1
|
Pozzetti L, Asquith CRM. Pentathiepins are an understudied molecular prism of biological activities. Arch Pharm (Weinheim) 2024; 357:e2400646. [PMID: 39382224 PMCID: PMC11610675 DOI: 10.1002/ardp.202400646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
The pentathiepin core was first synthesized in 1971, and while synthetic techniques have progressed over subsequent decades, the biological applications of this heterocycle have received less attention and are only now becoming more apparent. The first natural product, varacin, was identified in 1991, showing cytotoxicity toward a human colon cancer cell line. More recently, the pentathiepin has acted as a surrogate to replace elemental sulfur, that was discovered as a hit in neurodegenerative animal models. A variety of other medicinal chemistry applications have recently been disclosed. Here, we summarize these indications and highlight the main synthetic pathways to access the pentathiepin core. We offer a concise summary and future perspective of this unique sulfur isosteric replacement.
Collapse
Affiliation(s)
- Luca Pozzetti
- School of Pharmacy, Faculty of Health SciencesUniversity of Eastern FinlandKuopioFinland
| | | |
Collapse
|
2
|
Bennett GM, Starczewski J, dela Cerna MVC. In silico identification of putative druggable pockets in PRL3, a significant oncology target. Biochem Biophys Rep 2024; 39:101767. [PMID: 39050014 PMCID: PMC11267023 DOI: 10.1016/j.bbrep.2024.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Protein tyrosine phosphatases (PTP) have emerged as targets in diseases characterized by aberrant phosphorylations such as cancers. The activity of the phosphatase of regenerating liver 3, PRL3, has been linked to several oncogenic and metastatic pathways, particularly in breast, ovarian, colorectal, and blood cancers. Development of small molecules that directly target PRL3, however, has been challenging. This is partly due to the lack of structural information on how PRL3 interacts with its inhibitors. Here, computational methods are used to bridge this gap by evaluating the druggability of PRL3. In particular, web-based pocket prediction tools, DoGSite3 and FTMap, were used to identify binding pockets using structures of PRL3 currently available in the Protein Data Bank. Druggability assessment by molecular dynamics simulations with probes was also performed to validate these results and to predict the strength of binding in the identified pockets. While several druggable pockets were identified, those in the closed conformation show more promise given their volume and depth. These two pockets flank the active site loops and roughly correspond to pockets predicted by molecular docking in previous papers. Notably, druggability simulations predict the possibility of low nanomolar affinity inhibitors in these sites implying the potential to identify highly potent small molecule inhibitors for PRL3. Putative pockets identified here can be leveraged for high-throughput virtual screening to further accelerate the drug discovery against PRL3 and development of PRL3-directed therapeutics.
Collapse
Affiliation(s)
- Grace M. Bennett
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Julia Starczewski
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| | - Mark Vincent C. dela Cerna
- Department of Biochemistry, Chemistry, and Physics, Georgia Southern University, Savannah, GA, 31419, USA
| |
Collapse
|
3
|
Maccari R, Ottanà R. Can Allostery Be a Key Strategy for Targeting PTP1B in Drug Discovery? A Lesson from Trodusquemine. Int J Mol Sci 2023; 24:ijms24119621. [PMID: 37298571 DOI: 10.3390/ijms24119621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
4
|
Li Z, Chen R, Li Y, Zhou Q, Zhao H, Zeng K, Zhao B, Lu Z. A comprehensive overview of PPM1B: From biological functions to diseases. Eur J Pharmacol 2023; 947:175633. [PMID: 36863552 DOI: 10.1016/j.ejphar.2023.175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Reversible phosphorylation of proteins is an important mechanism that regulates cellular processes, which are precisely regulated by protein kinases and phosphatases. PPM1B is a metal ion-dependent serine/threonine protein phosphatase, which regulates multiple biological functions by targeting substrate dephosphorylation, such as cell cycle, energy metabolism, inflammatory responses. In this review, we summarized the occurrent understandings of PPM1B focused on its regulation of signaling pathways, related diseases, and small-molecular inhibitors, which may provide new insights for the identification of PPM1B inhibitors and the treatment of PPM1B-related diseases.
Collapse
Affiliation(s)
- Zhongyao Li
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China
| | - Ruoyu Chen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Yanxia Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Qian Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China
| | - Huanxin Zhao
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China
| | - Kewu Zeng
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China.
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Ji'nan, 250012, Shandong, China.
| | - Zhiyuan Lu
- School of Pharmacy and Pharmaceutical Sciences, Institute of Materia Medica, Shandong First Medical University, Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan, 250117, Shandong, China.
| |
Collapse
|
5
|
Négrel S, Brunel JM. Synthesis and Biological Activities of Naturally Functionalized Polyamines: An Overview. Curr Med Chem 2021; 28:3406-3448. [PMID: 33138746 DOI: 10.2174/0929867327666201102114544] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/01/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
Recently, extensive researches have emphasized the fact that polyamine conjugates are becoming important in all biological and medicinal fields. In this review, we will focus our attention on natural polyamines and highlight recent progress in both fundamental mechanism studies and interests in the development and application for the therapeutic use of polyamine derivatives.
Collapse
Affiliation(s)
- Sophie Négrel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| | - Jean Michel Brunel
- Aix Marseille University, Faculty of Pharmacy, UMR-MD1, 27 bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
6
|
The dual inhibition against the activity and expression of tyrosine phosphatase PRL-3 from a rhodanine derivative. Bioorg Med Chem Lett 2021; 41:127981. [PMID: 33766767 DOI: 10.1016/j.bmcl.2021.127981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/14/2021] [Indexed: 11/22/2022]
Abstract
Increasing evidences demonstrated that PRL-3 was associated with metastatic potential in a variety of cancers including CRC, gastric cancer, ovarian cancer and so on. PRL-3 knock down inhibited the development of metastasis by reducing the size of primary tumors and inhibiting the invasion and growth of cancer cells. Therefore, PRL-3 is a promising diagnostic marker and therapeutic target in tumors. So far, only several PRL-3 inhibitors have been reported. In this study, six rhodanine derivatives were synthesized and characterized. The compounds were evaluated against tyrosine phosphatase PRL-3. Among these compounds, 5-(5-chloro-2-(trifluoromethyl)benzylidene)-2-thioxothiazolidin-4-one (4) could effectively inhibit PRL-3 with IC50 value of 15.22 μM. Fluorescent assays suggested compound 4 tightly bound to tyrosine phosphatase PRL-3 with the molar ratio of 1:1, and the binding constant of 1.74 × 106 M-1. Compound 4 entered into SW-480 cells, selectively inhibited the expression of PRL-3 and increased the phosphorylation of PRL-3 substrates, and decreased the survival rate of SW-480 cells with IC50 of 6.64 μM and induced apoptosis. The results revealed that compound 4 is a dual functional inhibitor against the activity and expression of PRL-3 and a promising anti-cancer candidate targeting PRL-3.
Collapse
|
7
|
A conserved allosteric element controls specificity and activity of functionally divergent PP2C phosphatases from Bacillus subtilis. J Biol Chem 2021; 296:100518. [PMID: 33684446 PMCID: PMC8080068 DOI: 10.1016/j.jbc.2021.100518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023] Open
Abstract
Reversible phosphorylation relies on highly regulated kinases and phosphatases that target specific substrates to control diverse cellular processes. Here, we address how protein phosphatase activity is directed to the correct substrates under the correct conditions. The serine/threonine phosphatase SpoIIE from Bacillus subtilis, a member of the widespread protein phosphatase 2C (PP2C) family of phosphatases, is activated by movement of a conserved α-helical element in the phosphatase domain to create the binding site for the metal cofactor. We hypothesized that this conformational switch could provide a general mechanism for control of diverse members of the PP2C family of phosphatases. The B. subtilis phosphatase RsbU responds to different signals, acts on a different substrates, and produces a more graded response than SpoIIE. Using an unbiased genetic screen, we isolated mutants in the α-helical switch region of RsbU that are constitutively active, indicating conservation of the switch mechanism. Using phosphatase activity assays with phosphoprotein substrates, we found that both phosphatases integrate substrate recognition with activating signals to control metal-cofactor binding and substrate dephosphorylation. This integrated control provides a mechanism for PP2C family of phosphatases to produce specific responses by acting on the correct substrates, under the appropriate conditions.
Collapse
|
8
|
Megret L, Gris B, Sasidharan Nair S, Cevost J, Wertz M, Aaronson J, Rosinski J, Vogt TF, Wilkinson H, Heiman M, Neri C. Shape deformation analysis reveals the temporal dynamics of cell-type-specific homeostatic and pathogenic responses to mutant huntingtin. eLife 2021; 10:64984. [PMID: 33618800 PMCID: PMC7901871 DOI: 10.7554/elife.64984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/31/2021] [Indexed: 01/06/2023] Open
Abstract
Loss of cellular homeostasis has been implicated in the etiology of several neurodegenerative diseases (NDs). However, the molecular mechanisms that underlie this loss remain poorly understood on a systems level in each case. Here, using a novel computational approach to integrate dimensional RNA-seq and in vivo neuron survival data, we map the temporal dynamics of homeostatic and pathogenic responses in four striatal cell types of Huntington’s disease (HD) model mice. This map shows that most pathogenic responses are mitigated and most homeostatic responses are decreased over time, suggesting that neuronal death in HD is primarily driven by the loss of homeostatic responses. Moreover, different cell types may lose similar homeostatic processes, for example, endosome biogenesis and mitochondrial quality control in Drd1-expressing neurons and astrocytes. HD relevance is validated by human stem cell, genome-wide association study, and post-mortem brain data. These findings provide a new paradigm and framework for therapeutic discovery in HD and other NDs.
Collapse
Affiliation(s)
- Lucile Megret
- Sorbonne Université, Centre National de la Recherche Scientifique UMR 8256, INSERM ERL U1164, Paris, France
| | - Barbara Gris
- Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire Jacques-Louis Lyons (LJLL), Paris, France
| | - Satish Sasidharan Nair
- Sorbonne Université, Centre National de la Recherche Scientifique UMR 8256, INSERM ERL U1164, Paris, France
| | - Jasmin Cevost
- Sorbonne Université, Centre National de la Recherche Scientifique UMR 8256, INSERM ERL U1164, Paris, France
| | - Mary Wertz
- MIT, Broad Institute, MIT, Picower Institute for Learning and Memory, Cambridge, United States
| | | | | | | | | | - Myriam Heiman
- MIT, Broad Institute, MIT, Picower Institute for Learning and Memory, Cambridge, United States
| | - Christian Neri
- Sorbonne Université, Centre National de la Recherche Scientifique UMR 8256, INSERM ERL U1164, Paris, France
| |
Collapse
|
9
|
Lu Z, Xiao P, Zhou Y, Li Z, Yu X, Sun J, Shen Y, Zhao B. Identification of HN252 as a potent inhibitor of protein phosphatase PPM1B. J Cell Mol Med 2020; 24:13463-13471. [PMID: 33048454 PMCID: PMC7701510 DOI: 10.1111/jcmm.15975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/20/2020] [Accepted: 09/20/2020] [Indexed: 12/25/2022] Open
Abstract
Protein phosphatase 1B (PPM1B), a member of metal-dependent protein serine/threonine phosphatase family, is involved in the regulation of several signalling pathways. However, our understanding of its substrate interaction and physiological functions is still largely limited. There is no reported PPM1B inhibitor to date. In this study, we identified HN252, a p-terphenyl derivative, as a potent PPM1B inhibitor (Ki = 0.52 ± 0.06 µM). HN252 binding to PPM1B displayed remarkable and specific inhibition of PPM1B in both in vitro and ex vivo. With the aid of this small molecular inhibitor, we identified 30 proteins' serine/threonine phosphorylation as potential substrates of PPM1B, 5 of which were demonstrated by immunoprecipitation, including one known (CDK2) and 4 novel ones (AKT1, HSP90B, β-catenin and BRCA1). Furthermore, GO and KEGG analysis of dramatically phosphorylated proteins by PPM1B inhibition indicated that PPM1B plays roles in the regulation of multiple cellular processes and signalling pathways, such as gene transcription, inflammatory regulation, ageing and tumorigenesis. Our work provides novel insights into further investigation of molecular mechanisms of PPM1B.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Mahapatra MK, Kumar R, Kumar M. Synthesis, biological evaluation and in silico studies of 5-(3-methoxybenzylidene)thiazolidine-2,4-dione analogues as PTP1B inhibitors. Bioorg Chem 2017; 71:1-9. [PMID: 28126289 DOI: 10.1016/j.bioorg.2017.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 10/05/2016] [Accepted: 01/15/2017] [Indexed: 02/07/2023]
Abstract
PTP1B (protein tyrosine phosphatase 1B) dephosphorylates the insulin receptor substrate and thus acts as a negative regulator of the insulin and leptin signalling pathway. Recently, it has been considered as a new therapeutic target of intervention for the treatment of type2 diabetes. A series of aryl/alkylsulfonyloxy-5-(3-methoxybenzylidene)thiazolidine-2,4-dione derivatives were synthesized, screened in vitro for their PTP1B inhibitory activity and in vivo for anti-hyperglycaemic activity. Docking results further helped in understanding the nature of interactions governing the binding mode of ligands inside the active site of PTP1B. Among the synthesized compounds, 13 and 16 were found to be potent PTP1B inhibitors having IC50 of 7.31 and 8.73μM respectively. Significant lowering of blood glucose level was observed in some of the synthesized compounds in in vivo study.
Collapse
Affiliation(s)
- Manoj Kumar Mahapatra
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Rajnish Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Manoj Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
11
|
Abstract
Phosphatases play key roles in normal physiology and diseases. Studying phosphatases has been both essential and challenging, and the application of conventional genetic and biochemical methods has led to crucial but still limited understanding of their mechanisms, substrates, and exclusive functions within highly intricate networks. With the advances in technologies such as cellular imaging and molecular and chemical biology in terms of sensitive tools and methods, the phosphatase field has thrived in the past years and has set new insights for cell signaling studies and for therapeutic development. In this review, we give an overview of the existing interdisciplinary tools for phosphatases, give examples on how they have been applied to increase our understanding of these enzymes, and suggest how they-and other tools yet barely used in the phosphatase field-might be adapted to address future questions and challenges.
Collapse
Affiliation(s)
- Sara Fahs
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Pablo Lujan
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology
Unit, Meyerhofstrasse
1, 69117 Heidelberg, Germany
| |
Collapse
|
12
|
Meng G, Zheng M, Wang M, Tong J, Ge W, Zhang J, Zheng A, Li J, Gao L, Li J. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I. Eur J Med Chem 2016; 122:756-769. [PMID: 27526040 DOI: 10.1016/j.ejmech.2016.05.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022]
Abstract
A new series of 2-substituted imino-3-substituted-5- heteroarylidene-1,3-thiazolidine-4-ones as the potent bidentate PTP1B inhibitors were designed and synthesized in this paper. All of the new compounds were characterized and identified by spectra analysis. The biological screening test against PTP1B showed that some of these compounds have the positive inhibitory activity against PTP1B. The activity of the compounds with 5-substituted pyrrole on 5-postion of 1,3-thiazolidine-4-one are more potent than that of those compounds with 5-substituted pyridine group. Compound 14b, 14h and 14i showed IC50 values of 8.66 μM, 6.83 μM and 6.09 μM against PTP1B, respectively. Docking analysis of these active compounds with PTP1B showed the possible interaction modes of these biheterocyclic compounds with the active sites of PTP1B. The inhibition tests against oncogenetic CDC25B were also conducted on this set of compounds to evaluate the selectivity and possible anti-neoplastic activity. Compound 14b also showed the lowest IC50 of 1.66 μM against CDC25B among all the possible inhibitors, including 14g, 14h, 14i and 15c. Some pharmacological parameters including VolSurf, steric and electric descriptors of all the compounds were calculated to give some hints about the relative relationship with the biological activity. The result of this study might give some light on designing the possible anti-cancer drugs targeting at phosphatases. The most active compound 14i might be used as the lead compound for further structure modification of the new low molecular weight PTP1B inhibitors with the N-containing heterocyclic skeleton.
Collapse
Affiliation(s)
- Ge Meng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China.
| | - Meilin Zheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Mei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Weijuan Ge
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiehe Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|
13
|
Azide-alkyne cycloaddition-mediated cyclization of phosphonopeptides and their evaluation as PTP1B binders and enrichment tools. Bioorg Med Chem 2015; 23:2848-53. [PMID: 25805211 DOI: 10.1016/j.bmc.2015.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/22/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are important enzymes in health and disease, and chemical tools are crucial to understand and modulate their biological roles. PTP1B is involved in diabetes, obesity and cancer. One of the main challenges for the design of chemical tools for PTP1B is the homology to TCPTP, making tool selectivity a highly challenging task. Here, we aimed to study if azide-alkyne cycloaddition-mediated cyclization of a peptide inhibitor could increase its selectivity toward PTP1B over TCPTP, and if cyclic and linear peptide binders can be applied as enrichment tools of endogenous PTP1B. While the cyclization of the peptide binders did not improve the selectivity toward PTP1B over TCPTP, it enhanced strongly the efficiency to co-precipitate endogenous PTP1B out of cell lysates. Our results show that fine-tuning the molecular structure of peptidic pull-down baits can greatly enhance their efficiency compared to the parental peptide sequences.
Collapse
|
14
|
Tautz L, Senis YA, Oury C, Rahmouni S. Perspective: Tyrosine phosphatases as novel targets for antiplatelet therapy. Bioorg Med Chem 2015; 23:2786-97. [PMID: 25921264 PMCID: PMC4451376 DOI: 10.1016/j.bmc.2015.03.075] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 11/26/2022]
Abstract
Arterial thrombosis is the primary cause of most cases of myocardial infarction and stroke, the leading causes of death in the developed world. Platelets, highly specialized cells of the circulatory system, are key contributors to thrombotic events. Antiplatelet drugs, which prevent platelets from aggregating, have been very effective in reducing the mortality and morbidity of these conditions. However, approved antiplatelet therapies have adverse side effects, most notably the increased risk of bleeding. Moreover, there remains a considerable incidence of arterial thrombosis in a subset of patients receiving currently available drugs. Thus, there is a pressing medical need for novel antiplatelet agents with a more favorable safety profile and less patient resistance. The discovery of novel antiplatelet targets is the matter of intense ongoing research. Recent findings demonstrate the potential of targeting key signaling molecules, including kinases and phosphatases, to prevent platelet activation and aggregation. Here, we offer perspectives to targeting members of the protein tyrosine phosphatase (PTP) superfamily, a major class of enzymes in signal transduction. We give an overview of previously identified PTPs in platelet signaling, and discuss their potential as antiplatelet drug targets. We also introduce VHR (DUSP3), a PTP that we recently identified as a major player in platelet biology and thrombosis. We review our data on genetic deletion as well as pharmacological inhibition of VHR, providing proof-of-principle for a novel and potentially safer VHR-based antiplatelet therapy.
Collapse
Affiliation(s)
- Lutz Tautz
- NCI-Designated Cancer Center, Sanford-Burnham Medical Research Institute, 10901 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Yotis A Senis
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Cécile Oury
- Laboratory of Thrombosis and Haemostasis, GIGA-Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Souad Rahmouni
- Immunology and Infectious Diseases Unit, GIGA-Signal Transduction, University of Liège, Liège, Belgium
| |
Collapse
|
15
|
Beceño C, Chauhan P, Rembiak A, Wang A, Enders D. Brønsted Acid-Catalyzed Enantioselective Synthesis of Isatin- DerivedN,S-Acetals. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201401155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
16
|
Baguley TD, Nairn AC, Lombroso PJ, Ellman JA. Synthesis of benzopentathiepin analogs and their evaluation as inhibitors of the phosphatase STEP. Bioorg Med Chem Lett 2015; 25:1044-6. [PMID: 25666825 DOI: 10.1016/j.bmcl.2015.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/09/2015] [Indexed: 11/29/2022]
Abstract
Striatal-enriched protein tyrosine phosphatase (STEP) is a brain specific protein tyrosine phosphatase that has been implicated in many neurodegenerative diseases, such as Alzheimer's disease. We recently reported the benzopentathiepin TC-2153 as a potent inhibitor of STEP in vitro, cells and animals. Herein, we report the synthesis and evaluation of TC-2153 analogs in order to define what structural features are important for inhibition and to identify positions tolerant of substitution for further study. The trifluoromethyl substitution is beneficial for inhibitor potency, and the amine is tolerant of acylation, and thus provides a convenient handle for introducing additional functionality such as reporter groups.
Collapse
Affiliation(s)
- Tyler D Baguley
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Angus C Nairn
- Department of Psychiatry, Yale University, New Haven, CT 06520, United States
| | - Paul J Lombroso
- Department of Psychiatry, Yale University, New Haven, CT 06520, United States; Department of Neurobiology, Yale University, New Haven, CT 06520, United States; Child Study Center, Yale University, New Haven, CT 06520, United States
| | - Jonathan A Ellman
- Department of Chemistry, Yale University, New Haven, CT 06520, United States.
| |
Collapse
|
17
|
Bao J, Krylova SM, Cherney LT, LeBlanc JCY, Pribil P, Johnson PE, Wilson DJ, Krylov SN. Kinetic size-exclusion chromatography with mass spectrometry detection: an approach for solution-based label-free kinetic analysis of protein-small molecule interactions. Anal Chem 2014; 86:10016-20. [PMID: 25275785 DOI: 10.1021/ac503391c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Studying the kinetics of reversible protein-small molecule binding is a major challenge. The available approaches require that either the small molecule or the protein be modified by labeling or immobilization on a surface. Not only can such modifications be difficult to do but also they can drastically affect the kinetic parameters of the interaction. To solve this problem, we present kinetic size-exclusion chromatography with mass spectrometry detection (KSEC-MS), a solution-based label-free approach. KSEC-MS utilizes the ability of size-exclusion chromatography (SEC) to separate any small molecule from any protein-small molecule complex without immobilization and the ability of mass spectrometry (MS) to detect a small molecule without a label. The rate constants of complex formation and dissociation are deconvoluted from the temporal pattern of small molecule elution measured with MS at the exit from the SEC column. This work describes the concept of KSEC-MS and proves it in principle by measuring the rate constants of interaction between carbonic anhydrase and acetazolamide.
Collapse
Affiliation(s)
- Jiayin Bao
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University , Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hoeger B, Diether M, Ballester PJ, Köhn M. Biochemical evaluation of virtual screening methods reveals a cell-active inhibitor of the cancer-promoting phosphatases of regenerating liver. Eur J Med Chem 2014; 88:89-100. [PMID: 25159123 PMCID: PMC4255093 DOI: 10.1016/j.ejmech.2014.08.060] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/17/2014] [Accepted: 08/20/2014] [Indexed: 11/30/2022]
Abstract
Computationally supported development of small molecule inhibitors has successfully been applied to protein tyrosine phosphatases in the past, revealing a number of cell-active compounds. Similar approaches have also been used to screen for small molecule inhibitors for the cancer-related phosphatases of regenerating liver (PRL) family. Still, selective and cell-active compounds are of limited availability. Since especially PRL-3 remains an attractive drug target due to its clear role in cancer metastasis, such compounds are highly demanded. In this study, we investigated various virtual screening approaches for their applicability to identify novel small molecule entities for PRL-3 as target. Biochemical evaluation of purchasable compounds revealed ligand-based approaches as well suited for this target, compared to docking-based techniques that did not perform well in this context. The best hit of this study, a 2-cyano-2-ene-ester and hence a novel chemotype targeting the PRLs, was further optimized by a structure–activity-relationship (SAR) study, leading to a low micromolar PRL inhibitor with acceptable selectivity over other protein tyrosine phosphatases. The compound is active in cells, as shown by its ability to specifically revert PRL-3 induced cell migration, and exhibits similar effects on PRL-1 and PRL-2. It is furthermore suitable for fluorescence microscopy applications, and it is commercially available. These features make it the only purchasable, cell-active and acceptably selective PRL inhibitor to date that can be used in various cellular applications. Computational ligand- and docking-based approaches were tested for PRL-3 as a target. Ligand-based screening was proven a feasible approach for PRL-3 inhibitor discovery. A low micromolar, non-competitive inhibitor with novel chemotype for PRLs was discovered. The inhibitor efficiently blocks PRL induced cell migration. The inhibitor is non-cytotoxic, commercially available and suitable for fluorescence microscopy applications.
Collapse
Affiliation(s)
- Birgit Hoeger
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Maren Diether
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Pedro J Ballester
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, United Kingdom; Inserm U1068, Centre de Recherche en Cancérologie de Marseille, France.
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| |
Collapse
|
19
|
Boukouvalas J, Jean MA. Streamlined biomimetic synthesis of paracaseolide A via aerobic oxidation of a 2-silyloxyfuran. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.05.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Ma Y, Jin YY, Wang YL, Wang RL, Lu XH, Kong DX, Xu WR. The Discovery of a Novel and Selective Inhibitor of PTP1B Over TCPTP: 3D QSAR Pharmacophore Modeling, Virtual Screening, Synthesis, and Biological Evaluation. Chem Biol Drug Des 2014; 83:697-709. [DOI: 10.1111/cbdd.12283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Yuan-Yuan Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Ye-Liu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Run-Ling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics); School of Pharmacy; Tianjin Medical University; Tianjin 300070 China
| | - Xin-Hua Lu
- New Drug Research and Development Center; North China Pharmaceutical Group Corporation; 388 Heping East Road Shijiazhuang Hebei 050015 China
| | - De-Xin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics; School of Pharmaceutical Sciences and Research Center of Basic Medical Sciences; Tianjin Medical University; Tianjin 300070 China
| | - Wei-Ren Xu
- Tianjin Institute of Pharmaceutical Research (TIPR); Tianjin 300193 China
| |
Collapse
|
21
|
Huang TL, Mayence A, Vanden Eynde JJ. Some non-conventional biomolecular targets for diamidines. A short survey. Bioorg Med Chem 2014; 22:1983-92. [DOI: 10.1016/j.bmc.2014.02.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/19/2014] [Accepted: 02/24/2014] [Indexed: 12/24/2022]
|
22
|
McIntire LBJ, Lee KI, Chang-IIeto B, Di Paolo G, Kim TW. Screening assay for small-molecule inhibitors of synaptojanin 1, a synaptic phosphoinositide phosphatase. JOURNAL OF BIOMOLECULAR SCREENING 2014; 19:585-94. [PMID: 24186361 PMCID: PMC4008881 DOI: 10.1177/1087057113510177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elevation of amyloid β-peptide (Aβ) is critically associated with Alzheimer disease (AD) pathogenesis. Aβ-induced synaptic abnormalities, including altered receptor trafficking and synapse loss, have been linked to cognitive deficits in AD. Recent work implicates a lipid critical for neuronal function, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], in Aβ-induced synaptic and behavioral impairments. Synaptojanin 1 (Synj1), a lipid phosphatase mediating the breakdown of PI(4,5)P2, has been shown to play a role in synaptic vesicle recycling and receptor trafficking in neurons. Heterozygous deletion of Synj1 protected neurons from Aβ-induced synaptic loss and restored learning and memory in a mouse model of AD. Thus, inhibition of Synj1 may ameliorate Aβ-associated impairments, suggesting Synj1 as a potential therapeutic target. To this end, we developed a screening assay for Synj1 based on detection of inorganic phosphate liberation from a water-soluble, short-chain PI(4,5)P2. The assay displayed saturable kinetics and detected Synj1's substrate preference for PI(4,5)P2 over PI(3,4,5)P3. The assay will enable identification of novel Synj1 inhibitors that have potential utility as chemical probes to dissect the cellular role of Synj1 as well as potential to prevent or reverse AD-associated synaptic abnormalities.
Collapse
Affiliation(s)
- Laura Beth J. McIntire
- Department of Pathology and Cell Biology, and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Kyu-In Lee
- Department of Pathology and Cell Biology, and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Belle Chang-IIeto
- Department of Pathology and Cell Biology, and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Gilbert Di Paolo
- Department of Pathology and Cell Biology, and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| | - Tae-Wan Kim
- Department of Pathology and Cell Biology, and the Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
23
|
Sharlow ER, Wipf P, McQueeney KE, Bakan A, Lazo JS. Investigational inhibitors of PTP4A3 phosphatase as antineoplastic agents. Expert Opin Investig Drugs 2014; 23:661-73. [DOI: 10.1517/13543784.2014.892579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Albers HMHG, Kuijl C, Bakker J, Hendrickx L, Wekker S, Farhou N, Liu N, Blasco-Moreno B, Scanu T, den Hertog J, Celie P, Ovaa H, Neefjes J. Integrating chemical and genetic silencing strategies to identify host kinase-phosphatase inhibitor networks that control bacterial infection. ACS Chem Biol 2014; 9:414-22. [PMID: 24274083 PMCID: PMC3934374 DOI: 10.1021/cb400421a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Every
year three million people die as a result of bacterial infections,
and this number may further increase due to resistance to current
antibiotics. These antibiotics target almost all essential bacterial
processes, leaving only a few new targets for manipulation. The host
proteome has many more potential targets for manipulation in order
to control bacterial infection, as exemplified by the observation
that inhibiting the host kinase Akt supports the elimination of different
intracellular bacteria including Salmonella and M. tuberculosis. If host kinases are involved in the control
of bacterial infections, phosphatases could be as well. Here we present
an integrated small interference RNA and small molecule screen to
identify host phosphatase-inhibitor combinations that control bacterial
infection. We define host phosphatases inhibiting intracellular growth
of Salmonella and identify corresponding inhibitors
for the dual specificity phosphatases DUSP11 and 27. Pathway analysis
places many kinases and phosphatases controlling bacterial infection
in an integrated pathway centered around Akt. This network controls
host cell metabolism, survival, and growth and bacterial survival
and reflect a natural host cell response to bacterial infection. Inhibiting
two enzyme classes with opposite activities–kinases and phosphatases–may
be a new strategy to overcome infections by antibiotic-resistant bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bernat Blasco-Moreno
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Baguley TD, Xu HC, Chatterjee M, Nairn AC, Lombroso PJ, Ellman JA. Substrate-based fragment identification for the development of selective, nonpeptidic inhibitors of striatal-enriched protein tyrosine phosphatase. J Med Chem 2013; 56:7636-50. [PMID: 24083656 DOI: 10.1021/jm401037h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High levels of striatal-enriched protein tyrosine phosphatase (STEP) activity are observed in a number of neuropsychiatric disorders such as Alzheimer's disease. Overexpression of STEP results in the dephosphorylation and inactivation of many key neuronal signaling molecules, including ionotropic glutamate receptors. Moreover, genetically reducing STEP levels in AD mouse models significantly reversed cognitive deficits and decreased glutamate receptor internalization. These results support STEP as a potential target for drug discovery for the treatment of Alzheimer's disease. Herein, a substrate-based approach for the discovery and optimization of fragments called substrate activity screening (SAS) has been applied to the development of low molecular weight (<450 Da) and nonpeptidic, single-digit micromolar mechanism-based STEP inhibitors with greater than 20-fold selectivity across multiple tyrosine and dual specificity phosphatases. Significant levels of STEP inhibition in rat cortical neurons are also observed.
Collapse
Affiliation(s)
- Tyler D Baguley
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | | | | | | | | | | |
Collapse
|
26
|
Chen YT, Tang CL, Ma WP, Gao LX, Wei Y, Zhang W, Li JY, Li J, Nan FJ. Design, synthesis, and biological evaluation of novel 2-ethyl-5-phenylthiazole-4-carboxamide derivatives as protein tyrosine phosphatase 1B inhibitors with improved cellular efficacy. Eur J Med Chem 2013; 69:399-412. [PMID: 24090912 DOI: 10.1016/j.ejmech.2013.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/06/2013] [Accepted: 09/10/2013] [Indexed: 12/13/2022]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is implicated as a key negative regulator of the insulin and leptin signal-transduction pathways. PTP1B inhibitors have emerged as attractive and potent pharmaceutical agents for the treatment of type 2 diabetes and obesity. We identified a series of 2-ethyl-5-phenylthiazole-4-carboxamide (PTA) derivatives, inspired from the ACT scaffold of Scleritodermin A, as a novel class of PTP1B inhibitors. Structure-activity relationship (SAR) analysis and docking studies revealed the molecular basis of PTP1B inhibition by these compounds. PTA derivative 18g was capable of inhibiting intracellular PTP1B and subsequently activating the insulin signaling pathway. Treatment of cells with 18g markedly increased the phosphorylation levels of IRβ and Akt as well as the rate of glucose uptake.
Collapse
Affiliation(s)
- Yue-Ting Chen
- Chinese National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guoshoujing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schneider R, Beumer C, Simard JR, Grütter C, Rauh D. Selective Detection of Allosteric Phosphatase Inhibitors. J Am Chem Soc 2013; 135:6838-41. [DOI: 10.1021/ja4030484] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ralf Schneider
- Chemical Genomics Centre der Max-Planck-Gesellschaft, Otto-Hahn-Strasse 15, 44227
Dortmund, Germany
| | - Claudia Beumer
- Fakultät
Chemie−Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Jeffrey R. Simard
- Chemical Genomics Centre der Max-Planck-Gesellschaft, Otto-Hahn-Strasse 15, 44227
Dortmund, Germany
| | - Christian Grütter
- Fakultät
Chemie−Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Daniel Rauh
- Chemical Genomics Centre der Max-Planck-Gesellschaft, Otto-Hahn-Strasse 15, 44227
Dortmund, Germany
- Fakultät
Chemie−Chemische
Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
28
|
Collins JC, Armstrong A, Chapman KL, Cordingley HC, Jaxa-Chamiec AA, Judd KE, Mann DJ, Scott KA, Tralau-Stewart CJ, Low CMR. Prospective use of molecular field points in ligand-based virtual screening: efficient identification of new reversible Cdc25 inhibitors. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00047h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Natural-product-derived fragments for fragment-based ligand discovery. Nat Chem 2012; 5:21-8. [DOI: 10.1038/nchem.1506] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022]
|
30
|
He XP, Xie J, Tang Y, Li J, Chen GR. CuAAC click chemistry accelerates the discovery of novel chemical scaffolds as promising protein tyrosine phosphatases inhibitors. Curr Med Chem 2012; 19:2399-405. [PMID: 22455590 PMCID: PMC3474962 DOI: 10.2174/092986712800269245] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 02/06/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are crucial regulators for numerous biological processes in nature. The dysfunction and overexpression of many PTP members have been demonstrated to cause fatal human diseases such as cancers, diabetes, obesity, neurodegenerative diseases and autoimmune disorders. In the past decade, considerable efforts have been devoted to the production of PTPs inhibitors by both academia and the pharmaceutical industry. However, there are only limited drug candidates in clinical trials and no commercial drugs have been approved, implying that further efficient discovery of novel chemical entities competent for inhibition of the specific PTP target in vivo remains yet a challenge. In light of the click-chemistry paradigm which advocates the utilization of concise and selective carbon-heteroatom ligation reactions for the modular construction of useful compound libraries, the Cu(I)-catalyzed azidealkyne 1,3-dipolar cycloaddition reaction (CuAAC) has fueled enormous energy into the modern drug discovery. Recently, this ingenious chemical ligation tool has also revealed efficacious and expeditious in establishing large combinatorial libraries for the acquisition of novel PTPs inhibitors with promising pharmacological profiles. We thus offer here a comprehensive review highlighting the development of PTPs inhibitors accelerated by the CuAAC click chemistry.
Collapse
Affiliation(s)
- X-P He
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals, East China University of Science and Technology, Shanghai, PR China
| | | | | | | | | |
Collapse
|
31
|
Targeting mutant huntingtin for the development of disease-modifying therapy. Drug Discov Today 2012; 17:1217-23. [PMID: 22772050 DOI: 10.1016/j.drudis.2012.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/09/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is a progressive and fatal neurodegenerative disease, and the most common inherited CAG repeat disorder. A polyglutamine expansion in the N-terminus of the huntingtin protein (HTT) leads to protein misfolding and downstream pathogenic processes culminating in widespread functional impairment and neurodegeneration in the striatum, cortex and other brain areas. To date, only symptomatic treatments are available that address motor, psychiatric and cognitive deficits. Here we review recent strategies for developing disease-modifying therapies designed to limit or abolish the pathogenic activities of the primary molecular target in HD, the mutant HTT protein itself.
Collapse
|
32
|
Ottanà R, Maccari R, Amuso S, Wolber G, Schuster D, Herdlinger S, Manao G, Camici G, Paoli P. New 4-[(5-arylidene-2-arylimino-4-oxo-3-thiazolidinyl)methyl]benzoic acids active as protein tyrosine phosphatase inhibitors endowed with insulinomimetic effect on mouse C2C12 skeletal muscle cells. Eur J Med Chem 2012; 50:332-43. [DOI: 10.1016/j.ejmech.2012.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
|
33
|
Sobhia ME, Paul S, Shinde R, Potluri M, Gundam V, Kaur A, Haokip T. Protein tyrosine phosphatase inhibitors: a patent review (2002 – 2011). Expert Opin Ther Pat 2012; 22:125-53. [DOI: 10.1517/13543776.2012.661414] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
34
|
Maccari R, Ottanà R. Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents. J Med Chem 2011; 55:2-22. [PMID: 21988196 DOI: 10.1021/jm200607g] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rosanna Maccari
- Dipartimento Farmaco-Chimico, Faculty of Pharmacy, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | | |
Collapse
|
35
|
Borsini E, Broggini G, Fasana A, Baldassarri C, Manzo AM, Perboni AD. Access to pyrrolo-pyridines by gold-catalyzed hydroarylation of pyrroles tethered to terminal alkynes. Beilstein J Org Chem 2011; 7:1468-74. [PMID: 22238519 PMCID: PMC3252845 DOI: 10.3762/bjoc.7.170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/06/2011] [Indexed: 12/05/2022] Open
Abstract
In a simple procedure, the intramolecular hydroarylation of N-propargyl-pyrrole-2-carboxamides was accomplished with the aid of gold(III) catalysis. The reaction led to differently substituted pyrrolo[2,3-c]pyridine and pyrrolo[3,2-c]pyridine derivatives arising either from direct cyclization or from a formal rearrangement of the carboxamide group. Terminal alkynes are essential to achieve bicyclic pyrrolo-fused pyridinones by a 6-exo-dig process, while the presence of a phenyl group at the C–C triple bond promotes the 7-endo-dig cyclization giving pyrrolo-azepines.
Collapse
Affiliation(s)
- Elena Borsini
- Dipartimento di Scienze Chimiche e Ambientali Università dell'Insubria, Via Valleggio 11, 22100 Como, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Bao J, Krylova SM, Wilson DJ, Reinstein O, Johnson PE, Krylov SN. Kinetic Capillary Electrophoresis with Mass-Spectrometry Detection (KCE-MS) Facilitates Label-Free Solution-Based Kinetic Analysis of Protein-Small Molecule Binding. Chembiochem 2011; 12:2551-4. [DOI: 10.1002/cbic.201100617] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Indexed: 01/22/2023]
|
37
|
Discovering the distinct inhibitory effects between C4-epimeric glycosyl amino acids: new insight into the development of protein tyrosine phosphatase inhibitors. Glycoconj J 2011; 28:493-7. [DOI: 10.1007/s10719-011-9347-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 07/13/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
38
|
Vintonyak VV, Warburg K, Over B, Hübel K, Rauh D, Waldmann H. Identification and further development of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase B. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.04.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
He XP, Deng Q, Gao LX, Li C, Zhang W, Zhou YB, Tang Y, Shi XX, Xie J, Li J, Chen GR, Chen K. Facile fabrication of promising protein tyrosine phosphatase (PTP) inhibitor entities based on ‘clicked’ serine/threonine–monosaccharide hybrids. Bioorg Med Chem 2011; 19:3892-900. [DOI: 10.1016/j.bmc.2011.05.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 05/21/2011] [Accepted: 05/23/2011] [Indexed: 01/05/2023]
|