity, the accumulation of damaged proteins, and the induction of type I IFN-genes remain to be determined. In contrast, several studies have confirmed an up-regulation of inducible subunits of the proteasome in systemic autoimmune diseases. Since proteasome inhibition was shown to be efficacious in several in-vitro studies and animal models of autoimmune diseases, it is justified to investigate the application of proteasome inhibitors in human disease. In this context, a number of available proteasome inhibitors has been characterized as potent immune-suppressants. The mode of action of proteasome inhibition interferes with the quality control of the huge amounts of synthetized antibodies causing an unfolded protein response. Further effects of proteasome inhibition includes inhibition of NFκB activation as well as direct activation of intrinsic and extrinsic pathways of apoptosis. The preliminary clinical work on proteasome inhibition in autoimmune diseases comprises only few studies in small cohorts with promising effects, which needs to be confirmed in controlled clinical trials.
Collapse
|
5
|
Computational Approaches for the Discovery of Human Proteasome Inhibitors: An Overview. Molecules 2016; 21:molecules21070927. [PMID: 27438821 PMCID: PMC6274525 DOI: 10.3390/molecules21070927] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023] Open
Abstract
Proteasome emerged as an important target in recent pharmacological research due to its pivotal role in degrading proteins in the cytoplasm and nucleus of eukaryotic cells, regulating a wide variety of cellular pathways, including cell growth and proliferation, apoptosis, DNA repair, transcription, immune response, and signaling processes. The last two decades witnessed intensive efforts to discover 20S proteasome inhibitors with significant chemical diversity and efficacy. To date, the US FDA approved to market three proteasome inhibitors: bortezomib, carfilzomib, and ixazomib. However new, safer and more efficient drugs are still required. Computer-aided drug discovery has long being used in drug discovery campaigns targeting the human proteasome. The aim of this review is to illustrate selected in silico methods like homology modeling, molecular docking, pharmacophore modeling, virtual screening, and combined methods that have been used in proteasome inhibitors discovery. Applications of these methods to proteasome inhibitors discovery will also be presented and discussed to raise improvements in this particular field.
Collapse
|
6
|
Lobo MR, Kukino A, Tran H, Schabel MC, Springer CS, Gillespie GY, Grafe MR, Woltjer RL, Pike MM. Synergistic Antivascular and Antitumor Efficacy with Combined Cediranib and SC6889 in Intracranial Mouse Glioma. PLoS One 2015; 10:e0144488. [PMID: 26645398 PMCID: PMC4672903 DOI: 10.1371/journal.pone.0144488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 11/19/2015] [Indexed: 12/20/2022] Open
Abstract
Prognosis remains extremely poor for malignant glioma. Targeted therapeutic approaches, including single agent anti-angiogenic and proteasome inhibition strategies, have not resulted in sustained anti-glioma clinical efficacy. We tested the anti-glioma efficacy of the anti-angiogenic receptor tyrosine kinase inhibitor cediranib and the novel proteasome inhibitor SC68896, in combination and as single agents. To assess anti-angiogenic effects and evaluate efficacy we employed 4C8 intracranial mouse glioma and a dual-bolus perfusion MRI approach to measure Ktrans, relative cerebral blood flow and volume (rCBF, rCBV), and relative mean transit time (rMTT) in combination with anatomical MRI measurements of tumor growth. While single agent cediranib or SC68896 treatment did not alter tumor growth or survival, combined cediranib/SC68896 significantly delayed tumor growth and increased median survival by 2-fold, compared to untreated. This was accompanied by substantially increased tumor necrosis in the cediranib/SC68896 group (p<0.01), not observed with single agent treatments. Mean vessel density was significantly lower, and mean vessel lumen area was significantly higher, for the combined cediranib/SC68896 group versus untreated. Consistent with our previous findings, cediranib alone did not significantly alter mean tumor rCBF, rCBV, rMTT, or Ktrans. In contrast, SC68896 reduced rCBF in comparison to untreated, but without concomitant reductions in rCBV, rMTT, or Ktrans. Importantly, combined cediranib/SC68896 substantially reduced rCBF, rCBV. rMTT, and Ktrans. A novel analysis of Ktrans/rCBV suggests that changes in Ktrans with time and/or treatment are related to altered total vascular surface area. The data suggest that combined cediranib/SC68896 induced potent anti-angiogenic effects, resulting in increased vascular efficiency and reduced extravasation, consistent with a process of vascular normalization. The study represents the first demonstration that the combination of cediranib with a proteasome inhibitor substantially increases the anti-angiogenic efficacy produced from either agent alone, and synergistically slows glioma tumor growth and extends survival, suggesting a promising treatment which warrants further investigation.
Collapse
Affiliation(s)
- Merryl R. Lobo
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Ayaka Kukino
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Huong Tran
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Matthias C. Schabel
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Charles S. Springer
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
| | - G. Yancey Gillespie
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Marjorie R. Grafe
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Randall L. Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Martin M. Pike
- Advanced Imaging Research Center, Oregon Health and Science University, Portland, Oregon, United States of America
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
7
|
Jung ME, Chamberlain BT, Ho CLC, Gillespie EJ, Bradley KA. Structure-Activity Relationship of Semicarbazone EGA Furnishes Photoaffinity Inhibitors of Anthrax Toxin Cellular Entry. ACS Med Chem Lett 2014; 5:363-7. [PMID: 24900841 DOI: 10.1021/ml400486k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/26/2013] [Indexed: 11/28/2022] Open
Abstract
EGA, 1, prevents the entry of multiple viruses and bacterial toxins into mammalian cells by inhibiting vesicular trafficking. The cellular target of 1 is unknown, and a structure-activity relationship study was conducted in order to develop a strategy for target identification. A compound with midnanomolar potency was identified (2), and three photoaffinity labels were synthesized (3-5). For this series, the expected photochemistry of the phenyl azide moiety is a more important factor than the IC50 of the photoprobe in obtaining a successful photolabeling event. While 3 was the most effective reversible inhibitor of the series, it provided no protection to cells against anthrax lethal toxin (LT) following UV irradiation. Conversely, 5, which possessed weak bioactivity in the standard assay, conferred robust irreversible protection vs LT to cells upon UV photolysis.
Collapse
Affiliation(s)
- Michael E. Jung
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Brian T. Chamberlain
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Chi-Lee C. Ho
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Eugene J. Gillespie
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Kenneth A. Bradley
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
8
|
Kisselev AF, van der Linden WA, Overkleeft HS. Proteasome inhibitors: an expanding army attacking a unique target. ACTA ACUST UNITED AC 2012; 19:99-115. [PMID: 22284358 DOI: 10.1016/j.chembiol.2012.01.003] [Citation(s) in RCA: 413] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 12/30/2022]
Abstract
Proteasomes are large, multisubunit proteolytic complexes presenting multiple targets for therapeutic intervention. The 26S proteasome consists of a 20S proteolytic core and one or two 19S regulatory particles. The 20S core contains three types of active sites. Many structurally diverse inhibitors of these active sites, both natural product and synthetic, have been discovered in the last two decades. One, bortezomib, is used clinically for treatment of multiple myeloma, mantle cell lymphoma, and acute allograft rejection. Five more recently developed proteasome inhibitors are in trials for treatment of myeloma and other cancers. Proteasome inhibitors also have activity in animal models of autoimmune and inflammatory diseases, reperfusion injury, promote bone and hair growth, and can potentially be used as anti-infectives. In addition, inhibitors of ATPases and deubiquitinases of 19S regulatory particles have been discovered in the last decade.
Collapse
Affiliation(s)
- Alexei F Kisselev
- Department of Pharmacology and Toxicology, Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756, USA.
| | | | | |
Collapse
|
9
|
Proteasome inhibitors: Dozens of molecules and still counting. Biochimie 2010; 92:1530-45. [PMID: 20615448 DOI: 10.1016/j.biochi.2010.06.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 06/29/2010] [Indexed: 10/19/2022]
Abstract
The discovery of the proteasome in the late 80's as the core protease of what will be then called the ubiquitin-proteasome system, rapidly followed by the development of specific inhibitors of this enzyme, opened up a new era in biology in the 90's. Indeed, the first proteasome inhibitors were instrumental for understanding that the proteasome is a key actor in most, if not all, cellular processes. The recognition of the central role of this complex in intracellular proteolysis in turn fuelled an intense quest for novel compounds with both increased selectivity towards the proteasome and better bioavailability that could be used in fundamental research or in the clinic. To date, a plethora of molecules that target the proteasome have been identified or designed. The success of the proteasome inhibitor bortezomib (Velcade(®)) as a new drug for the treatment of Multiple Myeloma, and the ongoing clinical trials to evaluate the effect of several other proteasome inhibitors in various human pathologies, illustrate the interest for human health of these compounds.
Collapse
|
10
|
Mroczkiewicz M, Winkler K, Nowis D, Placha G, Golab J, Ostaszewski R. Studies of the Synthesis of All Stereoisomers of MG-132 Proteasome Inhibitors in the Tumor Targeting Approach. J Med Chem 2010; 53:1509-18. [DOI: 10.1021/jm901619n] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Michał Mroczkiewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Winkler
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Dominika Nowis
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Grzegorz Placha
- Department of Internal Diseases, Hypertension, and Vascular Disease, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Center of Biostructure Research, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
11
|
Roth P, Kissel M, Herrmann C, Eisele G, Leban J, Weller M, Schmidt F. SC68896, a novel small molecule proteasome inhibitor, exerts antiglioma activity in vitro and in vivo. Clin Cancer Res 2009; 15:6609-18. [PMID: 19825946 DOI: 10.1158/1078-0432.ccr-09-0548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastomas are among the most lethal neoplasms, with a median survival of <1 year. Modulation of the proteasome function has emerged as a novel approach to cancer pharmacotherapy. Here, we characterized the antitumor properties of SC68896, a novel small molecule proteasome inhibitor. EXPERIMENTAL DESIGN Different tumor cell lines were tested by crystal violet staining for sensitivity to SC68896, given alone or in combination with death ligands. The molecular mechanisms mediating SC68896-induced cell death and changes in cell cycle progression were assessed by immunoblot and flow cytometry. An orthotopic human glioma xenograft model in nude mice was used to examine the in vivo activity of SC68896. RESULTS SC68896 inhibits the proliferation of cell lines of different types of cancer, including malignant glioma. Exposure of LNT-229 glioma cells to SC68896 results in a concentration- and time-dependent inhibition of the proteasome, with a consequent accumulation of p21 and p27 proteins, cell cycle arrest, caspase cleavage, and induction of apoptosis. Using RNA interference, we show that the effect of SC68896 on glioma cells is facilitated by wild-type p53. SC68896 sensitizes glioma cells to tumor necrosis factor-related apoptosis-inducing ligand and CD95 ligand and up-regulates the cell surface expression of the tumor necrosis factor-related apoptosis-inducing ligand receptor cell death receptors 4 and 5, which may contribute to this sensitization. Intracerebral glioma-bearing nude mice treated either i.p. or intratumorally with SC68896 experience prolonged survival. CONCLUSIONS SC68896 is the first proteasome inhibitor that exerts antiglioma activity in vivo. It may represent a novel prototype agent for the treatment of malignant gliomas and warrants clinical evaluation.
Collapse
Affiliation(s)
- Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
12
|
Baumann P, Müller K, Mandl-Weber S, Leban J, Doblhofer R, Ammendola A, Baumgartner R, Oduncu F, Schmidmaier R. The peptide-semicarbazone S-2209, a representative of a new class of proteasome inhibitors, induces apoptosis and cell growth arrest in multiple myeloma cells. Br J Haematol 2009; 144:875-86. [DOI: 10.1111/j.1365-2141.2008.07570.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|