1
|
Burcevs A, Sebris A, Traskovskis K, Chu HW, Chang HT, Jovaišaitė J, Juršėnas S, Turks M, Novosjolova I. Synthesis of Fluorescent C-C Bonded Triazole-Purine Conjugates. J Fluoresc 2024; 34:1091-1097. [PMID: 37460821 DOI: 10.1007/s10895-023-03337-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 05/02/2024]
Abstract
A design toward C-C bonded 2,6-bis(1H-1,2,3-triazol-4-yl)-9H-purine and 2-piperidinyl-6-(1H-1,2,3-triazol-4-yl)-9H-purine derivatives was established using the combination of Mitsunobu, Sonogashira, copper (I) catalyzed azide-alkyne cycloaddition, and SNAr reactions. 11 examples of 2,6-bistriazolylpurine and 14 examples of 2-piperidinyl-6-triazolylpurine intermediates were obtained, in 38-86% and 41-89% yields, respectively. Obtained triazole-purine conjugates expressed good fluorescent properties which were studied in the solution and in the thin layer film for the first time. Quantum yields reached up to 49% in DMSO for bistriazolylpurines and up to 81% in DCM and up to 95% in DMSO for monotriazolylpurines. Performed biological studies in mouse embryo fibroblast, human keratinocyte, and transgenic adenocarcinoma of the mouse prostate cell lines showed that most of obtained triazole-purine conjugates are not cytotoxic. The 50% cytotoxic concentration of the tested derivatives was in the range from 59.6 to 1528.7 µM.
Collapse
Affiliation(s)
- Aleksejs Burcevs
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Armands Sebris
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Kaspars Traskovskis
- Institute of Applied Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Han-Wei Chu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan, 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Linkou, Taoyuan, 33305, Taiwan
| | - Justina Jovaišaitė
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekis av. 3, Vilnius, LT-10257, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Faculty of Physics, Vilnius University, Saulėtekis av. 3, Vilnius, LT-10257, Lithuania
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia
| | - Irina Novosjolova
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia.
| |
Collapse
|
2
|
Beerkens BL, Snijders IM, Snoeck J, Liu R, Tool ATJ, Le Dévédec SE, Jespers W, Kuijpers TW, van Westen GJ, Heitman LH, IJzerman AP, van der Es D. Development of an Affinity-Based Probe to Profile Endogenous Human Adenosine A3 Receptor Expression. J Med Chem 2023; 66:11399-11413. [PMID: 37531576 PMCID: PMC10461224 DOI: 10.1021/acs.jmedchem.3c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Indexed: 08/04/2023]
Abstract
The adenosine A3 receptor (A3AR) is a G protein-coupled receptor (GPCR) that exerts immunomodulatory effects in pathophysiological conditions such as inflammation and cancer. Thus far, studies toward the downstream effects of A3AR activation have yielded contradictory results, thereby motivating the need for further investigations. Various chemical and biological tools have been developed for this purpose, ranging from fluorescent ligands to antibodies. Nevertheless, these probes are limited by their reversible mode of binding, relatively large size, and often low specificity. Therefore, in this work, we have developed a clickable and covalent affinity-based probe (AfBP) to target the human A3AR. Herein, we show validation of the synthesized AfBP in radioligand displacement, SDS-PAGE, and confocal microscopy experiments as well as utilization of the AfBP for the detection of endogenous A3AR expression in flow cytometry experiments. Ultimately, this AfBP will aid future studies toward the expression and function of the A3AR in pathologies.
Collapse
Affiliation(s)
- Bert L.
H. Beerkens
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Inge M. Snijders
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Joep Snoeck
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Rongfang Liu
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Anton T. J. Tool
- Department
of Molecular Hematology, Sanquin Research, Plesmalaan 125, 1066 CX Amsterdam, The Netherlands
| | - Sylvia E. Le Dévédec
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Willem Jespers
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Taco W. Kuijpers
- Department
of Molecular Hematology, Sanquin Research, Plesmalaan 125, 1066 CX Amsterdam, The Netherlands
- Department
of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma
Children’s Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Gerard J.P. van Westen
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Laura H. Heitman
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
- Oncode
Institute, Einsteinweg
55, 2333 CC Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Daan van der Es
- Division
of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
3
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
4
|
Chemical Probes for the Adenosine Receptors. Pharmaceuticals (Basel) 2019; 12:ph12040168. [PMID: 31726680 PMCID: PMC6958474 DOI: 10.3390/ph12040168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022] Open
Abstract
Research on the adenosine receptors has been supported by the continuous discovery of new chemical probes characterized by more and more affinity and selectivity for the single adenosine receptor subtypes (A1, A2A, A2B and A3 adenosine receptors). Furthermore, the development of new techniques for the detection of G protein-coupled receptors (GPCR) requires new specific probes. In fact, if in the past radioligands were the most important GPCR probes for detection, compound screening and diagnostic purposes, nowadays, increasing importance is given to fluorescent and covalent ligands. In fact, advances in techniques such as fluorescence resonance energy transfer (FRET) and fluorescent polarization, as well as new applications in flow cytometry and different fluorescence-based microscopic techniques, are at the origin of the extensive research of new fluorescent ligands for these receptors. The resurgence of covalent ligands is due in part to a change in the common thinking in the medicinal chemistry community that a covalent drug is necessarily more toxic than a reversible one, and in part to the useful application of covalent ligands in GPCR structural biology. In this review, an updated collection of available chemical probes targeting adenosine receptors is reported.
Collapse
|
5
|
Köse M, Gollos S, Karcz T, Fiene A, Heisig F, Behrenswerth A, Kieć-Kononowicz K, Namasivayam V, Müller CE. Fluorescent-Labeled Selective Adenosine A 2B Receptor Antagonist Enables Competition Binding Assay by Flow Cytometry. J Med Chem 2018; 61:4301-4316. [PMID: 29681156 DOI: 10.1021/acs.jmedchem.7b01627] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fluorescent ligands represent powerful tools for biological studies and are considered attractive alternatives to radioligands. In this study, we developed fluorescent antagonists for A2B adenosine receptors (A2BARs), which are targeted by antiasthmatic xanthines and were proposed as novel targets in immuno-oncology. Our approach was to merge a small borondipyrromethene (BODIPY) derivative with the pharmacophore of 8-substituted xanthine derivatives. On the basis of the design, synthesis, and evaluation of model compounds, several fluorescent ligands were synthesized. Compound 29 (PSB-12105), which displayed high affinity for human, rat, and mouse A2BARs ( Ki = 0.2-2 nM) and high selectivity for this AR subtype, was selected for further studies. A homology model of the human A2BAR was generated, and docking studies were performed. Moreover, 29 allowed us to establish a homogeneous receptor-ligand binding assay using flow cytometry. These compounds constitute the first potent, selective fluorescent A2BAR ligands and are anticipated to be useful for a variety of applications.
Collapse
Affiliation(s)
- Meryem Köse
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Sabrina Gollos
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland
| | - Amelie Fiene
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Fabian Heisig
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Andrea Behrenswerth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy , Jagiellonian University Medical College , Medyczna 9 , 30-688 Kraków , Poland
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , D-53121 Bonn , Germany
| |
Collapse
|
6
|
Shokova ÉA, Kovalev VV. Biological Activity of Adamantane-Containing Mono- and Polycyclic Pyrimidine Derivatives* (A Review). Pharm Chem J 2016. [DOI: 10.1007/s11094-016-1400-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Tosh DK, Paoletta S, Chen Z, Crane S, Lloyd J, Gao ZG, Gizewski ET, Auchampach JA, Salvemini D, Jacobson KA. Structure-Based Design, Synthesis by Click Chemistry and in Vivo Activity of Highly Selective A 3 Adenosine Receptor Agonists. MEDCHEMCOMM 2015; 6:555-563. [PMID: 26236460 PMCID: PMC4517612 DOI: 10.1039/c4md00571f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
2-Arylethynyl derivatives of (N)-methanocarba adenosine 5'-uronamides are selective A3AR (adenosine receptor) agonists. Here we substitute a 1,2,3-triazol-1-yl linker in place of the rigid, linear ethynyl group to eliminate its potential metabolic liability. Docking of nucleosides containing possible short linker moieties at the adenine C2 position using a hybrid molecular model of the A3AR (based on the A2AAR agonist-bound structure) correctly predicted that a triazole would maintain the A3AR selectivity, due to its ability to fit a narrow cleft in the receptor. The analogues with various N6 and C2-aryltriazolyl substitution were synthesized and characterized in binding (Ki at hA3AR 0.3 - 12 nM) and in vivo to demonstrate efficacy in controlling chronic neuropathic pain (chronic constriction injury). Among N6-methyl derivatives, a terminal pyrimidin-2-yl group in 9 (MRS7116) increased duration of action (36% pain protection at 3 h) in vivo. N6-Ethyl 5-chlorothien-2-yl analogue 15 (MRS7126) preserved in vivo efficacy (85% protection at 1 h) with short duration. Larger N6 groups, e.g. 17 (MRS7138, >90% protection at 1 and 3 h), greatly enhanced in vivo activity. Thus, we have combined structure-based methods and phenotypic screening to identify nucleoside derivatives having translational potential.
Collapse
Affiliation(s)
- Dilip K Tosh
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Silvia Paoletta
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zhoumou Chen
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104 USA
| | - Steven Crane
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - John Lloyd
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Zhan-Guo Gao
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | - Elizabeth T Gizewski
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226 USA
| | - John A Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226 USA
| | - Daniela Salvemini
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104 USA
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
8
|
Ciruela F, Fernández-Dueñas V, Jacobson KA. Lighting up G protein-coupled purinergic receptors with engineered fluorescent ligands. Neuropharmacology 2015; 98:58-67. [PMID: 25890205 DOI: 10.1016/j.neuropharm.2015.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/23/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
The use of G protein-coupled receptors fluorescent ligands is undergoing continuous expansion. In line with this, fluorescent agonists and antagonists of high affinity for G protein-coupled adenosine and P2Y receptors have been shown to be useful pharmacological probe compounds. Fluorescent ligands for A1R, A2AR, and A3R (adenosine receptors) and P2Y2R, P2Y4R, P2Y6R, and P2Y14R (nucleotide receptors) have been reported. Such ligands have been successfully applied to drug discovery and to GPCR characterization by flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer and scanning confocal microscopy. Here we summarize recently reported and readily available representative fluorescent ligands of purinergic receptors. In addition, we pay special attention on the use of this family of fluorescent ligands revealing two main aspects of purinergic receptor biology, namely ligand binding and receptor oligomerization. This article is part of the Special Issue entitled 'Fluorescent Tools in Neuropharmacology'.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Spain; Department of Physiology, Faculty of Sciences, University of Ghent, 9000 Gent, Belgium.
| | - Víctor Fernández-Dueñas
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, IDIBELL, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 20892 Bethesda, USA.
| |
Collapse
|
9
|
Tosh DK, Jacobson KA. Methanocarba ring as a ribose modification in ligands of G protein-coupled purine and pyrimidine receptors: synthetic approaches. MEDCHEMCOMM 2013; 2013:619-630. [PMID: 26161251 PMCID: PMC4493925 DOI: 10.1039/c2md20348k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenosine receptors (ARs) and P2Y receptors for purine and pyrimidine nucleotides have widespread distribution and regulate countless physiological processes. Various synthetic ligands are in clinical trials for treatment of inflammatory diseases, pain, cancer, thrombosis, ischemia, and other conditions. The methanocarba (bicyclo[3.1.0]hexane) ring system as a rigid substitution for ribose, which maintains either a North (N) or South (S) conformation, tends to preserve or enhance the potency and/or selectivity for certain receptor subtypes. This review summarizes recent developments in the synthetic approaches to these biologically important nucleoside and nucleotide analogues.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Shokova EA, Kovalev VV. Synthesis and chemical properties of adamantylated nucleic bases and related compounds. Pharm Chem J 2013. [DOI: 10.1007/s11094-013-0942-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
11
|
Heisig F, Gollos S, Freudenthal SJ, El-Tayeb A, Iqbal J, Müller CE. Synthesis of BODIPY derivatives substituted with various bioconjugatable linker groups: a construction kit for fluorescent labeling of receptor ligands. J Fluoresc 2013; 24:213-30. [PMID: 24052460 DOI: 10.1007/s10895-013-1289-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/09/2013] [Indexed: 12/15/2022]
Abstract
The goal of the present study was to design small, functionalized green-emitting BODIPY dyes, which can readily be coupled to target molecules such as receptor ligands, or even be integrated into their pharmacophores. A simple two-step one-pot procedure starting from 2,4-dimethylpyrrole and ω-bromoalkylcarboxylic acid chlorides was used to obtain new ω-bromoalkyl-substituted BODIPY fluorophores (1a-1f) connected via alkyl spacers of different length to the 8-position of the fluorescent dye. The addition of radical inhibitors reduced the amount of side products. The ω-bromoalkyl-substituted BODIPYs were further converted to introduce various functional groups: iodo-substituted dyes were obtained by Finkelstein reaction in excellent yields; microwave-assisted reaction with methanolic ammonia led to fast and clean conversion to the amino-substituted dyes; a hydroxyl-substituted derivative was prepared by reaction with sodium ethylate, and thiol-substituted BODIPYs were obtained by reaction of 1a-1f with potassium thioacetate followed by alkaline cleavage of the thioesters. Water-soluble derivatives were prepared by introducing sulfonate groups into the 2- and 6-position of the BODIPY core. The synthesized BODIPY derivatives showed high fluorescent yields and appeared to be stable under basic, reducing and oxidative conditions. As a proof of concept, 2-thioadenosine was alkylated with bromoethyl-BODIPY 1b. The resulting fluorescent 2-substituted adenosine derivative 15 displayed selectivity for the A3 adenosine receptor (ARs) over the other AR subtypes, showed agonistic activity, and may thus become a useful tool for studying A3ARs, or a lead structure for further optimization. The new functionalized dyes may be widely used for fluorescent labeling allowing the investigation of biological targets and processes.
Collapse
Affiliation(s)
- Fabian Heisig
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University Bonn, 53121, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Thirumurugan P, Matosiuk D, Jozwiak K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem Rev 2013; 113:4905-79. [DOI: 10.1021/cr200409f] [Citation(s) in RCA: 1309] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakasam Thirumurugan
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Dariusz Matosiuk
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| | - Krzysztof Jozwiak
- Laboratory
of Medical Chemistry and Neuroengineering, Department of Chemistry, and ‡Department of
Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Lublin
20093, Poland
| |
Collapse
|
13
|
Kozma E, Gizewski ET, Tosh DK, Squarcialupi L, Auchampach JA, Jacobson KA. Characterization by flow cytometry of fluorescent, selective agonist probes of the A(3) adenosine receptor. Biochem Pharmacol 2013; 85:1171-81. [PMID: 23376019 DOI: 10.1016/j.bcp.2013.01.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/16/2013] [Accepted: 01/24/2013] [Indexed: 01/02/2023]
Abstract
Various fluorescent nucleoside agonists of the A3 adenosine receptor (AR) were compared as high affinity probes using radioligands and flow cytometry (FCM). They contained a fluorophore linked through the C2 or N(6) position and rigid A3AR-enhancing (N)-methanocarba modification. A hydrophobic C2-(1-pyrenyl) derivative MRS5704 bound nonselectively. C2-Tethered cyanine5-dye labeled MRS5218 bound selectively to hA3AR expressed in whole CHO cells and membranes. By FCM, binding was A3AR-mediated (blocked by A3AR antagonist, at least half through internalization), with t1/2 for association 38min in mA3AR-HEK293 cells; 26.4min in sucrose-treated hA3AR-CHO cells (Kd 31nM). Membrane binding indicated moderate mA3AR affinity, but not selectivity. Specific accumulation of fluorescence (50nM MRS5218) occurred in cells expressing mA3AR, but not other mouse ARs. Evidence was provided suggesting that MRS5218 detects endogenous expression of the A3AR in the human promyelocytic leukemic HL-60 cell line. Therefore, MRS5218 promises to be a useful tool for characterizing the A3AR.
Collapse
Affiliation(s)
- Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | | | | | | | | | | |
Collapse
|
14
|
Kozma E, Jayasekara PS, Squarcialupi L, Paoletta S, Moro S, Federico S, Spalluto G, Jacobson KA. Fluorescent ligands for adenosine receptors. Bioorg Med Chem Lett 2013; 23:26-36. [PMID: 23200243 PMCID: PMC3557833 DOI: 10.1016/j.bmcl.2012.10.112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/05/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
Abstract
Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field.
Collapse
Affiliation(s)
- Eszter Kozma
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Lucia Squarcialupi
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Stephanie Federico
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Giampiero Spalluto
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810 USA
| |
Collapse
|
15
|
Jayasekara PS, Phan K, Tosh DK, Kumar TS, Moss SM, Zhang G, Barchi JJ, Gao ZG, Jacobson KA. Modulation of G protein-coupled adenosine receptors by strategically functionalized agonists and antagonists immobilized on gold nanoparticles. Purinergic Signal 2012. [PMID: 23179047 DOI: 10.1007/s11302-012-9338-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gold nanoparticles (AuNPs) allow the tuning of pharmacokinetic and pharmacodynamic properties by active or passive targeting of drugs for cancer and other diseases. We have functionalized gold nanoparticles by tethering specific ligands, agonists and antagonists, of adenosine receptors (ARs) to the gold surface as models for cell surface interactions with G protein-coupled receptors (GPCRs). The AuNP conjugates with chain-extended AR ligands alone (PEGylated nucleosides and nonnucleosides, anchored to the Au via thioctic acid) were found to be insoluble in water due to hydrophobic entities in the ligand. Therefore, we added a second, biologically inactive pendant moiety to increase the water solubility, consisting of a PEGylated chain terminating in a carboxylic or phosphate group. The purity and stability of the immobilized biologically active ligand were examined by ultrafiltration and HPLC. Pharmacological receptor binding studies on these GPCR ligand-derivatized AuNPs (2-5 nm in diameter), performed using membranes of mammalian cells stably expressing human A1, A2A, and A3ARs, showed that the desired selectivity was retained with K(i) values (nanomolar) of A3AR agonist 21b and A2AAR antagonists 24 and 26a of 14 (A3), 34 (A2A), and 69 (A2A), respectively. The corresponding monomers displayed K i values of 37, 61, and 1,420 nM, respectively. In conclusion, we have synthesized stable, water-soluble AuNP derivatives of tethered A3 and A2AAR ligands that retain the biological properties of their monomeric ligands and are intended for therapeutic and imaging applications. This is the first prototypical application to gold carriers of small molecule (nonpeptide) GPCR ligands, which are under investigation for treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- P Suresh Jayasekara
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Baraldi PG, Preti D, Borea PA, Varani K. Medicinal Chemistry of A3 Adenosine Receptor Modulators: Pharmacological Activities and Therapeutic Implications. J Med Chem 2012; 55:5676-703. [DOI: 10.1021/jm300087j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Pier Giovanni Baraldi
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Delia Preti
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Dipartimento
di Scienze Farmaceutiche and ‡Dipartimento di Medicina Clinica e Sperimentale-Sezione
di Farmacologia, Università di Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
17
|
Tosh DK, Phan K, Deflorian F, Wei Q, Yoo LS, Gao ZG, Jacobson KA. Click modification in the N6 region of A3 adenosine receptor-selective carbocyclic nucleosides for dendrimeric tethering that preserves pharmacophore recognition. Bioconjug Chem 2012; 23:232-47. [PMID: 22175234 PMCID: PMC3291892 DOI: 10.1021/bc200526c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adenosine derivatives were modified with alkynyl groups on N(6) substituents for linkage to carriers using Cu(I)-catalyzed click chemistry. Two parallel series, both containing a rigid North-methanocarba (bicyclo[3.1.0]hexane) ring system in place of ribose, behaved as A(3) adenosine receptor (AR) agonists: (5'-methyluronamides) or partial agonists (4'-truncated). Terminal alkynyl groups on a chain at the 3 position of a N(6)-benzyl group or simply through a N(6)-propargyl group were coupled to azido derivatives, which included both small molecules and G4 (fourth-generation) multivalent poly(amidoamine) (PAMAM) dendrimers, to form 1,2,3-triazolyl linkers. The small molecular triazoles probed the tolerance in A(3)AR binding of distal, sterically bulky groups such as 1-adamantyl. Terminal 4-fluoro-3-nitrophenyl groups anticipated nucleophilic substitution for chain extension and (18)F radiolabeling. N(6)-(4-Fluoro-3-nitrophenyl)-triazolylmethyl derivative 32 displayed a K(i) of 9.1 nM at A(3)AR with ∼1000-fold subtype selectivity. Multivalent conjugates additionally containing click-linked water-solubilizing polyethylene glycol groups potently activated A(3)AR in the 5'-methyluronamide, but not 4' truncated series. N(6)-Benzyl nucleoside conjugate 43 (apparent K(i) 24 nM) maintained binding affinity of the monomer better than a N(6)-triazolylmethyl derivative. Thus, the N(6) region of 5'-methyluronamide derivatives, as modeled in receptor docking, is suitable for functionalization and tethering by click chemistry to achieve high A(3)AR agonist affinity and enhanced selectivity.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Qiang Wei
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
18
|
Chanyshev B, Shainberg A, Isak A, Litinsky A, Chepurko Y, Tosh DK, Phan K, Gao ZG, Hochhauser E, Jacobson KA. Anti-ischemic effects of multivalent dendrimeric A₃ adenosine receptor agonists in cultured cardiomyocytes and in the isolated rat heart. Pharmacol Res 2011; 65:338-46. [PMID: 22154845 DOI: 10.1016/j.phrs.2011.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 12/28/2022]
Abstract
Adenosine released during myocardial ischemia mediates cardioprotective preconditioning. Multivalent drugs covalently bound to nanocarriers may differ greatly in chemical and biological properties from the corresponding monomeric agents. Here, we conjugated chemically functionalized nucleosides to poly(amidoamine) (PAMAM) dendrimeric polymers and investigated their effects in rat primary cardiac cell cultures and in the isolated heart. Three conjugates of A₃ adenosine receptor (AR) agonists, chain-functionalized at the C2 or N⁶ position, were cardioprotective, with greater potency than monomeric agonist Cl-IB-MECA. Multivalent amide-linked MRS5216 was selective for A₁ and A₃ARs, and triazole-linked MRS5246 and MRS5539 (optionally containing fluorescent label) were A₃AR-selective. The conjugates protected ischemic rat cardiomyocytes, an effect blocked by an A₃AR antagonist MRS1523, and isolated hearts with significantly improved infarct size, rate of pressure product, and rate of contraction and relaxation. Thus, strategically derivatized nucleosides tethered to biocompatible polymeric carriers display enhanced cardioprotective potency via activation of A₃AR on the cardiomyocyte surface.
Collapse
Affiliation(s)
- Bella Chanyshev
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Wan TC, Tosh DK, Du L, Gizewski ET, Jacobson KA, Auchampach JA. Polyamidoamine (PAMAM) dendrimer conjugate specifically activates the A3 adenosine receptor to improve post-ischemic/reperfusion function in isolated mouse hearts. BMC Pharmacol 2011; 11:11. [PMID: 22039965 PMCID: PMC3247180 DOI: 10.1186/1471-2210-11-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Accepted: 10/31/2011] [Indexed: 02/07/2023] Open
Abstract
Background When stimulated by small molecular agonists, the A3 adenosine receptor (AR) mediates cardioprotective effects without inducing detrimental hemodynamic side effects. We have examined pharmacologically the protective properties of a multivalent dendrimeric conjugate of a nucleoside as a selective multivalent agonist for the mouse A3AR. Results A PAMAM dendrimer fully substituted by click chemistry on its peripheral groups with 64 moieties of a nucleoside agonist was shown to be potent and selective in binding to the mouse A3AR and effective in cardioprotection in an isolated mouse heart model of ischemia/reperfusion (I/R) injury. This conjugate MRS5246 and a structurally related model compound MRS5233 displayed binding Ki values of 0.04 and 3.94 nM, respectively, and were potent in in vitro functional assays to inhibit cAMP production. A methanocarba (bicyclo[3.1.0]hexane) ring system in place of ribose maintained a North conformation that is preferred at the A3AR. These analogues also contained a triazole linker along with 5'-N-methyl-carboxamido and 2-alkynyl substitution, previously shown to be associated with species-independent A3AR selectivity. Both MRS5233 and MRS5246 (1 and 10 nM) were effective at increasing functional recovery of isolated mouse hearts after 20 min ischemia followed by 45 min reperfusion. A statistically significant greater improvement in the left ventricular developed pressure (LVDP) by MRS5246 compared to MRS5233 occurred when the hearts were observed throughout reperfusion. Unliganded PAMAM dendrimer alone did not have any effect on functional recovery of isolated perfused mouse hearts. 10 nM MRS5246 did not improve functional recovery after I/R in hearts from A3AR gene "knock-out" (A3KO) mice compared to control, indicating the effects of MRS5246 were A3AR-specific. Conclusions Covalent conjugation to a versatile drug carrier enhanced the functional potency and selectivity at the mouse A3AR and maintained the cardioprotective properties. Thus, this large molecular weight conjugate is not prevented from extravasation through the coronary microvasculature.
Collapse
Affiliation(s)
- Tina C Wan
- Department of Pharmacology/Toxicology and the Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kecskés A, Tosh DK, Wei Q, Gao ZG, Jacobson KA. GPCR ligand dendrimer (GLiDe) conjugates: adenosine receptor interactions of a series of multivalent xanthine antagonists. Bioconjug Chem 2011; 22:1115-27. [PMID: 21539392 DOI: 10.1021/bc1005812] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Previously, G protein-coupled receptor (GPCR) agonists were tethered from polyamidoamine (PAMAM) dendrimers to provide high receptor affinity and selectivity. Here, we prepared GPCR ligand--dendrimer (GLiDe) conjugates from a potent adenosine receptor (AR) antagonist; such agents are of interest for treating Parkinson's disease, asthma, and other conditions. Xanthine amine congener (XAC) was appended with an alkyne group on an extended C8 substituent for coupling by Cu(I)-catalyzed click chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. These conjugates also contained triazole-linked PEG groups (8 or 22 moieties per 64 terminal positions) for increasing water-solubility and optionally prosthetic groups for spectroscopic characterization and affinity labeling. Human AR binding affinity increased progressively with the degree of xanthine substitution to reach K(i) values in the nanomolar range. The order of affinity of each conjugate was hA(2A)AR > hA(3)AR > hA(1)AR, while the corresponding monomer was ranked hA(2A)AR > hA(1)AR ≥ hA(3)AR. The antagonist activity of the most potent conjugate 14 (34 xanthines per dendrimer) was examined at the G(i)-coupled A(1)AR. Conjugate 14 at 100 nM right-shifted the AR agonist concentration--response curve in a cyclic AMP functional assay in a parallel manner, but at 10 nM (lower than its K(i) value), it significantly suppressed the maximal agonist effect in calcium mobilization. This is the first systematic probing of a potent AR antagonist tethered on a dendrimer and its activity as a function of variable loading.
Collapse
Affiliation(s)
- Angela Kecskés
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | | | | | |
Collapse
|
21
|
Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM, Barrett MO, Fricks IP, Harden TK, Gao ZG, Jacobson KA. Polyamidoamine (PAMAM) dendrimer conjugates of "clickable" agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjug Chem 2010; 21:372-84. [PMID: 20121074 PMCID: PMC2845915 DOI: 10.1021/bc900473v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We previously synthesized a series of potent and selective A(3) adenosine receptor (AR) agonists (North-methanocarba nucleoside 5'-uronamides) containing dialkyne groups on extended adenine C2 substituents. We coupled the distal alkyne of a 2-octadiynyl nucleoside by Cu(I)-catalyzed "click" chemistry to azide-derivatized G4 (fourth-generation) PAMAM dendrimers to form triazoles. A(3)AR activation was preserved in these multivalent conjugates, which bound with apparent K(i) of 0.1-0.3 nM. They were substituted with nucleoside moieties, solely or in combination with water-solubilizing carboxylic acid groups derived from hexynoic acid. A comparison with various amide-linked dendrimers showed that triazole-linked conjugates displayed selectivity and enhanced A(3)AR affinity. We prepared a PAMAM dendrimer containing equiproportioned peripheral azido and amino groups for conjugation of multiple ligands. A bifunctional conjugate activated both A(3) and P2Y(14) receptors (via amide-linked uridine-5'-diphosphoglucuronic acid), with selectivity in comparison to other ARs and P2Y receptors. This is the first example of targeting two different GPCRs with the same dendrimer conjugate, which is intended for activation of heteromeric GPCR aggregates. Synergistic effects of activating multiple GPCRs with a single dendrimer conjugate might be useful in disease treatment.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Lena S. Yoo
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Moshe Chinn
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - S. Michael Kilbey
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Matthew O. Barrett
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Ingrid P. Fricks
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - T. Kendall Harden
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|