1
|
Tymecka D, Redkiewicz P, Lipiński PFJ, Misicka A. Peptidomimetic inhibitors of the VEGF-A 165/NRP-1 complex obtained by modification of the C-terminal arginine. Amino Acids 2024; 56:49. [PMID: 39181965 PMCID: PMC11344719 DOI: 10.1007/s00726-024-03411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Inhibitors of the interaction between Neuropilin-1 (NRP-1) and Vascular Endothelial Growth Factor-A165 (VEGF-A165) hold significant promise as therapeutic and diagnostic agents directed against cancers overexpressing NRP-1. In our efforts in this field, a few series of strong and fairly stable peptide-like inhibitors of the general formula Lys(Har)1-Xaa2-Xaa3-Arg4 have been previously discovered. In the current work, we focused on Lys(Har)-Dap/Dab-Pro-Arg sequence. The aim was to examine whether replacing C-terminal Arg with its homologs and mimetics would yield more stable yet still potent inhibitors. Upon considering the results of modelling and other factors, ten novel analogues with Xaa4 = homoarginine (Har), 2-amino-4-guanidino-butyric acid (Agb), 2-amino-3-guanidino-propionic acid (Agp), citrulline (Cit), 4-aminomethyl-phenylalanine [Phe(4-CH2-NH2)] were designed, synthesized and evaluated. Two of the proposed modifications resulted in inhibitors with activity slightly lower [e.g. IC50 = 14.3 μM for Lys(Har)-Dab-Pro-Har and IC50 = 19.8 μM for Lys(Har)-Dab-Pro-Phe(4-CH2-NH2)] than the parent compounds [e.g. IC50 = 4.7 μM for Lys(Har)-Dab-Pro-Arg]. What was a surprise to us, the proteolytic stability depended more on position two of the sequence than on position four. The Dab2-analogues exhibited half-life times beyond 60 h. Our results build up the knowledge on the structural requirements that effective VEGF-A165/NRP-1 inhibitors should fulfil.
Collapse
Affiliation(s)
- Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| | - Patrycja Redkiewicz
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland.
| |
Collapse
|
2
|
Fedorczyk B, Redkiewicz P, Matalińska J, Piast R, Kosson P, Wieczorek R. Chirality and Rigidity in Triazole-Modified Peptidomimetics Interacting with Neuropilin-1. Pharmaceuticals (Basel) 2024; 17:190. [PMID: 38399405 PMCID: PMC10891769 DOI: 10.3390/ph17020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
The interaction of Neuropilin-1 (NRP-1) with vascular endothelial growth factor (VEGF) has been shown to promote angiogenesis under physiological and pathological conditions. Angiogenesis around tumors is a major factor allowing for their growth and spread. Disrupting NRP-1/VEGF complex formation is thus a promising pathway for the development of new anticancer pharmaceuticals. A large body of work has been produced in the last two decades detailing the development of inhibitors of NRP-1/VEGF complex formation. Among those were peptide A7R and its smaller derivatives KXXR and K(Har)XXR. It has been previously reported that replacement of the XX backbone with triazole residues has a positive effect on the proteolytic stability of inhibitors. It has also been reported that a higher dihedral angle range restriction of the XX backbone has a positive effect on the activity of inhibitors. In this work, we have designed new triazole derivatives of K(Har)XXR inhibitors with substitution allowing for higher range restriction of the XX backbone. The obtained peptidomimetics have greater activity than their less restricted counterparts. One of the newly obtained structures has greater affinity than the reference peptide A7R.
Collapse
Affiliation(s)
- Bartłomiej Fedorczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (B.F.); (R.P.)
| | - Patrycja Redkiewicz
- Mossakowski Medical Research Centre Polish Academy of Science, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (P.R.); (J.M.); (P.K.)
| | - Joanna Matalińska
- Mossakowski Medical Research Centre Polish Academy of Science, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (P.R.); (J.M.); (P.K.)
| | - Radosław Piast
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (B.F.); (R.P.)
| | - Piotr Kosson
- Mossakowski Medical Research Centre Polish Academy of Science, 5 Pawinskiego Street, 02-106 Warsaw, Poland; (P.R.); (J.M.); (P.K.)
| | - Rafał Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (B.F.); (R.P.)
| |
Collapse
|
3
|
Wu A, Shi K, Wang J, Zhang R, Wang Y. Targeting SARS-CoV-2 entry processes: The promising potential and future of host-targeted small-molecule inhibitors. Eur J Med Chem 2024; 263:115923. [PMID: 37981443 DOI: 10.1016/j.ejmech.2023.115923] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/21/2023]
Abstract
The COVID-19 pandemic, caused by SARS-CoV-2, has had a huge impact on global health. To respond to rapidly mutating viruses and to prepare for the next pandemic, there is an urgent need to develop small molecule therapies that target critical stages of the SARS-CoV-2 life cycle. Inhibiting the entry process of the virus can effectively control viral infection and play a role in prevention and treatment. Host factors involved in this process, such as ACE2, TMPRSS2, ADAM17, furin, PIKfyve, TPC2, CTSL, AAK1, V-ATPase, HSPG, and NRP1, have been found to be potentially good targets with stability. Through further exploration of the cell entry process of SARS-CoV-2, small-molecule drugs targeting these host factors have been developed. This review focuses on the structural functions of potential host cell targets during the entry of SARS-CoV-2 into host cells. The research progress, chemical structure, structure-activity relationship, and clinical value of small-molecule inhibitors against COVID-19 are reviewed to provide a reference for the development of small-molecule drugs against COVID-19.
Collapse
Affiliation(s)
- Aijia Wu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Kunyu Shi
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Ruofei Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, National Clinical Research Center for Geriatrics, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
4
|
Puszko AK, Sosnowski P, Hermine O, Hopfgartner G, Lepelletier Y, Misicka A. Structure-activity relationship studies and biological properties evaluation of peptidic NRP-1 ligands: Investigation of N-terminal cysteine importance. Bioorg Med Chem 2023; 94:117482. [PMID: 37774449 DOI: 10.1016/j.bmc.2023.117482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/01/2023]
Abstract
Neuropilin-1 (NRP-1) is a major co-receptor of vascular endothelial growth factor receptor-2 (VEGFR-2). It may also stimulate tumour growth and metastasis independently of VEGF-A165. These functions make VEGF-A165/NRP-1 complex formation and its inhibition of great interest, where NRP-1 is the target for which effective ligands are sought. Design of peptide-like inhibitors represent a strategy with great potential in the treatment of NRP-1-related disorders. Here, we present the synthesis, molecular modelling, structure-activity relationship studies as well as biological evaluation of peptides with the branched sequences H2N-X-Lys(hArg)-Dab-Oic-Arg-OH and H2N-Lys(X-hArg)-Dab-Oic-Arg-OH. Two of the designed peptides, in which Cys was inserted in X position, expressed high affinity (∼40 nM value) for NRP-1 and were resistant to enzymatic digestion in human serum. Moreover, peptide/NRP-1 complex promoted fast intracytoplasmic protein trafficking towards the plasma membrane in breast cancer cells. Our results suggest that these compounds might be good candidates for further development of VEGF-A165/NRP-1 inhibitors.
Collapse
Affiliation(s)
- Anna K Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland; Department of Bioanalytics, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| | - Olivier Hermine
- Université Paris Cité, Imagine Institute, 24 boulevard Montparnasse, 75015 Paris, France; INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - Yves Lepelletier
- Université Paris Cité, Imagine Institute, 24 boulevard Montparnasse, 75015 Paris, France; INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 boulevard Montparnasse, 75015 Paris, France
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
5
|
Sabki A, Khelifi L, Kameli A, Baali S. Identification of Four New Chemical Series of Small Drug-Like Natural Products as Potential Neuropilin-1 Inhibitors by Structure-Based Virtual Screening: Pharmacophore-Based Molecular Docking and Dynamics Simulation. Chem Biodivers 2023; 20:e202200933. [PMID: 36799050 DOI: 10.1002/cbdv.202200933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Neuropilin-1 (NRP-1), a surface transmembrane glycoprotein, is one of the most important co-receptors of VEGF-A165 (vascular endothelial growth factor) responsible for pathological angiogenesis. In general, NRP-1 overexpression in cancer correlates with poor prognosis and more tumor aggressiveness. NRP-1 role in cancer has been mainly explained by mediating VEGF-A165-induced effects on tumor angiogenesis. NRP-1 was recently identified as a co-receptor and an independent gateway for SARS-CoV-2 through binding subunit S2 of Spike protein in the same way as VEGF-A165. Thus, NRP-1 is of particular value as a target for cancer therapy and other angiogenesis-dependent diseases as well as for SARS-CoV-2 antiviral intervention. Herein, The Super Natural II, the largest available database of natural products (∼0.33 M), pre-filtered with drug-likeness criteria (absorption, distribution, metabolism and excretion/toxicity), was screened against NRP-1. NRP-1/VEGF-A165 interaction is one of protein-protein interfaces (PPIs) known to be challenging when approached in-silico. Thus, a PPI-suited multi-step virtual screening protocol, incorporating a derived pharmacophore with molecular docking and followed by MD (molecular dynamics) simulation, was designed. Two stages of pharmacophorically constrained molecular docking (standard and extra precisions), a mixed Torsional/Low-mode conformational search and MM-GBSA ΔG binding affinities calculation, resulted in the selection of 100 hits. These 100 hits were subjected to 20 ns MD simulation, that was extended to 100 ns for top hits (20) and followed by post-dynamics analysis (atomic ligand-protein contacts, RMSD, RMSF, MM-GBSA ΔG, Rg, SASA and H-bonds). Post-MD analysis showed that 19 small drug-like nonpeptide natural molecules, grouped in four chemical scaffolds (purine, thiazole, tetrahydropyrimidine and dihydroxyphenyl), well verified the derived pharmacophore and formed stable and compact complexes with NRP-1. The discovered molecules are promising and can serve as a base for further development of new NRP-1 inhibitors.
Collapse
Affiliation(s)
- Abdellah Sabki
- Laboratory of Genetic Resources & Biotechnology, National School of Agricultural Sciences (ENSA), 16004, Algiers, Algeria
| | - Lakhdar Khelifi
- Laboratory of Genetic Resources & Biotechnology, National School of Agricultural Sciences (ENSA), 16004, Algiers, Algeria
| | - Abdelkrim Kameli
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, ENS Kouba, 16050, Algiers, Algeria
| | - Salim Baali
- Laboratory of Ethnobotany and Natural Substances, Department of Natural Sciences, ENS Kouba, 16050, Algiers, Algeria
| |
Collapse
|
6
|
Neuropilin (NRPs) Related Pathological Conditions and Their Modulators. Int J Mol Sci 2022; 23:ijms23158402. [PMID: 35955539 PMCID: PMC9368954 DOI: 10.3390/ijms23158402] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropilin 1 (NRP1) represents one of the two homologous neuropilins (NRP, splice variants of neuropilin 2 are the other) found in all vertebrates. It forms a transmembrane glycoprotein distributed in many human body tissues as a (co)receptor for a variety of different ligands. In addition to its physiological role, it is also associated with various pathological conditions. Recently, NRP1 has been discovered as a coreceptor for the SARS-CoV-2 viral entry, along with ACE2, and has thus become one of the COVID-19 research foci. However, in addition to COVID-19, the current review also summarises its other pathological roles and its involvement in clinical diseases like cancer and neuropathic pain. We also discuss the diversity of native NRP ligands and perform a joint analysis. Last but not least, we review the therapeutic roles of NRP1 and introduce a series of NRP1 modulators, which are typical peptidomimetics or other small molecule antagonists, to provide the medicinal chemistry community with a state-of-the-art overview of neuropilin modulator design and NRP1 druggability assessment.
Collapse
|
7
|
Novel Small-Molecule Inhibitors of the SARS-CoV-2 Spike Protein Binding to Neuropilin 1. Pharmaceuticals (Basel) 2022; 15:ph15020165. [PMID: 35215277 PMCID: PMC8879887 DOI: 10.3390/ph15020165] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 12/04/2022] Open
Abstract
Furin cleavage of the SARS-CoV-2 spike protein results in a polybasic terminal sequence termed the C-end rule (CendR), which is responsible for the binding to neuropilin 1 (NRP1), enhancing viral infectivity and entry into the cell. Here we report the identification of 20 small-molecule inhibitors that emerged from a virtual screening of nearly 950,000 drug-like compounds that bind with high probability to the CendR-binding pocket of NRP1. In a spike NRP1 binding assay, two of these compounds displayed a stronger inhibition of spike protein binding to NRP1 than the known NRP1 antagonist EG00229, for which the inhibition of the CendR peptide binding to NRP1 was also experimentally confirmed. These compounds present a good starting point for the design of small-molecule antagonists against the SARS-CoV-2 viral entry.
Collapse
|
8
|
Ariztia J, Chateau A, Boura C, Didierjean C, Lamandé-Langle S, Pellegrini Moïse N. Synthesis of anti-proliferative [3.3.0]furofuranone derivatives by lactonization and functionalization of C-glycosyl compounds. Bioorg Med Chem 2021; 45:116313. [PMID: 34325324 DOI: 10.1016/j.bmc.2021.116313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
The [3.3.0]furofuranone structure is found in numerous families of biologically active natural products. We took advantage of the stereodiversity afforded by carbohydrate derivatives to prepare several compounds structurally similar to goniofufurone and crassalactones which are natural cytotoxic agents. We designed and synthesized several stereoisomers of these natural compounds via lactonization of C-glycosyl compounds bearing an hydroxyl on position 4 and a methyl ester on the pseudo-anomeric positionThe reactivity of this bicyclic moiety was explored through etherification of hydroxyls in position 5 and 7 and various substituants (halogen, phenyl, benzyl, cynanmoyl) were introduced. The anti-proliferative properties of these mimics were then evaluated on various cancer cell lines and two compounds 24 and 35 demonstrated IC50 value of 1.34 µM (U251) and 7.60 µM (U87) respectively.
Collapse
Affiliation(s)
- Julen Ariztia
- Université de Lorraine, CNRS, L2CM, F-5400 Nancy, France
| | - Alicia Chateau
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | - Cédric Boura
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France
| | | | | | | |
Collapse
|
9
|
Perez-Miller S, Patek M, Moutal A, de Haro PD, Cabel CR, Thorne CA, Campos SK, Khanna R. Novel Compounds Targeting Neuropilin Receptor 1 with Potential To Interfere with SARS-CoV-2 Virus Entry. ACS Chem Neurosci 2021; 12:1299-1312. [PMID: 33787218 PMCID: PMC8029449 DOI: 10.1021/acschemneuro.0c00619] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Paz Duran de Haro
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona, USA
- Regulonix LLC, Tucson, AZ, USA
| |
Collapse
|
10
|
Puszko AK, Sosnowski P, Rignault-Bricard R, Hermine O, Hopfgartner G, Pułka-Ziach K, Lepelletier Y, Misicka A. Urea-Peptide Hybrids as VEGF-A 165/NRP-1 Complex Inhibitors with Improved Receptor Affinity and Biological Properties. Int J Mol Sci 2020; 22:ijms22010072. [PMID: 33374715 PMCID: PMC7793531 DOI: 10.3390/ijms22010072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/31/2022] Open
Abstract
Neuropilin-1 (NRP-1), the major co-receptor of vascular endothelial growth factor receptor-2 (VEGFR-2), may also independently act with VEGF-A165 to stimulate tumour growth and metastasis. Therefore, there is great interest in compounds that can block VEGF-A165/NRP-1 interaction. Peptidomimetic type inhibitors represent a promising strategy in the treatment of NRP-1-related disorders. Here, we present the synthesis, affinity, enzymatic stability, molecular modeling and in vitro binding evaluation of the branched urea–peptide hybrids, based on our previously reported Lys(hArg)-Dab-Oic-Arg active sequence, where the Lys(hArg) branching has been modified by introducing urea units to replace the peptide bond at various positions. One of the resulting hybrids increased the affinity of the compound for NRP-1 more than 10-fold, while simultaneously improving resistance for proteolytic stability in serum. In addition, ligand binding to NRP-1 induced rapid protein stock exocytotic trafficking to the plasma membrane in breast cancer cells. Examined properties characterize this compound as a good candidate for further development of VEGF165/NRP-1 inhibitors.
Collapse
Affiliation(s)
- Anna K. Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Correspondence: (A.K.P.); (A.M.)
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland; (P.S.); (G.H.)
| | - Rachel Rignault-Bricard
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (R.R.-B.); (O.H.); (Y.L.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France
| | - Olivier Hermine
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (R.R.-B.); (O.H.); (Y.L.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, 24 Quai Ernest Ansermet, CH-1211 Geneva, Switzerland; (P.S.); (G.H.)
| | | | - Yves Lepelletier
- Imagine Institute, Université de Paris, 24 boulevard Montparnasse, 75015 Paris, France; (R.R.-B.); (O.H.); (Y.L.)
- INSERM UMR 1163, Laboratory of Cellular and Molecular Basis of Normal Hematopoiesis and Hematological Disorders: Therapeutical Implications, 24 Boulevard Montparnasse, 75015 Paris, France
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
- Correspondence: (A.K.P.); (A.M.)
| |
Collapse
|
11
|
Perez-Miller S, Patek M, Moutal A, Cabel CR, Thorne CA, Campos SK, Khanna R. In silico identification and validation of inhibitors of the interaction between neuropilin receptor 1 and SARS-CoV-2 Spike protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.09.22.308783. [PMID: 32995772 PMCID: PMC7523098 DOI: 10.1101/2020.09.22.308783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 spike protein interferes with pain signaling. Here, we report hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physico-chemical properties. Using an ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that almost all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.
Collapse
Affiliation(s)
- Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
| | - Marcel Patek
- Bright Rock Path Consulting, LLC, Tucson, Arizona
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Carly R. Cabel
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
| | - Curtis A. Thorne
- Department of Cellular & Molecular Medicine, College of Medicine, The University of Arizona
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
| | - Samuel K. Campos
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona
- Bio5 Institute, University of Arizona
- Department of Immunobiology, College of Medicine, University of Arizona
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, United States
- The Center for Innovation in Brain Sciences, The University of Arizona Health Sciences, Tucson, Arizona 85724, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| |
Collapse
|
12
|
Peng K, Li Y, Bai Y, Jiang T, Sun H, Zhu Q, Xu Y. Discovery of novel nonpeptide small-molecule NRP1 antagonists: Virtual screening, molecular simulation and structural modification. Bioorg Med Chem 2020; 28:115183. [DOI: 10.1016/j.bmc.2019.115183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 12/27/2022]
|
13
|
Jia T, Ciccione J, Jacquet T, Maurel M, Montheil T, Mehdi A, Martinez J, Eymin B, Subra G, Coll JL. The presence of PEG on nanoparticles presenting the c[RGDfK]- and/or ATWLPPR peptides deeply affects the RTKs-AKT-GSK3β-eNOS signaling pathway and endothelial cells survival. Int J Pharm 2019; 568:118507. [PMID: 31299336 DOI: 10.1016/j.ijpharm.2019.118507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Covering the surface of a nanoparticle with polyethylene glycol (PEG) is a common way to prevent non-specific interactions but how its presence impacts on the activity of targeting ligands is still poorly documented. We synthesized a set of 9 silica nanoparticles grafted with c[RGDfK]-, a peptide targeting integrin αvß3 (cRGD), and/or with ATWLPPR, an anti-neuropilin 1 peptide (ATW). We then added various PEGs, and studied NPs binding on primary endothelial cells, the downstream activated signaling pathways and the impact on apoptosis. Our results show that the presence of PEG2000 on cRGD/ATW nanoparticles moderately improves cell binding but induces a 6000 times augmentation of AKT-dependent cell response due to the recruitment of other Receptor Tyrosine Kinases. Augmenting the length of the spacer that separates the peptides from the silica (using PEG3000) mainly resulted in a loss of specificity. Finally, the PEG-mediated hyperactivation of AKT did not protect endothelial cell from dying in the absence of serum, while its moderate activation obtained without PEG did. Finally, PEGylation of cRGD/ATW-NPs can generate nanoparticles with potent capacities to activate the AKT-GSK3β-eNOS cascade and to affect the resistance of endothelial cells to apoptosis. Thus, the impact of PEGylation should be precisely considered in order to avoid the apparition of counter-productive biological responses.
Collapse
Affiliation(s)
- Tao Jia
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Jéremy Ciccione
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France; ICGM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Thibault Jacquet
- Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Manon Maurel
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Titouan Montheil
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Ahmad Mehdi
- ICGM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Béatrice Eymin
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France
| | - Gilles Subra
- IBMM Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Luc Coll
- INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, F-38600 La Tronche, France; Université. Grenoble Alpes, Institute for Advanced Biosciences, F-38600 La Tronche, France.
| |
Collapse
|
14
|
Fedorczyk B, Lipiński PFJ, Puszko AK, Tymecka D, Wilenska B, Dudka W, Perret GY, Wieczorek R, Misicka A. Triazolopeptides Inhibiting the Interaction between Neuropilin-1 and Vascular Endothelial Growth Factor-165. Molecules 2019; 24:molecules24091756. [PMID: 31064153 PMCID: PMC6539594 DOI: 10.3390/molecules24091756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022] Open
Abstract
Inhibiting the interaction of neuropilin-1 (NRP-1) with vascular endothelial growth factor (VEGF) has become an interesting mechanism for potential anticancer therapies. In our previous works, we have obtained several submicromolar inhibitors of this interaction, including branched pentapeptides of general structure Lys(Har)-Xxx-Xxx-Arg. With the intent to improve the proteolytic stability of our inhibitors, we turned our attention to 1,4-disubstituted 1,2,3-triazoles as peptide bond isosteres. In the present contribution, we report the synthesis of 23 novel triazolopeptides along with their inhibitory activity. The compounds were synthesized using typical peptide chemistry methods, but with a conversion of amine into azide completely on solid support. The inhibitory activity of the synthesized derivatives spans from 9.2% to 58.1% at 10 μM concentration (the best compound Lys(Har)-GlyΨ[Trl]GlyΨ[Trl]Arg, 3, IC50 = 8.39 μM). Synthesized peptidotriazoles were tested for stability in human plasma and showed remarkable resistance toward proteolysis, with half-life times far exceeding 48 h. In vitro cell survival test resulted in no significant impact on bone marrow derived murine cells 32D viability. By means of molecular dynamics, we were able to propose a binding mode for compound 3 and discuss the observed structure–activity relationships.
Collapse
Affiliation(s)
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| | - Anna K Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Beata Wilenska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Wioleta Dudka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland.
| | - Gerard Y Perret
- Université Paris 13, Sorbonne Paris Cité, INSERM U1125, 74 rue Marcel Cachin, 93017 Bobigny, France.
| | - Rafal Wieczorek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland.
| |
Collapse
|
15
|
Peng K, Bai Y, Zhu Q, Hu B, Xu Y. Targeting VEGF–neuropilin interactions: a promising antitumor strategy. Drug Discov Today 2019; 24:656-664. [PMID: 30315890 DOI: 10.1016/j.drudis.2018.10.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/26/2018] [Accepted: 10/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Kewen Peng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Qihua Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Hu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
16
|
Branched pentapeptides as potent inhibitors of the vascular endothelial growth factor 165 binding to Neuropilin-1: Design, synthesis and biological activity. Eur J Med Chem 2018; 158:453-462. [DOI: 10.1016/j.ejmech.2018.08.083] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/10/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
|
17
|
Mota F, Fotinou C, Rana RR, Chan AWE, Yelland T, Arooz MT, O'Leary AP, Hutton J, Frankel P, Zachary I, Selwood D, Djordjevic S. Architecture and hydration of the arginine-binding site of neuropilin-1. FEBS J 2018; 285:1290-1304. [PMID: 29430837 PMCID: PMC5947257 DOI: 10.1111/febs.14405] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/26/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
Neuropilin‐1 (NRP1) is a transmembrane co‐receptor involved in binding interactions with variety of ligands and receptors, including receptor tyrosine kinases. Expression of NRP1 in several cancers correlates with cancer stages and poor prognosis. Thus, NRP1 has been considered a therapeutic target and is the focus of multiple drug discovery initiatives. Vascular endothelial growth factor (VEGF) binds to the b1 domain of NRP1 through interactions between the C‐terminal arginine of VEGF and residues in the NRP1‐binding site including Tyr297, Tyr353, Asp320, Ser346 and Thr349. We obtained several complexes of the synthetic ligands and the NRP1‐b1 domain and used X‐ray crystallography and computational methods to analyse atomic details and hydration profile of this binding site. We observed side chain flexibility for Tyr297 and Asp320 in the six new high‐resolution crystal structures of arginine analogues bound to NRP1. In addition, we identified conserved water molecules in binding site regions which can be targeted for drug design. The computational prediction of the VEGF ligand‐binding site hydration map of NRP1 was in agreement with the experimentally derived, conserved hydration structure. Displacement of certain conserved water molecules by a ligand's functional groups may contribute to binding affinity, whilst other water molecules perform as protein–ligand bridges. Our report provides a comprehensive description of the binding site for the peptidic ligands’ C‐terminal arginines in the b1 domain of NRP1, highlights the importance of conserved structural waters in drug design and validates the utility of the computational hydration map prediction method in the context of neuropilin. Database The structures were deposited to the PDB with accession numbers PDB ID: 5IJR, 5IYY, 5JHK, 5J1X, 5JGQ, 5JGI.
Collapse
Affiliation(s)
- Filipa Mota
- Magnus Life, Magnus Life Science, London, UK
| | | | | | - A W Edith Chan
- Wolfson Institute for Biomedical Research, University College London, UK
| | | | - Mohamed T Arooz
- The Institute of Structural and Molecular Biology, University College London, UK
| | | | | | - Paul Frankel
- Magnus Life, Magnus Life Science, London, UK.,Centre for Cardiovascular Biology & Medicine, BHF Laboratories at University College London, UK
| | - Ian Zachary
- Centre for Cardiovascular Biology & Medicine, BHF Laboratories at University College London, UK
| | - David Selwood
- Wolfson Institute for Biomedical Research, University College London, UK
| | - Snezana Djordjevic
- The Institute of Structural and Molecular Biology, University College London, UK
| |
Collapse
|
18
|
NRPa-308, a new neuropilin-1 antagonist, exerts in vitro anti-angiogenic and anti-proliferative effects and in vivo anti-cancer effects in a mouse xenograft model. Cancer Lett 2018; 414:88-98. [DOI: 10.1016/j.canlet.2017.10.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
19
|
Tymecka D, Lipiński PFJ, Fedorczyk B, Puszko A, Wileńska B, Perret GY, Misicka A. Structure-activity relationship study of tetrapeptide inhibitors of the Vascular Endothelial Growth Factor A binding to Neuropilin-1. Peptides 2017. [PMID: 28627371 DOI: 10.1016/j.peptides.2017.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Neuropilin-1 is considered as one of the key receptors responsible for signaling pathways involved in pathological angiogenesis necessary for tumor progression, therefore targeting of VEGF165 binding to NRP-1 could be a relevant strategy for antiangiogenic treatment. It was shown before that the VEGF165/NRP-1 interaction can be inhibited by short tetrapeptides with K/RXXR sequence. Here, we present a structure-activity relationship study of the systematic optimization of amino acid residues in positions 1-3 in the above tetrapeptides. All the 13 synthesized analogs possessed C-terminal arginine that is a necessary element for interaction with NRP-1. The obtained results of the inhibitory activity and modeling by molecular dynamics indicate that simultaneous interactions of the basic amino acid residues in position 1 and 4 (Arg) with Neuropilin-1 are crucial and their cooperation strongly affects the inhibitory activity. In addition, the binding strength is modulated by the flexibility of the peptide backbone (in the central part of the peptide), and the nature of the side chain of the amino acids at the second or third position. A dramatic decrease in the activity to the receptor is observed in flexible derivatives that are missing proline residues. The results described in this paper should prove useful for future studies aimed at establishing the best pharmacophore for inhibitors of VEGF165 binding to NRP-1.
Collapse
Affiliation(s)
- Dagmara Tymecka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Piotr F J Lipiński
- Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Anna Puszko
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Beata Wileńska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Gerard Y Perret
- Université Paris 13, Sorbonne Paris Cité, INSERM U1125, 74 rue Marcel Cachin, 93017 Bobigny, France
| | - Aleksandra Misicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; Department of Neuropeptides, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland.
| |
Collapse
|
20
|
Conformational latitude – activity relationship of KPPR tetrapeptide analogues toward their ability to inhibit binding of vascular endothelial growth factor 165 to neuropilin‐1. J Pept Sci 2017; 23:445-454. [DOI: 10.1002/psc.3009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/15/2017] [Accepted: 03/20/2017] [Indexed: 12/30/2022]
|
21
|
Carbohydrate-based peptidomimetics targeting neuropilin-1: Synthesis, molecular docking study and in vitro biological activities. Bioorg Med Chem 2016; 24:5315-5325. [DOI: 10.1016/j.bmc.2016.08.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/24/2016] [Accepted: 08/27/2016] [Indexed: 12/31/2022]
|
22
|
Richard M, Chapleur Y, Pellegrini-Moïse N. Spiro sugar-isoxazolidine scaffold as useful polyfunctional building block for peptidomimetics design. Carbohydr Res 2016; 422:24-33. [DOI: 10.1016/j.carres.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 12/23/2022]
|
23
|
Richard M, Didierjean C, Chapleur Y, Pellegrini-Moïse N. Base- and Radical-Mediated Regio- and Stereoselective Additions of Thiols, Thio-Sugars, and Thiol-Containing Peptides to Trisubstituted Activatedexo-Glycals. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500130] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Hickey SM, Ashton TD, Pfeffer FM. Facile Synthesis of Guanidine Functionalised Building Blocks. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201402242] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Liu WQ, Borriello L, Allain B, Pavoni S, Lopez N, Hermine O, Garbay C, Raynaud F, Lepelletier Y, Demange L. New Peptides Structurally Related to VEGF-A165 Exon-7 and -8 Encoded Domains Antagonize Its Binding to NRP-1 and VEGF-R1. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9436-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Liu WQ, Megale V, Borriello L, Leforban B, Montès M, Goldwaser E, Gresh N, Piquemal JP, Hadj-Slimane R, Hermine O, Garbay C, Raynaud F, Lepelletier Y, Demange L. Synthesis and structure–activity relationship of non-peptidic antagonists of neuropilin-1 receptor. Bioorg Med Chem Lett 2014; 24:4254-9. [DOI: 10.1016/j.bmcl.2014.07.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/13/2022]
|
27
|
Structure-based discovery of a small non-peptidic Neuropilins antagonist exerting in vitro and in vivo anti-tumor activity on breast cancer model. Cancer Lett 2014; 349:120-7. [DOI: 10.1016/j.canlet.2014.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/03/2014] [Accepted: 04/06/2014] [Indexed: 01/13/2023]
|
28
|
|
29
|
Eppe G, Dumitrescu L, Pierrot O, Li T, Pan W, Vincent SP. A Novel Base-Induced Isomerization Gives Access to Unprecedented (E)-exo-Glycals. Chemistry 2013; 19:11547-52. [DOI: 10.1002/chem.201300969] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Indexed: 11/07/2022]
|
30
|
Felten AS, Pellegrini-Moïse N, Selmeczi K, Henry B, Chapleur Y. Synthesis and Copper(II)-Complexation Properties of an Unusual Macrocyclic Structure Containing α/β-Amino Acids and Anomeric Sugar β-Amino Acid. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
32
|
Thien HTT, Novoa A, Pellegrini-Moïse N, Chrétien F, Didierjean C, Chapleur Y. Tetrasubstituted C-Glycosylidenes and C-Glycosyl Compounds from Di- and Monobromo-Substituted exo-Glycals. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Gómez AM, Pedregosa A, Uriel C, Valverde S, López JC. 1-exo-Alkylidene-2,3-anhydrofuranoses: Valuable Synthons in the Preparation of Furanose-Based Templates. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000612] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|