1
|
Delehedde C, Culcasi M, Ricquebourg E, Cassien M, Siri D, Blaive B, Pietri S, Thétiot-Laurent S. Novel Sterically Crowded and Conformationally Constrained α-Aminophosphonates with a Near-Neutral p Ka as Highly Accurate 31P NMR pH Probes. Application to Subtle pH Gradients Determination in Dictyostelium discoideum Cells. Molecules 2022; 27:molecules27144506. [PMID: 35889385 PMCID: PMC9320275 DOI: 10.3390/molecules27144506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
In order to discover new 31P NMR markers for probing subtle pH changes (<0.2 pH unit) in biological environments, fifteen new conformationally constrained or sterically hindered α-aminophosphonates derived from diethyl(2-methylpyrrolidin-2-yl)phosphonate were synthesized and tested for their pH reporting and cytotoxic properties in vitro. All compounds showed near-neutral pKas (ranging 6.28−6.97), chemical shifts not overlapping those of phosphorus metabolites, and spectroscopic sensitivities (i.e., chemical shifts variation Δδab between the acidic and basic forms) ranging from 9.2−10.7 ppm, being fourfold larger than conventional endogenous markers such as inorganic phosphate. X-ray crystallographic studies combined with predictive empirical relationships and ab initio calculations addressed the inductive and stereochemical effects of substituents linked to the protonated amine function. Satisfactory correlations were established between pKas and both the 2D structure and pyramidalization at phosphorus, showing that steric crowding around the phosphorus is crucial for modulating Δδab. Finally, the hit 31P NMR pH probe 1b bearing an unsubstituted 1,3,2-dioxaphosphorinane ring, which is moderately lipophilic, nontoxic on A549 and NHLF cells, and showing pKa = 6.45 with Δδab = 10.64 ppm, allowed the first clear-cut evidence of trans-sarcolemmal pH gradients in normoxic Dictyostelium discoideum cells with an accuracy of <0.05 pH units.
Collapse
Affiliation(s)
- Caroline Delehedde
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Marcel Culcasi
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Emilie Ricquebourg
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Mathieu Cassien
- Yelen Analytics, 10 Boulevard Tempête, 13820 Ensuès-la-Redonne, France;
| | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, UMR 7273, CT, 13397 Marseille, France;
| | - Bruno Blaive
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Sylvia Pietri
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
| | - Sophie Thétiot-Laurent
- Aix Marseille Univ, CNRS, ICR, UMR 7273, SMBSO, 13397 Marseille, France; (C.D.); (M.C.); (E.R.); (B.B.); (S.P.)
- Correspondence: ; Tel.: +33-(0)4-13-94-58-07
| |
Collapse
|
2
|
Bailey DM, Culcasi M, Filipponi T, Brugniaux JV, Stacey BS, Marley CJ, Soria R, Rimoldi SF, Cerny D, Rexhaj E, Pratali L, Salmòn CS, Jáuregui CM, Villena M, Villafuerte F, Rockenbauer A, Pietri S, Scherrer U, Sartori C. EPR spectroscopic evidence of iron-catalysed free radical formation in chronic mountain sickness: Dietary causes and vascular consequences. Free Radic Biol Med 2022; 184:99-113. [PMID: 35398201 DOI: 10.1016/j.freeradbiomed.2022.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
Abstract
Chronic mountain sickness (CMS) is a high-altitude (HA) maladaptation syndrome characterised by elevated systemic oxidative-nitrosative stress (OXNOS) due to a free radical-mediated reduction in vascular nitric oxide (NO) bioavailability. To better define underlying mechanisms and vascular consequences, this study compared healthy male lowlanders (80 m, n = 10) against age/sex-matched highlanders born and bred in La Paz, Bolivia (3600 m) with (CMS+, n = 10) and without (CMS-, n = 10) CMS. Cephalic venous blood was assayed using electron paramagnetic resonance spectroscopy and reductive ozone-based chemiluminescence. Nutritional intake was assessed via dietary recall. Systemic vascular function and structure were assessed via flow-mediated dilatation, aortic pulse wave velocity and carotid intima-media thickness using duplex ultrasound and applanation tonometry. Basal systemic OXNOS was permanently elevated in highlanders (P = <0.001 vs. lowlanders) and further exaggerated in CMS+, reflected by increased hydroxyl radical spin adduct formation (P = <0.001 vs. CMS-) subsequent to liberation of free 'catalytic' iron consistent with a Fenton and/or nucleophilic addition mechanism(s). This was accompanied by elevated global protein carbonylation (P = 0.046 vs. CMS-) and corresponding reduction in plasma nitrite (P = <0.001 vs. lowlanders). Dietary intake of vitamins C and E, carotene, magnesium and retinol were lower in highlanders and especially deficient in CMS + due to reduced consumption of fruit and vegetables (P = <0.001 to 0.028 vs. lowlanders/CMS-). Systemic vascular function and structure were also impaired in highlanders (P = <0.001 to 0.040 vs. lowlanders) with more marked dysfunction observed in CMS+ (P = 0.035 to 0.043 vs. CMS-) in direct proportion to systemic OXNOS (r = -0.692 to 0.595, P = <0.001 to 0.045). Collectively, these findings suggest that lifelong exposure to iron-catalysed systemic OXNOS, compounded by a dietary deficiency of antioxidant micronutrients, likely contributes to the systemic vascular complications and increased morbidity/mortality in CMS+. TRIAL REGISTRY: ClinicalTrials.gov; No: NCT01182792; URL: www.clinicaltrials.gov.
Collapse
Affiliation(s)
- Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK.
| | - Marcel Culcasi
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, France
| | - Teresa Filipponi
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Julien V Brugniaux
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK; HP2 Laboratory, INSERM U1300, Grenoble Alpes University, Grenoble, France
| | - Benjamin S Stacey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Christopher J Marley
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Wales, UK
| | - Rodrigo Soria
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - Stefano F Rimoldi
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - David Cerny
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | - Emrush Rexhaj
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland
| | | | | | | | | | - Francisco Villafuerte
- Laboratorio de Fisiología Comparada, Departamento de Ciencias Biológicas y Fisiológicas, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Antal Rockenbauer
- Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, 1117, Budapest, Hungary
| | - Sylvia Pietri
- Aix Marseille Univ, CNRS, ICR, UMR, 7273, Marseille, France
| | - Urs Scherrer
- Department of Cardiology and Biomedical Research, University Hospital, Bern, Switzerland; Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile
| | - Claudio Sartori
- Department of Internal Medicine, University Hospital, UNIL-Lausanne, Switzerland
| |
Collapse
|
3
|
Smolobochkin AV, Turmanov RA, Gazizov AS, Kuznetsova EA, Burilov AR, Pudovik MA. Reaction of N-(4,4-Diethoxybutyl)phosphamides with Chloro(diphenyl)phosphine. Synthesis of 2-(Diphenylphosphoryl)pyrrolidines. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s107042802006024x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Lescic S, Karoui H, Hardy M, Charles L, Tordo P, Ouari O, Gaudel-Siri A, Siri D. Alkylperoxyl spin adducts of pyrroline-N-oxide spin traps: Experimental and theoretical CASSCF study of the unimolecular decomposition in organic solvent, potential applications in water. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sergiu Lescic
- Aix-Marseille University, CNRS, ICR; Marseille France
| | - Hakim Karoui
- Aix-Marseille University, CNRS, ICR; Marseille France
| | - Micaël Hardy
- Aix-Marseille University, CNRS, ICR; Marseille France
| | | | - Paul Tordo
- Aix-Marseille University, CNRS, ICR; Marseille France
| | - Olivier Ouari
- Aix-Marseille University, CNRS, ICR; Marseille France
| | | | - Didier Siri
- Aix-Marseille University, CNRS, ICR; Marseille France
| |
Collapse
|
5
|
Mousslim M, Pagano A, Andreotti N, Garrouste F, Thuault S, Peyrot V, Parat F, Luis J, Culcasi M, Thétiot-Laurent S, Pietri S, Sabatier JM, Kovacic H. Peptide screen identifies a new NADPH oxidase inhibitor: impact on cell migration and invasion. Eur J Pharmacol 2017; 794:162-172. [DOI: 10.1016/j.ejphar.2016.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/07/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
|
6
|
On the vasoprotective mechanisms underlying novel β-phosphorylated nitrones: Focus on free radical characterization, scavenging and NO-donation in a biological model of oxidative stress. Eur J Med Chem 2016; 119:197-217. [PMID: 27162124 DOI: 10.1016/j.ejmech.2016.04.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/02/2023]
Abstract
A series of new hybrid 2-(diethoxyphosphoryl)-N-(benzylidene)propan-2-amine oxide derivatives with different aromatic substitution (PPNs) were synthesized. These molecules were evaluated for their EPR spin trapping potential on eleven different radicals and NO-donation properties in vitro, cytotoxicity and vasoprotective effect on precontracted rat aortic rings. A subfamily of the new PPNs featured an antioxidant moiety occurring in natural phenolic acids. From the experimental screening of these hydroxyphenyl- and methoxyphenyl-substituted PPNs, biocompatible nitrones 4d, and 4g-4i deriving from caffeic, gallic, ferulic and sinapic acids, which combined improved EPR probing of ROS formation, vasorelaxant action and antioxidant potency, might be potential drug candidate alternatives to PBN and its analogues.
Collapse
|
7
|
Hawkins CL, Davies MJ. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim Biophys Acta Gen Subj 2014; 1840:708-21. [DOI: 10.1016/j.bbagen.2013.03.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
|
8
|
Culcasi M, Casano G, Lucchesi C, Mercier A, Clément JL, Pique V, Michelet L, Krieger-Liszkay A, Robin M, Pietri S. Synthesis and Biological Characterization of New Aminophosphonates for Mitochondrial pH Determination by 31P NMR Spectroscopy. J Med Chem 2013; 56:2487-99. [DOI: 10.1021/jm301866e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marcel Culcasi
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Gilles Casano
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Céline Lucchesi
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Anne Mercier
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Jean-Louis Clément
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Valérie Pique
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Laure Michelet
- CNRS UMR 8221, Institut de Biologie et de Technologie de Saclay (iBiTec-S),
CEA Saclay, Gif-sur-Yvette, France
| | - Anja Krieger-Liszkay
- CNRS UMR 8221, Institut de Biologie et de Technologie de Saclay (iBiTec-S),
CEA Saclay, Gif-sur-Yvette, France
| | - Maxime Robin
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| | - Sylvia Pietri
- Aix-Marseille Université, CNRS UMR 7273, Equipe Sondes Moléculaires en Biologie et
Stress Oxydant, Institut de Chimie Radicalaire, Marseille, France
| |
Collapse
|
9
|
Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 2012; 4:1171-207. [PMID: 22709256 DOI: 10.4155/fmc.12.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of nitrone chemistry and biological activity that could be implicated for the nitrone's pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the possible roles of nitrones for altering cellular redox status through radical scavenging or nitric oxide donation, and their biological effects are presented. An interdisciplinary approach towards the development of novel synthetic antioxidants with improved pharmacological properties encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.
Collapse
|
10
|
|
11
|
|
12
|
Flores M, García-García P, Garrido NM, Marcos IS, Sanz F, Díez D. From isoxazolidines to tetrahydro-1,3-oxazines for the synthesis of chiral pyrrolidines. RSC Adv 2012. [DOI: 10.1039/c2ra22110a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Bailey DM, Evans KA, McEneny J, Young IS, Hullin DA, James PE, Ogoh S, Ainslie PN, Lucchesi C, Rockenbauer A, Culcasi M, Pietri S. Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage. Exp Physiol 2011; 96:1196-207. [DOI: 10.1113/expphysiol.2011.060178] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|