1
|
Yao H, Ma S, Huang J, Si X, Yang M, Song W, Lv G, Wang G. Trojan-Horse Strategy Targeting the Gut-Liver Axis Modulates Gut Microbiome and Reshapes Microenvironment for Orthotopic Hepatocellular Carcinoma Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2310002. [PMID: 39373804 DOI: 10.1002/advs.202310002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Indexed: 10/08/2024]
Abstract
Reversing the hepatic inflammatory and immunosuppressive microenvironment caused by gut microbiota-derived lipopolysaccharides (LPS), accumulating to the liver through the gut-liver axis, is crucial for suppressing hepatocellular carcinoma (HCC) and metastasis. However, synergistically manipulating LPS-induced inflammation and gut microbiota remains a daunting task. Herein, a Trojan-horse strategy is proposed using an oral dextran-carbenoxolone (DEX-CBX) conjugate, which combines prebiotic and glycyrrhetinic acid (GA) homologs, to targeted delivery GA to HCC through the gut-liver axis for simultaneous modulation of hepatic inflammation and gut microbiota. In the orthotopic HCC model, a 95-45% reduction in the relative abundances of LPS-associated microbiota is observed, especially Helicobacter, caused by DEX-CBX treatment over phosphate-buffered saline (PBS) treatment. Notably, a dramatic increase (37-fold over PBS) in the abundance of Akkermansia, which is known to strengthen systemic immune response, is detected. Furthermore, DEX-CBX significantly increased natural killer T cells (5.7-fold) and CD8+ T cells (3.9-fold) as well as decreased M2 macrophages (59% reduction) over PBS treatment, resulting in a tumor suppression rate of 85.4%. DEX-CBX is anticipated to offer a novel strategy to precisely modulate hepatic inflammation and the gut microbiota to address both the symptoms and root causes of LPS-induced immunosuppression in HCC.
Collapse
Affiliation(s)
- Haochen Yao
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No.1 Xinmin Street, Changchun, Jilin, 130021, China
- Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Sheng Ma
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
| | - Juanjuan Huang
- Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, 130012, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
| | - Ming Yang
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun, 130022, China
- Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, 5625 Renmin Road, Changchun, 130022, China
| | - Guoyue Lv
- Hepatobiliary and Pancreatic Surgery Department, General Surgery Center, First Hospital of Jilin University, No.1 Xinmin Street, Changchun, Jilin, 130021, China
| | - Guoqing Wang
- Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
2
|
Baltina L, Karimova E, Nugumanov T, Petrova S, Gabdrakhmanova S, Khisamutdinova R. Synthesis, modification and biological activity of 2,3-indoles of Glycyrrhetinic acid. Nat Prod Res 2024:1-6. [PMID: 38454327 DOI: 10.1080/14786419.2024.2326844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The synthesis of 2,3-indoles of Glycyrrhetinic acid (GLA) and its methyl ester was carried out by the Fischer reaction. Reductive transformations of GLA methyl ester 2,3-indole 3a were carried out to obtain 11-deoxo- and 9,12-diene analogs. N-methylation of 2,3-indole 3a gave N-methyl-indole-11-oxo-18β-olean-12-en-30-oic acid. The antiulcer and anti-inflammatory activity of 2,3-indole 3a was studied in rats and mice. It was found, compound 3a exhibied a pronounced antiulcer activity in the indomethacin model of ulcers in rats and anti-inflammatory activity in the carrageenan model of acute edoema in mice, at a dose of 50 mg/kg. This is the first report of anti-ulcer and anti-inflammatory activities of 2,3-indolo-GLA derivatives.
Collapse
Affiliation(s)
- Lidia Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Elza Karimova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Timur Nugumanov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Svetlana Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Svetlana Gabdrakhmanova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Regina Khisamutdinova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| |
Collapse
|
3
|
Rogati F, Maioli C, Lauro G, Caprioglio D, Imperio D, Del Grosso E, Botta B, Mannina L, Bifulco G, Ingallina C, Minassi A. A Classic Photochemical Approach Inducing an Unexpected Rearrangement: Exploring the Photoreactivity of Pentacyclic Triterpenic Acids. JOURNAL OF NATURAL PRODUCTS 2023; 86:1025-1032. [PMID: 37036806 DOI: 10.1021/acs.jnatprod.3c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The discovery of new bioactivities is closely related to the generation of novel scaffolds, and in the past few years different strategies have been proposed to obtain unknown architectures from the manipulation of known compounds. In the present study, we exploited a vintage photochemical approach for the discovery of an unexpected pathway of reactivity related to Δ1-3-oxo-pentacyclic triterpenic acids gaining access to a new class of natural-unnatural 5(10→1)abeo-pentacyclic triterpenic acids.
Collapse
Affiliation(s)
- Federica Rogati
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Chiara Maioli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Gianluigi Lauro
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Diego Caprioglio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Daniela Imperio
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Erika Del Grosso
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
| | - Bruno Botta
- Dipartimento di Chimica e Tecnologie del Farmaco, Università la Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Luisa Mannina
- Dipartimento di Chimica e Tecnologie del Farmaco, Università la Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Giuseppe Bifulco
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Cinzia Ingallina
- Dipartimento di Chimica e Tecnologie del Farmaco, Università la Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Alberto Minassi
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy
- PlantaChem srls, Via Canobio 4/6, 28100 Novara, Italy
| |
Collapse
|
4
|
Luchnikova NA, Tarasova EV, Grishko VV, Ivshina IB. Rhodococcus rhodochrous IEGM 1360, an Effective Biocatalyst of C3 Oxidative Transformation of Oleanane Triterpenoids. Microbiology (Reading) 2023; 92:204-214. [PMID: 37122534 PMCID: PMC10120485 DOI: 10.1134/s0026261722603360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 05/02/2023] Open
Abstract
The optimal conditions for C3 oxidative biotransformation of 1.0 g/L pentacyclic triterpenoids oleanolic (OA) and glycyrrhetinic (GA) acids were determined using the resting cells of Rhodococcus rhodochrous IEGM 1360 from the Regional Specialised Collection of Alkanotrophic Microorganisms. Resting cell suspensions (OD600 2.6, pH 8.0, and OD600 2.2, pH 6.0) showed the highest catalytic activity against OA and GA, resulting in the formation of 61 and 100% of their 3-oxo derivatives, respectively. Using phase contrast, atomic force, and confocal laser scanning microscopy, an adaptive response of rhodococci to the effects of OA and GA was revealed. In silico, the apoptotic activity of 3-oxo-OA and antioxidant activity of 3-oxo-GA have been assumed. In vitro, a pronounced antibacterial activity of 3-oxo-OA against Micrococcus luteus, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis was shown. The absence of toxic effects of the above triterpenoids and their 3-oxo derivatives on aquatic objects and plants was demonstrated in silico and in vitro, respectively. Supplementary Information The online version contains supplementary material available at 10.1134/S0026261722603360.
Collapse
Affiliation(s)
- N. A. Luchnikova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, 614081 Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State University, 614990 Perm, Russia
| | - E. V. Tarasova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, 614081 Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State University, 614990 Perm, Russia
| | - V. V. Grishko
- Institute of Technical Chemistry, Perm Federal Research Center, 614013 Ural Branch, Russian Academy of Sciences, Perm, Russia
| | - I. B. Ivshina
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, 614081 Ural Branch, Russian Academy of Sciences, Perm, Russia
- Perm State University, 614990 Perm, Russia
| |
Collapse
|
5
|
Langer D, Wicher B, Dutkiewicz Z, Bendzinska-Berus W, Bednarczyk-Cwynar B, Tykarska E. Polymorphism of Butyl Ester of Oleanolic Acid—The Dominance of Dispersive Interactions over Electrostatic. Int J Mol Sci 2023; 24:ijms24076572. [PMID: 37047544 PMCID: PMC10095383 DOI: 10.3390/ijms24076572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Oleanolic (OA) and glycyrrhetinic acids (GE), as well as their derivatives, show a variety of pharmacological properties. Their crystal structures provide valuable information related to the assembly modes of these biologically active compounds. In the known-to-date crystals of OA esters, their 11-oxo derivatives, and GE ester crystals, triterpenes associate, forming different types of ribbons and layers whose construction is based mainly on van der Waals forces and weak C-H···O interactions. New crystal structures of 11-oxo OA methyl ester and the polymorph of OA butyl ester reveal an alternative aggregation mode. Supramolecular architectures consist of helical chains which are stabilized by hydrogen bonds of O-H···O type. It was found that two polymorphic forms of butyl OA ester (layered and helical) are related monotropically. In a structure of metastable form, O-H···O hydrogen bonds occur, while the thermodynamically preferred phase is governed mainly by van der Waals interactions. The intermolecular interaction energies calculated using CrystalExplorer, PIXEL, and Psi4 programs showed that even in motifs formed through O-H···O hydrogen bonds, the dispersive forces have a significant impact.
Collapse
Affiliation(s)
- Dominik Langer
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Zbigniew Dutkiewicz
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Wioletta Bendzinska-Berus
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| |
Collapse
|
6
|
Small Structural Differences Govern the Carbonic Anhydrase II Inhibition Activity of Cytotoxic Triterpene Acetazolamide Conjugates. Molecules 2023; 28:molecules28031009. [PMID: 36770674 PMCID: PMC9919727 DOI: 10.3390/molecules28031009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Acetylated triterpenoids betulin, oleanolic acid, ursolic acid, and glycyrrhetinic acid were converted into their succinyl-spacered acetazolamide conjugates. These conjugates were screened for their inhibitory activity onto carbonic anhydrase II and their cytotoxicity employing several human tumor cell lines and non-malignant fibroblasts. As a result, the best inhibitors were derived from betulin and glycyrrhetinic acid while those derived from ursolic or oleanolic acid were significantly weaker inhibitors but also of diminished cytotoxicity. A betulin-derived conjugate held a Ki = 0.129 μM and an EC50 = 8.5 μM for human A375 melanoma cells.
Collapse
|
7
|
Ni Q, Gao Y, Yang X, Zhang Q, Guo B, Han J, Chen S. Analysis of the network pharmacology and the structure-activity relationship of glycyrrhizic acid and glycyrrhetinic acid. Front Pharmacol 2022; 13:1001018. [PMID: 36313350 PMCID: PMC9606671 DOI: 10.3389/fphar.2022.1001018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Licorice, a herbal product derived from the root of Glycyrrhiza species, has been used as a sweetening agent and traditional herbal medicine for hundreds of years. Glycyrrhizic acid (GL) and glycyrrhetinic acid (GA) are the most important active ingredients in licorice. Both GL and GA have pharmacological effects against tumors, inflammation, viral infection, liver diseases, neurological diseases, and metabolic diseases. However, they also exhibit differences. KEGG analysis indicated that licorice is involved in neuroactive ligand‒receptor interactions, while 18β-GA is mostly involved in arrhythmogenic right ventricular cardiomyopathy. In this article, we comprehensively review the therapeutic potential of GL and GA by focusing on their pharmacological effects and working mechanisms. We systemically examine the structure-activity relationship of GL, GA and their isomers. Based on the various pharmacological activities of GL, GA and their isomers, we propose further development of structural derivatives of GA after chemical structure modification, with less cytotoxicity but higher targeting specificity. More research is needed on the clinical applications of licorice and its active ingredients.
Collapse
Affiliation(s)
- Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affifiliated to Shandong First Medical University, Jinan, Shandong, China
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuxuan Gao
- Postdoctoral Mobile Station, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xiuzhen Yang
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qingmeng Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, Guangdong, China
| | - Jinxiang Han
- Biomedical Sciences College and Shandong Medicinal Biotechnology Centre, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| | - Shaoru Chen
- Department of Basic Research, Guangzhou Laboratory, Guangzhou, Guangdong, China
- *Correspondence: Jinxiang Han, ; Shaoru Chen,
| |
Collapse
|
8
|
Baltina LA, Baltina LA, Nugumanov TR, Karimova ER. Synthesis of 2-Arylidene-3-Oxo-Derivatives of Glycyrrhetic Acid. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03766-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Langer D, Wicher B, Bendzinska-Berus W, Bednarczyk-Cwynar B, Tykarska E. Insights into isostructural and non-isostructural crystals of esters of oleanolic acid and its 11-oxo derivatives. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2022; 78:606-617. [PMID: 35975827 DOI: 10.1107/s2052520622005972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Synthesis and structural characterization of new esters of oleanolic acid and its 11-oxo derivatives are reported. Compounds crystallize in four isostructural groups, each containing one to four structures. Single-crystal X-ray analysis revealed that molecules belonging to non-isostructural groups self-associate according to two schemes that describe also supramolecular architectures in crystals of glycyrrhetinic acid derivatives. Structural motifs arise as a result of van der Waals forces. Parameters introduced for the analysis of one- and two-dimensional assemblies allow the comparison of motifs in isostructural and non-isostructural crystals, including polymorphs, and a qualitative assessment of differences in molecular self-assembly. One-, two- or three-dimensional similarity has been confirmed by XPac calculations.
Collapse
Affiliation(s)
- Dominik Langer
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwladzka 6, Poznan, 60-780, Poland
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwladzka 6, Poznan, 60-780, Poland
| | - Wioletta Bendzinska-Berus
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwladzka 6, Poznan, 60-780, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwladzka 6, Poznan, 60-780, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwladzka 6, Poznan, 60-780, Poland
| |
Collapse
|
10
|
Antiulcer Activity of 3-Hydroxyimino Derivatives of Minor Triterpenoids of Licorice Root. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Betulinic acid and glycyrrhetinic acid derived piperazinyl spacered rhodamine B conjugates are highly cytotoxic and necrotic. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Hypoglycemic Activity of Glycyrrhizic Acid and Some of its Derivatives in the Alloxan Diabetes Model in Rats. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, Taifa S, Ahmad SB, Arafah A, Sameer AS, Khan R, Qamar W, Rasool S, Ahmad A. Preclinical Evidence for the Pharmacological Actions of Glycyrrhizic Acid: A Comprehensive Review. Curr Drug Metab 2021; 21:436-465. [PMID: 32562521 DOI: 10.2174/1389200221666200620204914] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adil Farooq
- RAKCOPS, RAK Medical and Health Sciences University, Ras AL Khaimah, United Arab Emirates
| | - Rayeesa Ali
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sana Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Nazirah Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Samia Majeed
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Syed Taifa
- Division of Animal Nutrition, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aga Syed Sameer
- Department of Basic Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Centre (KAIMRC), Jeddah, Saudi Arabia
| | - Rehan Khan
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Mana pgement, Faculty of Forestry, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anas Ahmad
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| |
Collapse
|
14
|
Baltina LA, Lai HC, Liu YC, Huang SH, Hour MJ, Baltina LA, Nugumanov TR, Borisevich SS, Khalilov LM, Petrova SF, Khursan SL, Lin CW. Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorg Med Chem 2021; 41:116204. [PMID: 34022526 DOI: 10.1016/j.bmc.2021.116204] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023]
Abstract
Zika virus (ZIKV) is an arbovirus of the Flaviviridae family (Flavivirus genus), causing serious neurological complications, such as Guillain-Barre Syndrome (GBS) in adults and fetal microcephaly. Licensed vaccines or specific antiviral agents against ZIKV do not currently exist. Therefore, the search and development of anti-ZIKV agents are particularly relevant and necessary. Glycyrrhetinic (3β-hydroxy-11-oxo-18βH-Olean-12-en-30-oic acid) (GA) 1 is one of the well-known pentacyclic triterpenoids isolated from licorice root (Glycyrrhiza glabra L., Gl. uralensis Fisher) (Leguminosae) possessing many biological features, including antiviral activity. This paper is devoted to the synthesis and studies of a number of nitrogen and sulfur-containing GA derivatives as ZIKV inhibitors. Sixteen GA and related triterpenoids (3β-hydroxy-18βH-Olean-12-en-30-oic acid and 3β-hydroxy-11-oxo-18βH-Olean-12(13),18(19)-dien-30-oic acid) derivatives were synthesized (amides, semi- and thiosemicarbazones, and 1,2,3-thiadiazoles) and antiviral activity against ZIKV was studied in vitro, including the inhibitory assays on cytopathic effect (CPE), viral protein synthesis, and replication stages. Four active compounds were found among GA derivatives tested, 13 (3-O-acetyl-30-aminopyridine GA), 16 (3-semicarbazone-30-butyl GA), 18 (1,2,3-thiadiazole-30-methyl GA), and 19 (1,2,3-thiadiazole-30-butyl GA) with IC50 < 1 μM against ZIKV replication. These compounds had a stronger inhibitory activity on ZIKV-induced CPE and viral protein translation in infected cells as compared to derivatives of 11-desoxo-GA. The most active compound was amide 13 (IC50 0.13 μM, TI ˃ 384). Time-of-addition assays indicated that 1,2,3-thiadiazole ring is important for inhibiting viral entry stage (compounds 18 and 19), while the 30-butyl ester group influenced on post-entry stage (compound 19). The molecular docking analysis demonstrated that lead compounds 13 and 19 forms a hydrogen-bond interaction with the catalytic triad (His51-Asp75-Ser135) of ZIKV NS2B-NS3 protease. Therefore, the active GA derivatives are promising for developing new antiviral agents against ZIKV infection.
Collapse
Affiliation(s)
- Lidia A Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.
| | - Hsueh-Chou Lai
- Division of Hepato-gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 40447, Taiwan, ROC
| | - Ya-Chi Liu
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan, ROC; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC
| | - Su-Hua Huang
- Department of Biotechnology, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan, ROC
| | - Lia A Baltina
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Tagir R Nugumanov
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Sophia S Borisevich
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Leonard M Khalilov
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Centre of the Russian Academy of Sciences, 141 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Svetlana F Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Sergey L Khursan
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, 91, Hsueh-Shih Rd., Taichung 40402, Taiwan, ROC; Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC; Department of Biotechnology, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, ROC.
| |
Collapse
|
15
|
|
16
|
Sueki S, Matsuyama M, Watanabe A, Kanemaki A, Katakawa K, Anada M. Ruthenium-Catalyzed Dehydrogenation of Alcohols with Carbodiimide via a Hydrogen Transfer Mechanism. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Shunsuke Sueki
- Faculty of Pharmacy; Musashino University; Nishitokyo Tokyo 202-8585 Japan
| | - Mizuki Matsuyama
- Faculty of Pharmacy; Musashino University; Nishitokyo Tokyo 202-8585 Japan
| | - Azumi Watanabe
- Faculty of Pharmacy; Musashino University; Nishitokyo Tokyo 202-8585 Japan
| | - Arata Kanemaki
- Faculty of Pharmacy; Musashino University; Nishitokyo Tokyo 202-8585 Japan
| | - Kazuaki Katakawa
- Faculty of Pharmacy; Musashino University; Nishitokyo Tokyo 202-8585 Japan
| | - Masahiro Anada
- Faculty of Pharmacy; Musashino University; Nishitokyo Tokyo 202-8585 Japan
| |
Collapse
|
17
|
Cai D, Zhang Z, Meng Y, Zhu K, Chen L, Yu C, Yu C, Fu Z, Yang D, Gong Y. Efficient synthesis of piperazinyl amides of 18β-glycyrrhetinic acid. Beilstein J Org Chem 2020; 16:798-808. [PMID: 32395183 PMCID: PMC7188925 DOI: 10.3762/bjoc.16.73] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
In the present study, a practical method to prepare piperazinyl amides of 18β-glycyrrhetinic acid was developed. Two main procedures for the construction of important intermediate 8 are discussed. One procedure involves the amidation of 1-Boc-piperazine with 3-acetyl-18β-glycyrrhetinic acid, prepared by the reaction of 18β-glycyrrhetinic acid with acetic anhydride without any solvent at 130 °C. The other procedure to prepare compound 8 involves the amidation of 18β-glycyrrhetinic acid followed by the esterification with acetic anhydride. Finally, compound 8 underwent N-Boc deprotection to prepare product 4. To ascertain the scope of the reaction, another C-3 ester derivative 17 was tested under the optimized reaction conditions. Furthermore, the reasons for the appearance of byproducts were elucidated. Crystallographic data of a selected piperazinyl amide is reported.
Collapse
Affiliation(s)
- Dong Cai
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou, 121001, China
| | - ZhiHua Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou, 121001, China
| | - Yufan Meng
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, China
| | - KaiLi Zhu
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, China
| | - LiYi Chen
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, China
| | - ChangXiang Yu
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, China
| | - ChangWei Yu
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, China
| | - ZiYi Fu
- College of Pharmacy, Jinzhou Medical University, Jinzhou, 121001, China
| | - DianShen Yang
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou, 121001, China
| | - YiXia Gong
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou, 121001, China.,College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| |
Collapse
|
18
|
Vydrina VA, Kravchenko AA, Sataraev DA, Sayakhov RR, Tolstikov AG, Ishmuratov GY. Synthesis and Properties of Methyl 3,4-Epoxy-3,11-dioxo-3,4seco-18β-olean-12-ene-30-carboxylate in a New Reaction of Organoaluminium Compounds. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020020116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Brandes B, Hoenke S, Fischer L, Csuk R. Design, synthesis and cytotoxicity of BODIPY FL labelled triterpenoids. Eur J Med Chem 2020; 185:111858. [DOI: 10.1016/j.ejmech.2019.111858] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
|
20
|
Liang S, Li M, Yu X, Jin H, Zhang Y, Zhang L, Zhou D, Xiao S. Synthesis and structure-activity relationship studies of water-soluble β-cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents. Eur J Med Chem 2019; 166:328-338. [PMID: 30731401 PMCID: PMC7115653 DOI: 10.1016/j.ejmech.2019.01.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022]
Abstract
Glycyrrhetinic acid (GA) is a major constituent of the herb Glycyrrhiza glabra, and many of its derivatives demonstrate a broad spectrum of antiviral activities. In the current study, 18 water-soluble β-cyclodextrin (CD)-GA conjugates, in which GA was covalently coupled to the primary face of β-CD using 1,2,3-triazole moiety along with varying lengths of linker, were synthesized via copper-catalyzed azide-alkyl cycloaddition reaction. Benefited from the attached β-CD moiety, all these conjugates showed lower hydrophobicity (AlogP) compared with their parent compound GA. With the exception of per-O-methylated β-CD-GA conjugate (35), all other conjugates showed no significant cytotoxicity to MDCK cells, and these conjugates were then screened against A/WSN/33 (H1N1) virus using the cytopathic effect assay. The preliminary results indicated that six conjugates showed promising antiviral activity, and the C-3 and C-30 of GA could tolerate some modifications. Our findings suggested that GA could be used as a lead compound for the development of potential anti-influenza virus agents.
Collapse
Affiliation(s)
- Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Man Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaojuan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yongmin Zhang
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
21
|
Zígolo MA, Salinas M, Alché L, Baldessari A, Liñares GG. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study. Bioorg Chem 2018; 78:210-219. [DOI: 10.1016/j.bioorg.2018.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/09/2018] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
|
22
|
Abdel Bar FM, Elimam DM, Mira AS, El-Senduny FF, Badria FA. Derivatization, molecular docking and in vitro acetylcholinesterase inhibitory activity of glycyrrhizin as a selective anti-Alzheimer agent. Nat Prod Res 2018; 33:2591-2599. [PMID: 29656653 DOI: 10.1080/14786419.2018.1462177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Acetylcholinesterase inhibitors (AChE-Is) increase both level and duration of action of acetylcholine (ACh); thus, alleviate symptoms of Alzheimer's disease (AD). Glycyrrhizin, is the main active compound in liquorice root. Its aglycone, glycyrrhetinic acid, has shown several beneficial pharmacological activities. This study reports the synthesis and screening of a series of glycyrrhetinic acid analogs as AChE-Is. Fourteen derivatives were prepared, of which five derivatives are recorded as new viz., 3-phenyl-carbamoyl-18β-glycyrrhetinic acid (J9), 3-acetyl-18β-glycyrrhetinic-30-anilinamide (J10), 3-acetyl-18β-glycyrrhetinic-30-ethanolamide (J11), 3-acetyl-18β-glycyrrhetinic-30-n-butylamide (J12) and 18β-glycyrrhetinic acid-30-prenyl ester (J14), in addition to nine known derivatives (J1-J8 & J13). Compounds J12, J11, J0 and J3 showed remarkable AChE-I activity with IC50 values of 3.43, 5.39, 6.27 and 8.68 μM, respectively. These results are in full agreement with the docking study. The active compounds were non-cytotoxic to normal cells (WI-38).
Collapse
Affiliation(s)
- Fatma M Abdel Bar
- a Faculty of Pharmacy, Department of Pharmacognosy , Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia.,b Faculty of Pharmacy, Department of Pharmacognosy , Mansoura University , Mansoura , Egypt
| | - Diaaeldin M Elimam
- c Faculty of Pharmacy, Department of Pharmacognosy , Kafrelsheikh University , Kafr ElSheikh , Egypt
| | - Amira S Mira
- b Faculty of Pharmacy, Department of Pharmacognosy , Mansoura University , Mansoura , Egypt
| | - Fardous F El-Senduny
- d Faculty of Science, Chemistry Department, Biochemistry Division , Mansoura University , Mansoura , Egypt
| | - Farid A Badria
- b Faculty of Pharmacy, Department of Pharmacognosy , Mansoura University , Mansoura , Egypt
| |
Collapse
|
23
|
Bume DD, Harry SA, Pitts CR, Lectka T. Sensitized Aliphatic Fluorination Directed by Terpenoidal Enones: A “Visible Light” Approach. J Org Chem 2018; 83:1565-1575. [DOI: 10.1021/acs.joc.7b02807] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Desta Doro Bume
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Stefan Andrew Harry
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Cody Ross Pitts
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Thomas Lectka
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Effective Synthesis of 3β-Hydroxy-18βH-Olean-9(11),12 (13)-Dien-30-Oic Acid. Chem Nat Compd 2016. [DOI: 10.1007/s10600-016-1833-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
25
|
Langer D, Wicher B, Szczołko W, Gdaniec M, Tykarska E. Self-assembly modes of glycyrrhetinic acid esters in view of the crystal packing of related triterpene molecules. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2016; 72:584-92. [PMID: 27484379 DOI: 10.1107/s2052520616008180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/19/2016] [Indexed: 11/10/2022]
Abstract
The crystal structures of three ester derivatives of glycyrrhetinic acid (GE) are reported. X-ray crystallography revealed that despite differences in the size of the ester substituents (ethyl, isopropyl and 2-morpholinoethyl) the scheme of molecular self-assembly is similar in all three cases but differs significantly from that observed in other known GE esters. According to our analysis, the two basic patterns of self-assembly of GE esters observed in their unsolvated crystals correspond to two distinct orientations of the ester groups relative to the triterpene backbone. Moreover, comparison of the self-assembly modes of GE esters in their unsolvated forms with the supramolecular organization of GE and carbenoxolone in their solvated crystals revealed that ester substituents replace solvent molecules hydrogen bonded to the COOH group at the triterpene skeleton, resulting in similar packing arrangements of these compounds.
Collapse
Affiliation(s)
- Dominik Langer
- Department of Chemical Technology of Drugs, Poznań Uniwersity of Medical Sciences, Grunwaldzka 6, Poznań 60-780, Poland
| | - Barbara Wicher
- Department of Chemical Technology of Drugs, Poznań Uniwersity of Medical Sciences, Grunwaldzka 6, Poznań 60-780, Poland
| | - Wojciech Szczołko
- Department of Chemical Technology of Drugs, Poznań Uniwersity of Medical Sciences, Grunwaldzka 6, Poznań 60-780, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, Poznań 61-614, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznań Uniwersity of Medical Sciences, Grunwaldzka 6, Poznań 60-780, Poland
| |
Collapse
|
26
|
|
27
|
Huang LR, Hao XJ, Li QJ, Wang DP, Zhang JX, Luo H, Yang XS. 18β-Glycyrrhetinic Acid Derivatives Possessing a Trihydroxylated A Ring Are Potent Gram-Positive Antibacterial Agents. JOURNAL OF NATURAL PRODUCTS 2016; 79:721-731. [PMID: 26928299 DOI: 10.1021/acs.jnatprod.5b00641] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The oleanane-type triterpene 18β-glycyrrhetinic acid (1) was modified chemically through the introduction of a trihydroxylated A ring and an ester moiety at C-20 to enhance its antibacterial activity. Compounds 22, 23, 25, 28, 29, 31, and 32 showed more potent inhibitory activity against Streptomyces scabies than the positive control, streptomycin. Additionally, the inhibitory activity of the most potent compound, 29, against Bacillus subtilis, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus was greater than that of the positive controls. The antibacterial mode of action of the active derivatives involved the regulation of the expression of genes associated with peptidoglycans, the respiratory metabolism, and the inherent virulence factors found in bacteria, as determined through a quantitative real-time reverse transcriptase PCR assay.
Collapse
Affiliation(s)
- Li-Rong Huang
- Ministry of Education Key Laboratory of Green Pesticide and Ago-Bioengineering, Center for Research and Development of Fine Chemicals of Guizhou University , Guiyang 550025, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Xiao-Jiang Hao
- Ministry of Education Key Laboratory of Green Pesticide and Ago-Bioengineering, Center for Research and Development of Fine Chemicals of Guizhou University , Guiyang 550025, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Qi-Ji Li
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Dao-Ping Wang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Jian-Xin Zhang
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Heng Luo
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| | - Xiao-Sheng Yang
- Ministry of Education Key Laboratory of Green Pesticide and Ago-Bioengineering, Center for Research and Development of Fine Chemicals of Guizhou University , Guiyang 550025, People's Republic of China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences , Guiyang 550002, People's Republic of China
| |
Collapse
|
28
|
Song H, Sun Y, Xu G, Hou B, Ao G. Synthesis and biological evaluation of novel hydrogen sulfide releasing glycyrrhetic acid derivatives. J Enzyme Inhib Med Chem 2016; 31:1457-63. [DOI: 10.3109/14756366.2016.1144596] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Heng Song
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China and
| | - Yinxing Sun
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China and
| | - Guanglin Xu
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Bingbo Hou
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China and
| | - Guizhen Ao
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, Suzhou, China and
- College of Life Science, Nanjing Normal University, Nanjing, China
| |
Collapse
|
29
|
de Breij A, Karnaoukh TG, Schrumpf J, Hiemstra PS, Nibbering PH, van Dissel JT, de Visser PC. The licorice pentacyclic triterpenoid component 18β-glycyrrhetinic acid enhances the activity of antibiotics against strains of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 2016; 35:555-62. [PMID: 26780691 DOI: 10.1007/s10096-015-2570-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/28/2015] [Indexed: 12/29/2022]
Abstract
This study aimed to identify compounds that enhance the activity of current antibiotics against multidrug-resistant bacteria. Screening of a 350+ compound proprietary small molecules library revealed that the Glycyrrhiza glabra (licorice)-derived triterpenoid 18β-glycyrrhetinic acid (18β-GA) potentiated the antibacterial activity of certain antibiotics against Staphylococcus aureus. Here, we evaluated the ability of pentacyclic triterpenoids to potentiate the activity of antibiotics against strains of methicillin-resistant S. aureus (MRSA). Checkerboard assays were used to assess the minimum inhibitory concentration (MIC) of tobramycin and ten pentacyclic triterpenoids against S. aureus. The effect of 18β-GA on the MIC of different antibiotics against MRSA was also determined in an in vitro airway MRSA infection model. 18β-GA enhanced the bactericidal activity of the aminoglycosides tobramycin, gentamicin and amikacin, and of polymyxin B against two MRSA strains, reducing the MIC of these antibiotics 32-64-fold [fractional inhibitory concentration index (FICI) of 0.12-0.13]. Other β-amyrin triterpenoids and α-amyrin triterpenoids did not exert such synergistic effects. 18β-GA did not enhance the activity of antibiotics from other structural classes against the MRSA strains. In an air-exposed airway epithelial cell culture, 18β-GA enhanced the bactericidal activity of tobramycin and polymyxin B against the MRSA strain. These data demonstrate the potential of 18β-GA to synergise with certain types of antibiotics to eliminate strains of MRSA.
Collapse
Affiliation(s)
- A de Breij
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - T G Karnaoukh
- BioMarin Nederland BV, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - J Schrumpf
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - J T van Dissel
- Department of Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - P C de Visser
- BioMarin Nederland BV, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands.
| |
Collapse
|
30
|
Heller L, Sommerwerk S, Tzschöckell F, Wiemann J, Schwarz S, Siewert B, Al-Harrasi A, Csuk R. First Occurrence of a Furano-glycyrrhetinoate and Its Cytotoxicity. Arch Pharm (Weinheim) 2015; 348:889-96. [DOI: 10.1002/ardp.201500318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Lucie Heller
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Sven Sommerwerk
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Felix Tzschöckell
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Jana Wiemann
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Stefan Schwarz
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Bianka Siewert
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Ahmed Al-Harrasi
- Chair of Oman's Medicinal Plants and Marine Natural Products; University of Nizwa, Birkat Al-Mauz; Nizwa Sultanate of Oman
| | - René Csuk
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
31
|
Tykarska E, Gdaniec M. Solid-state supramolecular architecture of carbenoxolone – comparative studies with glycyrrhetinic and glycyrrhizic acids. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2015; 71:25-33. [PMID: 25643713 DOI: 10.1107/s2052520614026419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
Carbenoxolone (CBXH2), a pharmaceutically relevant derivative of glycyrrhetinic acid, was studied by X-ray crystallography. The crystal structures of its unsolvated form, propionic acid and dimethoxyethane solvates and a solvated cocrystal of the free acid with its monobasic sodium salt CBXH2·CBXHNa·(butan-2-one)2·2H2O reveal that the recurring motif of supramolecular architecture in all crystal forms is a one-dimensional ribbon with closely packed triterpene fragments. It does not result from strong specific interactions but solely from van der Waals interactions. The ribbons are further arranged into diverse layer-type aggregates with a hydrophobic interior (triterpene skeletons) and hydrophilic surfaces covered with carboxylic/carboxylate groups. Solvent molecules included at the interface between the layers influence hydrogen-bonding interactions between the carbenoxolone molecules and organization of the ribbons within the layer. Comparison of crystal structures of carbenoxolone, glycyrrhizic acid and its aglycone-glycyrrhetinic acid have shown the impact of the size and hydrophilic character of the substituent at the triterpene C3 atom on the supramolecular architecture of these three closely related molecules.
Collapse
Affiliation(s)
- Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Maria Gdaniec
- Faculty of Chemistry, A. Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
| |
Collapse
|
32
|
Atsriku C, Hoffmann M, Moghaddam M, Kumar G, Surapaneni S. In vitrometabolism of a novel JNK inhibitor tanzisertib: interspecies differences in oxido-reduction and characterization of enzymes involved in metabolism. Xenobiotica 2014; 45:465-80. [DOI: 10.3109/00498254.2014.991367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Chung A, Miner MR, Richert KJ, Rieder CJ, Woerpel KA. Formation of an Endoperoxide upon Chromium-Catalyzed Allylic Oxidation of a Triterpene by Oxygen. J Org Chem 2014; 80:266-73. [DOI: 10.1021/jo502344x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Abbie Chung
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| | - Matthew R. Miner
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| | - Kathleen J. Richert
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| | - Curtis J. Rieder
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| | - K. A. Woerpel
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003 United States
| |
Collapse
|
34
|
Tian Z, Yang C, Wang W, Yuan Z. Shieldable tumor targeting based on pH responsive self-assembly/disassembly of gold nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2014; 6:17865-17876. [PMID: 25233129 DOI: 10.1021/am5045339] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A new approach to shield/deshield ligands for controllable tumor targeting was reported, which was based on amphiphilic self-assembly and disassembly of gold nanoparticles (Au NPs). Thanks to the excellent pH response of the system, glycyrrhetinic acid (GA) ligands can be buried inside the Au NPs' assembly at normal tissue pH (pH 7.4), while exposed when the nanostructure is disassembled at tumor extracellular pH (pHe 6.8). Hydrophobic GA molecules not only acted as ligands targeting tumor cells but also provided the major interparticle attractive force for Au NPs' assembling. An ordered assembly of Au NPs with regular shape, proper size and ultrasharp pH sensitivity (ΔpH ∼ 0.2) was achieved by fine-tuning of materials modified on Au NPs. Mechanism studies for assembly and disassembly of Au NPs indicated the possibility of a GA shield when the assembly formed, which was further demonstrated by bovine serum albumin absorption and cellular uptake. The assembly/disassembly process was reversible within extrinsic pH changes, which provides a perspective for reversible tumor targeting.
Collapse
Affiliation(s)
- Zhiqing Tian
- Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, Nankai University Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071, China
| | | | | | | |
Collapse
|
35
|
Li X, Wang Y, Gao Y, Li L, Guo X, Liu D, Jing Y, Zhao L. Synthesis of methyl 2-cyano-3,12-dioxo-18β-olean-1,9(11)-dien-30-oate analogues to determine the active groups for inhibiting cell growth and inducing apoptosis in leukemia cells. Org Biomol Chem 2014; 12:6706-16. [DOI: 10.1039/c4ob00703d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Lin D, Zhong W, Li J, Zhang B, Song G, Hu T. Involvement of BID translocation in glycyrrhetinic acid and 11-deoxy glycyrrhetinic acid-induced attenuation of gastric cancer growth. Nutr Cancer 2014; 66:463-73. [PMID: 24547973 DOI: 10.1080/01635581.2013.877498] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycyrrhetinic acid (GA), the main chemical constituents of licorice, has shown remarkable anticancer activity. However, the side effects limit its widespread use. 11-DOGA is produced through reduction of GA 11-carbonyl to 11-hydroxyl to reduce its side effects, although its anticancer activities are largely unknown. Here, we report that the functional mechanisms of GA and 11-DOGA in gastric cancers, as well as the comparison between these two drugs' pharmacological potential. Firstly, we found that GA and 11-DOGA significantly inhibits the viabilities of gastric cancer cells in dose- and time-dependent manners. Both GA and 11-DOGA induce gastric cancer cells apoptosis and cell cycle arrest in G2 phase by upregulation of p21 and downregulation of cdc2 and cyclin B1. Further studies show that GA and 11-DOGA-induced apoptosis in gastric cancer cells is associated with BID translocation from nucleus to mitochondria. Moreover, GA and 11-DOGA could effectively inhibit tumor formation of gastric cancer cells in nude mice. Comparing with 11-DOGA, GA presents higher toxicity toward gastric cancer cells both in vivo and in vitro. Thus, the elucidation of the functional mechanisms of GA and 11-DOGA-induced attenuation of gastric cancer growth suggests a possible therapeutic role of GA and its derivatives.
Collapse
Affiliation(s)
- Dejian Lin
- a Cancer Research Center, Medical College of Xiamen University , Xiamen , People's Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Pandya K, Dietrich D, Seibert J, Vederas JC, Odermatt A. Synthesis of sterically encumbered 11β-aminoprogesterone derivatives and evaluation as 11β-hydroxysteroid dehydrogenase inhibitors and mineralocorticoid receptor antagonists. Bioorg Med Chem 2013; 21:6274-81. [DOI: 10.1016/j.bmc.2013.08.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022]
|
38
|
You R, Long W, Lai Z, Sha L, Wu K, Yu X, Lai Y, Ji H, Huang Z, Zhang Y. Discovery of a potential anti-inflammatory agent: 3-oxo-29-noroleana-1,9(11),12-trien-2,20-dicarbonitrile. J Med Chem 2013; 56:1984-95. [PMID: 23373965 DOI: 10.1021/jm301652t] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fifteen novel derivatives of glycyrrhetinic acid (GA) were synthesized and evaluated for anti-inflammatory activities. It was found that the introduction of 1-en-3-one and 9(11),12-diene and 2,20-dinitrile functionalities into the scaffold of GA led to the discovery of potent compound 19 for inhibition of LPS-induced NO production. Furthermore, 19 effectively inhibited the protein and mRNA expression of inducible NO synthase (iNOS) and the mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 macrophages. Mechanistically, 19 exerted inhibitory effects on the activation of the three main MAPKs and phosphorylation and degradation of IκB-α, as well as the ratio of nuclear/cytosolic content of p65. Importantly, 19 significantly decreased the mortality rate in the mouse model of LPS-induced sepsis shock. It is noteworthy that inhibitory effect of 19 on NO production was not blocked by the glucocorticoid receptor antagonist mifepristone, indicating that it does not act through the glucocorticoid receptor.
Collapse
Affiliation(s)
- Ran You
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Stanetty C, Wolkerstorfer A, Amer H, Hofinger A, Jordis U, Claßen-Houben D, Kosma P. Synthesis and antiviral activities of spacer-linked 1-thioglucuronide analogues of glycyrrhizin. Beilstein J Org Chem 2012; 8:705-11. [PMID: 23015817 PMCID: PMC3388857 DOI: 10.3762/bjoc.8.79] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 04/12/2012] [Indexed: 11/23/2022] Open
Abstract
The influenza virus infection remains a significant threat to public health and the increase of antiviral resistance to available drugs generates an urgent need for new antiviral compounds. Starting from the natural, antivirally active compound glycyrrhizin, spacer-bridged derivatives were generated with improved antiviral activity against the influenza A virus infection. Simplified analogues of the triterpene saponin glycyrrhizin containing 1-thio-β-D-glucuronic acid residues have been prepared in good yields by alkylation of 3-amino and 3-thio derivatives of glycyrrhetinic acid with a 2-iodoethyl 1-thio-β-D-glucopyranosiduronate derivative. The spacer-connected 3-amino derivatives were further transformed into N-acetylated and N-succinylated derivatives. The deprotected compounds containing these carboxylic acid appendices mimic the glycon part of glycyrrhizin as well as the hemisuccinate derivative of glycyrrhetinic acid, carbenoxolone. Antiviral activities of the compounds were determined in a biological test based on influenza A virus-infected cells, wherein the 3-(2-thioethyl)-N-acetylamino- and 3-(2-thioethyl)-thio-linked glucuronide derivatives were effective inhibitors with IC50 values as low as 54 µM.
Collapse
Affiliation(s)
- Christian Stanetty
- Department of Chemistry, University of Natural Resources and Life Sciences-Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
40
|
Czollner L, Jordis U, Mereiter K. (3β,18β,20β)-N-Eth-oxy-carbonyl-methyl-3-nitrato-11-oxoolean-12-ene-29-carboxamide methanol monosolvate. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o1229-30. [PMID: 22606164 PMCID: PMC3344161 DOI: 10.1107/s1600536812012561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 03/22/2012] [Indexed: 11/10/2022]
Abstract
The title compound, C(34)H(52)N(2)O(7)·CH(4)O, is the methanol solvate of a difunctionalized derivative of the therapeutic agent 18β-glycyrrhetinic acid, a penta-cyclic triterpene. The five six-membered rings of the glycyrrhetinic acid moiety show normal geometries, with four rings in chair conformations and the unsaturated ring in a half-chair conformation. This moiety is substituted by a nitrate ester group and an O-ethyl-glycine group. In the crystal, the nonsolvent mol-ecules are packed parallel to (010) in a herringbone fashion with the nitrato, ethyl-glycine and methanol-O atom being proximate. The methanol solvent mol-ecule is anchored via a donated O-H⋯O(ac-yl) and an accepted N-H⋯O hydrogen bond, giving rise to infinite zigzag chains of hydrogen bonds parallel to [100]. Two weak intermolecular C-H⋯O interactions to the methanol and to an acyl oxygen establish links along [100] and [010], respectively.
Collapse
Affiliation(s)
- Laszlo Czollner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria
| | - Ulrich Jordis
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163, A-1060 Vienna, Austria
| | - Kurt Mereiter
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164SC, A-1060 Vienna, Austria,Correspondence e-mail:
| |
Collapse
|
41
|
Czollner L, Jordis U, Mereiter K. Propargylaminyl 3α-hydroxy-11-oxo-18β-olean-12-en-29-oate. Acta Crystallogr Sect E Struct Rep Online 2011; 67:o3052-3. [PMID: 22220063 PMCID: PMC3247445 DOI: 10.1107/s1600536811043534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/20/2011] [Indexed: 11/10/2022]
Abstract
The title compound, C33H49NO3, is the propargylamide of 18β-glycyrrhetinic acid, a pentacyclic triterpenoid of interest as a therapeutic agent. The five six-membered rings of the glycyrrhetinic acid moiety show normal geometries, with four rings in chair conformations and the unsaturated ring C in a half-chair conformation. In the crystal, the terminal N-propargylcarboxamide group has remarkable structural effects on weak hydrogen-bond-like interactions. Particularly noteworthy are an intermolecular O—H⋯π interaction accepted side-on by the terminal alkyne group [O⋯C = 3.097 (2) and 3.356 (2) Å] and a short intermolecular C—H⋯O interaction [C⋯O = 3.115 (2) Å] donated by the alkyne C—H group. An N—H⋯O [N⋯O = 3.251 (2) Å] and a Calkyl—H⋯O [C⋯O = 3.254 (2) Å] interaction complement the crystal structure.
Collapse
|
42
|
Csuk R, Schwarz S, Siewert B, Kluge R, Ströhl D. Synthesis and antitumor activity of ring A modified glycyrrhetinic acid derivatives. Eur J Med Chem 2011; 46:5356-69. [DOI: 10.1016/j.ejmech.2011.08.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/25/2011] [Accepted: 08/26/2011] [Indexed: 11/30/2022]
|
43
|
Csuk R, Schwarz S, Siewert B, Kluge R, Ströhl D. Conversions at C-30 of Glycyrrhetinic Acid and Their Impact on Antitumor Activity. Arch Pharm (Weinheim) 2011; 345:223-30. [DOI: 10.1002/ardp.201100046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 08/29/2011] [Accepted: 09/01/2011] [Indexed: 12/22/2022]
|
44
|
Kratschmar DV, Vuorinen A, Da Cunha T, Wolber G, Classen-Houben D, Doblhoff O, Schuster D, Odermatt A. Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11β-hydroxysteroid dehydrogenase type 2. J Steroid Biochem Mol Biol 2011; 125:129-42. [PMID: 21236343 DOI: 10.1016/j.jsbmb.2010.12.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/24/2010] [Accepted: 12/31/2010] [Indexed: 12/21/2022]
Abstract
Modulation of intracellular glucocorticoid availability is considered as a promising strategy to treat glucocorticoid-dependent diseases. 18β-Glycyrrhetinic acid (GA), the biologically active triterpenoid metabolite of glycyrrhizin, which is contained in the roots and rhizomes of licorice (Glycyrrhiza spp.), represents a well-known but non-selective inhibitor of 11β-hydroxysteroid dehydrogenases (11β-HSDs). However, to assess the physiological functions of the respective enzymes and for potential therapeutic applications selective inhibitors are needed. In the present study, we applied bioassays and 3D-structure modeling to characterize nine 11β-HSD1 and fifteen 11β-HSD2 inhibiting GA derivatives. Comparison of the GA derivatives in assays using cell lysates revealed that modifications at the 3-hydroxyl and/or the carboxyl led to highly selective and potent 11β-HSD2 inhibitors. The data generated significantly extends our knowledge on structure-activity relationship of GA derivatives as 11β-HSD inhibitors. Using recombinant enzymes we found also potent inhibition of mouse 11β-HSD2, despite significant species-specific differences. The selected GA derivatives potently inhibited 11β-HSD2 in intact SW-620 colon cancer cells, although the rank order of inhibitory potential differed from that obtained in cell lysates. The biological activity of compounds was further demonstrated in glucocorticoid receptor (GR) transactivation assays in cells coexpressing GR and 11β-HSD1 or 11β-HSD2. 3D-structure modeling provides an explanation for the differences in the selectivity and activity of the GA derivatives investigated. The most potent and selective 11β-HSD2 inhibitors should prove useful as mechanistic tools for further anti-inflammatory and anti-cancer in vitro and in vivo studies. Article from the Special issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- Denise V Kratschmar
- Swiss Center for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Gaware R, Khunt R, Czollner L, Stanetty C, Cunha TD, Kratschmar DV, Odermatt A, Kosma P, Jordis U, Claßen-Houben D. Synthesis of new glycyrrhetinic acid derived ring A azepanone, 29-urea and 29-hydroxamic acid derivatives as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors. Bioorg Med Chem 2011; 19:1866-80. [DOI: 10.1016/j.bmc.2011.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/28/2011] [Accepted: 02/03/2011] [Indexed: 11/16/2022]
|
46
|
Sheng H, Sun H. Synthesis, biology and clinical significance of pentacyclic triterpenes: a multi-target approach to prevention and treatment of metabolic and vascular diseases. Nat Prod Rep 2011; 28:543-93. [DOI: 10.1039/c0np00059k] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Synthesis and antitumour activity of glycyrrhetinic acid derivatives. Bioorg Med Chem 2010; 18:7458-74. [DOI: 10.1016/j.bmc.2010.08.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/10/2010] [Accepted: 08/29/2010] [Indexed: 11/18/2022]
|
48
|
Stanetty C, Czollner L, Koller I, Shah P, Gaware R, Cunha TD, Odermatt A, Jordis U, Kosma P, Claßen-Houben D. Synthesis of novel 3-amino and 29-hydroxamic acid derivatives of glycyrrhetinic acid as selective 11β-hydroxysteroid dehydrogenase 2 inhibitors. Bioorg Med Chem 2010; 18:7522-41. [DOI: 10.1016/j.bmc.2010.08.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 08/22/2010] [Accepted: 08/27/2010] [Indexed: 11/30/2022]
|
49
|
Insight into glycyrrhetinic acid: The role of the hydroxyl group on liver targeting. Int J Pharm 2010; 400:153-7. [DOI: 10.1016/j.ijpharm.2010.08.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/16/2010] [Accepted: 08/24/2010] [Indexed: 11/19/2022]
|
50
|
Gaware R, Czollner L, Jordis U, Mereiter K. (+)-Methyl 3β-acet-oxy-13-carb-oxy-19-hy-droxy-11-oxo-C-norolean-18-en-30-oate γ-lactone. Acta Crystallogr Sect E Struct Rep Online 2010; 66:o2597-8. [PMID: 21587575 PMCID: PMC2983216 DOI: 10.1107/s1600536810036901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/14/2010] [Indexed: 11/10/2022]
Abstract
The title compound, C(33)H(46)O(7), is an unusual oxydation product of the therapeutic agent glycyrrhetinic acid that has, in comparison to the latter, a distinctly altered triterpene structure with one five- and four six-membered carbocycles complemented by a γ-lactone ring with a spiro-junction and a ring double bond. The junction between the five-membered ring C, a cyclo-penta-none ring, and the six-membered ring D, previously in question, was found to be cis, confirming earlier structure assignments based solely on chemical transformations. In the solid state, the compound exhibits five intra- and four inter-molecular C-H⋯O inter-actions with H⋯O distances less than or equal to 2.70 Å and C-H⋯O greater than 100°.
Collapse
|