1
|
Siridechakorn I, Shinta DN, Ardiansah A, Batsomboon P, Ngamrojanavanich N, Choodej S, Pudhom K. Tyrosinase Inhibitory Properties of Compounds Isolated from Artocarpus integer Roots. JOURNAL OF NATURAL PRODUCTS 2024; 87:2790-2800. [PMID: 39552474 DOI: 10.1021/acs.jnatprod.4c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
A comprehensive phytochemical investigation of Artocarpus integer root extract led to the isolation of two new geranylated xanthones (1 and 2), one new geranylated flavone (3), one new flavanone (4), and one unique benzopyran (5), along with 16 known compounds. Structures of the new compounds were elucidated by a combination of spectroscopic and computational methods. Two different types of compounds, flavone 12 and arylbenzofuran 19, displayed the most potent antityrosinase activity with IC50 values of 1.7 ± 0.2 and 1.2 ± 0.1 μM, respectively. In addition, kinetic measurements and molecular docking simulations of compounds 12 and 19 were performed and revealed that compound 12 is a competitive inhibitor binding with the tyrosinase active site, while compound 19 is a noncompetitive tyrosinase inhibitor binding the enzyme at the allosteric site.
Collapse
Affiliation(s)
- Ittipon Siridechakorn
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dina Nur Shinta
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ardiansah Ardiansah
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Paratchata Batsomboon
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road Laksi, Bangkok 10210, Thailand
| | | | - Siwattra Choodej
- Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok 10140, Thailand
| | - Khanitha Pudhom
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Beaumet M, Lazinski LM, Maresca M, Haudecoeur R. Tyrosinase Inhibition and Antimelanogenic Effects of Resorcinol-Containing Compounds. ChemMedChem 2024; 19:e202400314. [PMID: 39105380 PMCID: PMC11617669 DOI: 10.1002/cmdc.202400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Tyrosinases (TYRs) are copper-containing metalloenzymes present in a large diversity of species. In human, hTYR is responsible for pivotal steps in melanogenesis, catalysing the oxidation of l-tyrosine to l-DOPA and further to dopaquinone. While numerous TYR inhibitors have been reported, polyphenolic compounds tend to dominate the literature. However, many of these compounds, particularly monophenols and catechols, have been identified as alternative substrates rather than true inhibitors, given their structural similarity to natural substrates. Resorcinol-containing compounds have emerged as promising candidates to address this challenge, as the meta-dihydroxy moiety in resorcinol demonstrates resistance to TYR-mediated oxidation, while retaining the favourable interactions with copper ions provided by the hydroxy groups. Although their precise mechanism of action remains debated, resorcinol derivatives have yielded some of the most active compounds against isolated mushroom and human TYRs, as well as clinically used dermocosmetic agents like rucinol and thiamidol, which exhibited very promising effects in patients with facial melasma. This review outlines the development of resorcinol-containing TYR inhibitors, categorized by scaffold type, ranging from simple alkyl analogues to intricate synthetic derivatives. Mechanistic insights about the resorcinol-TYR interaction are also presented and debated.
Collapse
Affiliation(s)
| | - Leticia M. Lazinski
- Univ. Grenoble AlpesCNRSDPM38000GrenobleFrance
- Univ. Grenoble AlpesCNRSDCM38000GrenobleFrance
| | - Marc Maresca
- Aix Marseille Univ.CNRSCentrale MarseilleiSm213013MarseilleFrance
| | | |
Collapse
|
3
|
Bonardi A, Gratteri P. Computational studies of tyrosinase inhibitors. Enzymes 2024; 56:191-229. [PMID: 39304287 DOI: 10.1016/bs.enz.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Computational studies have significantly advanced the understanding of tyrosinase (TYR) function, mechanism, and inhibition, accelerating the development of more effective and selective inhibitors. This chapter provides an overview of in silico studies on TYR inhibitors, emphasizing key inhibitory chemotypes and the main residues involved in ligand-target interactions. The chapter discusses tools applied in the context of TYR inhibitor development, e.g., structure-based virtual screening, molecular docking, artificial intelligence, and machine learning algorithms.
Collapse
Affiliation(s)
- Alessandro Bonardi
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy
| | - Paola Gratteri
- NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
4
|
Doğan A, Akocak S. Natural products as tyrosinase inhibitors. Enzymes 2024; 56:85-109. [PMID: 39304292 DOI: 10.1016/bs.enz.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Tyrosinase is a crucial copper-containing enzyme involved in the production of melanin. Melasma, age spots, and freckles are examples of hyperpigmentation diseases caused by excess production of melanin. Inhibiting tyrosinase activity is a crucial method for treating these disorders along with various applications such as cosmetics, food technology, and medicine. Natural products have proven a rich source of tyrosinase inhibitors, with several molecules from plant, marine, and microbial sources showing potential inhibitory action. This chapter provides a complete overview of natural compounds that have been found as tyrosinase inhibitors, with emphasis on their structures, modes of action, and prospective applications.
Collapse
Affiliation(s)
- Aslınur Doğan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye
| | - Suleyman Akocak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, Türkiye.
| |
Collapse
|
5
|
Roulier B, Rush I, Lazinski LM, Pérès B, Olleik H, Royal G, Fishman A, Maresca M, Haudecoeur R. Resorcinol-based hemiindigoid derivatives as human tyrosinase inhibitors and melanogenesis suppressors in human melanoma cells. Eur J Med Chem 2023; 246:114972. [PMID: 36462443 DOI: 10.1016/j.ejmech.2022.114972] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Human tyrosinase (hsTYR) catalyzes the key steps of melanogenesis, making it a privileged target for reducing melanin production in vivo. However, very few hsTYR inhibitors have been reported so far in the literature, whereas thousands of mushroom tyrosinase (abTYR) inhibitors are known. Yet, as these enzymes are actually very different, including at their active sites, there is an urgent need for new true hsTYR inhibitors in order to enable human-directed pharmacological and dermocosmetic applications without encountering the inefficiency and toxicity issues currently triggered by kojic acid or hydroquinone. Starting from the two most active compounds reported to date, i.e. a 2-hydroxypyridine-embedded aurone and thiamidol, we combined herein key structural elements and developed new nanomolar hsTYR inhibitors with cell-based activity. From a complete series of thirty-eight synthesized derivatives, excellent inhibition values were obtained for two compounds in both human melanoma cell lysates and purified hsTYR assays, and a promising improvement was observed in whole cell experiments.
Collapse
Affiliation(s)
- Brayan Roulier
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | - Inbal Rush
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Leticia M Lazinski
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France; Univ. Grenoble Alpes, CNRS 5250, DCM, 38000, Grenoble, France
| | - Basile Pérès
- Univ. Grenoble Alpes, CNRS 5063, DPM, 38000, Grenoble, France
| | - Hamza Olleik
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | - Guy Royal
- Univ. Grenoble Alpes, CNRS 5250, DCM, 38000, Grenoble, France
| | - Ayelet Fishman
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Marc Maresca
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, 13397, Marseille, France
| | | |
Collapse
|
6
|
Papaemmanouil CD, Peña-García J, Banegas-Luna AJ, Kostagianni AD, Gerothanassis IP, Pérez-Sánchez H, Tzakos AG. ANTIAGE-DB: A Database and Server for the Prediction of Anti-Aging Compounds Targeting Elastase, Hyaluronidase, and Tyrosinase. Antioxidants (Basel) 2022; 11:antiox11112268. [PMID: 36421454 PMCID: PMC9686885 DOI: 10.3390/antiox11112268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Natural products bear a multivariate biochemical profile with antioxidant, anti-inflammatory, antibacterial, and antitumoral properties. Along with their natural sources, they have been widely used both as anti-aging and anti-melanogenic agents due to their effective contribution in the elimination of reactive oxygen species (ROS) caused by oxidative stress. Their anti-aging activity is mainly related to their capacity of inhibiting enzymes like Human Neutrophil Elastase (HNE), Hyaluronidase (Hyal) and Tyrosinase (Tyr). Herein, we accumulated literature information (covering the period 1965–2020) on the inhibitory activity of natural products and their natural sources towards these enzymes. To navigate this information, we developed a database and server termed ANTIAGE-DB that allows the prediction of the anti-aging potential of target compounds. The server operates in two axes. First a comparison of compounds by shape similarity can be performed against our curated database of natural products whose inhibitory potential has been established in the literature. In addition, inverse virtual screening can be performed for a chosen molecule against the three targeted enzymes. The server is open access, and a detailed report with the prediction results is emailed to the user. ANTIAGE-DB could enable researchers to explore the chemical space of natural based products, but is not limited to, as anti-aging compounds and can predict their anti-aging potential. ANTIAGE-DB is accessed online.
Collapse
Affiliation(s)
- Christina D. Papaemmanouil
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Jorge Peña-García
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Antonio Jesús Banegas-Luna
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
| | - Androniki D. Kostagianni
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Ioannis P. Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High Performance Computing Research Group (BIO-HPC), Computer Engineering Department, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain
- Correspondence: (H.P.-S.); (A.G.T.)
| | - Andreas G. Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
- Institute of Materials Science and Computing, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
- Correspondence: (H.P.-S.); (A.G.T.)
| |
Collapse
|
7
|
Nishimaki-Mogami T, Ito S, Cui H, Akiyama T, Tamehiro N, Adachi R, Wakamatsu K, Ikarashi Y, Kondo K. A cell-based evaluation of human tyrosinase-mediated metabolic activation of leukoderma-inducing phenolic compounds. J Dermatol Sci 2022; 108:77-86. [PMID: 36567223 DOI: 10.1016/j.jdermsci.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/04/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chemical leukoderma is a skin depigmentation disorder induced through contact with certain chemicals, most of which have a p-substituted phenol structure similar to the melanin precursor tyrosine. The tyrosinase-catalyzed oxidation of phenols to highly reactive o-quinone metabolites is a critical step in inducing leukoderma through the production of melanocyte-specific damage and immunological responses. OBJECTIVE Our aim was to find an effective method to evaluate the formation of o-quinone by human tyrosinase and subsequent cellular reactions. METHODS Human tyrosinase-expressing 293T cells were exposed to various phenolic compounds, after which the reactive o-quinones generated were identified as adducts of cellular thiols. We further examined whether the o-quinone formation induces reductions in cellular GSH or viability. RESULTS Among the chemicals tested, all 7 leukoderma-inducing phenols/catechol (rhododendrol, raspberry ketone, monobenzone, 4-tert-butylphenol, 4-tert-butylcatechol, 4-S-cysteaminylphenol and p-cresol) were oxidized to o-quinone metabolites and were detected as adducts of cellular glutathione and cysteine, leading to cellular glutathione reduction, whereas 2-S-cysteaminylphenol and 4-n-butylresorcinol were not. In vitro analysis using a soluble variant of human tyrosinase revealed a similar substrate-specificity. Some leukoderma-inducing phenols exhibited tyrosinase-dependent cytotoxicity in this cell model and in B16BL6 melanoma cells where tyrosinase expression was effectively modulated by siRNA knockdown. CONCLUSION We developed a cell-based metabolite analytical method to detect human tyrosinase-catalyzed formation of o-quinone from phenolic compounds by analyzing their thiol-adducts. The detailed analysis of each metabolite was superior in sensitivity and specificity compared to cytotoxicity assays for detecting known leukoderma-inducing phenols, providing an effective strategy for safety evaluation of chemicals.
Collapse
Affiliation(s)
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Aichi, Japan.
| | - Hongyan Cui
- National Institute of Health Sciences, Kanagawa, Japan
| | | | | | - Reiko Adachi
- National Institute of Health Sciences, Kanagawa, Japan
| | | | | | | |
Collapse
|
8
|
Li C, Li J, Yan S, Wang Q. The mechanism of interaction between lotus rhizome polyphenol oxidase and ascorbic acid: Inhibitory activity, thermodynamics, and conformation analysis. J Food Biochem 2022; 46:e14047. [PMID: 35118685 DOI: 10.1111/jfbc.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
In this study, the interaction between lotus rhizome polyphenol oxidase (PPO) and ascorbic acid (AA) was discussed from the aspects of inhibitory activity, thermodynamics, and conformation. Results showed that PPO was purified from lotus rhizome by DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, with its optimum substrate being determined as pyrogallic acid. Spectrophotometric and polarographic assays demonstrated that AA exhibited strong inhibitory activity against PPO. Thermodynamics, fluorescence, and circular dichroism spectral analysis showed that hydrophobic interactions caused the formation of AA-PPO complex, leading to the remarkable fluorescence quenching and conformational change of PPO. Atomic force microscopic analysis revealed that binding to AA induced significant changes in the surface morphology and molecular aggregation of PPO molecules. In this study, the interaction mechanism between PPO and AA was proposed for the first time, which provided a theoretical basis for AA to inhibit lotus rhizome browning. PRACTICAL APPLICATIONS: Lotus rhizome, an aquatic vegetable, is prone to enzymatic browning in processing operations, which leads to a decrease in market value and economic loss. At present, ascorbic acid (AA) is widely used in industries as an excellent antioxidant because of its good antibrowning effect and relatively low cost. However, the interaction between the enzymatic browning-related polyphenol oxidase (PPO) from lotus rhizome and ascorbic acid has not been clearly studied. Understanding the mechanism of inhibiting PPO will help to prevent vegetable browning, especially fresh-cut products. The inhibitory effect of AA on PPO in lotus rhizome favors simultaneous use with other types of PPO inhibitors because of their likely synergistic effects.
Collapse
Affiliation(s)
- Caiyun Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.,Aquatic Vegetable Preservation and Processing Technology Engineering Centre of Hubei Province, Wuhan, P.R. China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, P.R. China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.,Aquatic Vegetable Preservation and Processing Technology Engineering Centre of Hubei Province, Wuhan, P.R. China.,Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, P.R. China
| | - Qingzhang Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, P.R. China.,Aquatic Vegetable Preservation and Processing Technology Engineering Centre of Hubei Province, Wuhan, P.R. China
| |
Collapse
|
9
|
Ito S, Sugumaran M, Wakamatsu K. Chemical Reactivities of ortho-Quinones Produced in Living Organisms: Fate of Quinonoid Products Formed by Tyrosinase and Phenoloxidase Action on Phenols and Catechols. Int J Mol Sci 2020; 21:ijms21176080. [PMID: 32846902 PMCID: PMC7504153 DOI: 10.3390/ijms21176080] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022] Open
Abstract
Tyrosinase catalyzes the oxidation of phenols and catechols (o-diphenols) to o-quinones. The reactivities of o-quinones thus generated are responsible for oxidative browning of plant products, sclerotization of insect cuticle, defense reaction in arthropods, tunichrome biochemistry in tunicates, production of mussel glue, and most importantly melanin biosynthesis in all organisms. These reactions also form a set of major reactions that are of nonenzymatic origin in nature. In this review, we summarized the chemical fates of o-quinones. Many of the reactions of o-quinones proceed extremely fast with a half-life of less than a second. As a result, the corresponding quinone production can only be detected through rapid scanning spectrophotometry. Michael-1,6-addition with thiols, intramolecular cyclization reaction with side chain amino groups, and the redox regeneration to original catechol represent some of the fast reactions exhibited by o-quinones, while, nucleophilic addition of carboxyl group, alcoholic group, and water are mostly slow reactions. A variety of catecholamines also exhibit side chain desaturation through tautomeric quinone methide formation. Therefore, quinone methide tautomers also play a pivotal role in the fate of numerous o-quinones. Armed with such wide and dangerous reactivity, o-quinones are capable of modifying the structure of important cellular components especially proteins and DNA and causing severe cytotoxicity and carcinogenic effects. The reactivities of different o-quinones involved in these processes along with special emphasis on mechanism of melanogenesis are discussed.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| | - Manickam Sugumaran
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA;
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| |
Collapse
|
10
|
Affiliation(s)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
- Centre for Green Chemical Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
11
|
Zeng W, Xu B, Du G, Chen J, Zhou J. Integrating enzyme evolution and high-throughput screening for efficient biosynthesis of l-DOPA. ACTA ACUST UNITED AC 2019; 46:1631-1641. [DOI: 10.1007/s10295-019-02237-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023]
Abstract
Abstract
l-DOPA is a key pharmaceutical agent for treating Parkinson’s, and market demand has exploded due to the aging population. There are several challenges associated with the chemical synthesis of l-DOPA, including complicated operation, harsh conditions, and serious pollution. A biocatalysis route for l-DOPA production is promising, especially via a route catalyzed by tyrosine phenol lyase (TPL). In this study, using TPL derived from Erwinia herbicola (Eh-TPL), a mutant Eh-TPL was obtained by integrating enzyme evolution and high-throughput screening methods. l-DOPA production using recombinant Escherichia coli BL21 (DE3) cells harbouring mutant Eh-TPL was enhanced by 36.5% in shake flasks, and the temperature range and alkali resistance of the Eh-TPL mutant were promoted. Sequence analysis revealed two mutated amino acids in the mutant (S20C and N161S), which reduced the length of a hydrogen bond and generated new hydrogen bonds. Using a fed-batch mode for whole-cell catalysis in a 5 L bioreactor, the titre of l-DOPA reached 69.1 g L−1 with high productivity of 11.52 g L−1 h−1, demonstrating the great potential of Eh-TPL variants for industrial production of l-DOPA.
Collapse
Affiliation(s)
- Weizhu Zeng
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
| | - Bingbing Xu
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 Jiangsu Provisional Research Center for Bioactive Product Processing Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
| | - Guocheng Du
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University 214122 Wuxi China
| | - Jian Chen
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 Jiangsu Provisional Research Center for Bioactive Product Processing Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
| | - Jingwen Zhou
- grid.258151.a 0000 0001 0708 1323 Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 National Engineering Laboratory for Cereal Fermentation Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
- grid.258151.a 0000 0001 0708 1323 Jiangsu Provisional Research Center for Bioactive Product Processing Technology Jiangnan University 1800 Lihu Road 214122 Wuxi Jiangsu China
| |
Collapse
|
12
|
Penttinen L, Rutanen C, Jänis J, Rouvinen J, Hakulinen N. Unraveling Substrate Specificity and Catalytic Promiscuity of Aspergillus oryzae
Catechol Oxidase. Chembiochem 2018; 19:2348-2352. [DOI: 10.1002/cbic.201800387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Leena Penttinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Chiara Rutanen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Janne Jänis
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Juha Rouvinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| | - Nina Hakulinen
- Department of Chemistry; University of Eastern Finland; Yliopistokatu 7 80130 Joensuu Finland
| |
Collapse
|
13
|
Nakabo D, Okano Y, Kandori N, Satahira T, Kataoka N, Akamatsu J, Okada Y. Convenient Synthesis and Physiological Activities of Flavonoids in Coreopsis lanceolata L. Petals and Their Related Compounds. Molecules 2018; 23:E1671. [PMID: 29987259 PMCID: PMC6099578 DOI: 10.3390/molecules23071671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 11/16/2022] Open
Abstract
Chalcones, flavanones, and flavonols, including 8-methoxybutin isolated from Coreopsis lanceolata L. petals, were successfully synthesized with total yields of 2⁻59% from O-methylpyrogallols using the Horner⁻Wadsworth⁻Emmons reaction as a key reaction. Aurones, including leptosidin, were also successfully synthesized with 5⁻36% total yields using the Aldol condensation reaction as a key reaction. Each chalcone, flavanone, flavonol, and aurone with the 3,4-dihydroxy groups in the B-ring showed high antioxidant activity. Additionally, each of the chalcones, flavanones, flavonols, and aurones with the 2,4-dihydroxy groups in the B-ring showed an excellent whitening ability.
Collapse
Affiliation(s)
- Daisuke Nakabo
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Umenobe-1, Takaya, Higashi-hiroshima 739-2116 Japan.
| | - Yuka Okano
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Umenobe-1, Takaya, Higashi-hiroshima 739-2116 Japan.
| | - Naomi Kandori
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Umenobe-1, Takaya, Higashi-hiroshima 739-2116 Japan.
| | - Taisei Satahira
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Umenobe-1, Takaya, Higashi-hiroshima 739-2116 Japan.
| | - Naoya Kataoka
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Umenobe-1, Takaya, Higashi-hiroshima 739-2116 Japan.
| | - Junpei Akamatsu
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Umenobe-1, Takaya, Higashi-hiroshima 739-2116 Japan.
| | - Yoshiharu Okada
- Department of Biotechnology and Chemistry, Faculty of Engineering, Kindai University, Umenobe-1, Takaya, Higashi-hiroshima 739-2116 Japan.
| |
Collapse
|
14
|
Josypčuk O, Barek J, Josypčuk B. Amperometric Determination of Catecholamines by Enzymatic Biosensors in Flow Systems. ELECTROANAL 2018. [DOI: 10.1002/elan.201800078] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Oksana Josypčuk
- J. Heyrovsky Institute of Physical Chemistry of the CAS; v.v.i. Dolejskova 3 182 23 Prague 8 Czech Republic
| | - Jiří Barek
- Charles University; Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry; Hlavova 2030/8 128 43 Prague 2 Czech Republic
| | - Bohdan Josypčuk
- J. Heyrovsky Institute of Physical Chemistry of the CAS; v.v.i. Dolejskova 3 182 23 Prague 8 Czech Republic
| |
Collapse
|
15
|
Tang H, Cui F, Li H, Huang Q, Li Y. Understanding the inhibitory mechanism of tea polyphenols against tyrosinase using fluorescence spectroscopy, cyclic voltammetry, oximetry, and molecular simulations. RSC Adv 2018; 8:8310-8318. [PMID: 35542029 PMCID: PMC9078569 DOI: 10.1039/c7ra12749a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/15/2018] [Indexed: 11/21/2022] Open
Abstract
Inhibiting the activity of tyrosinase is a very effective and safe way to prevent enzymatic browning in food and to resist pests in agriculture. Tea polyphenols (TPs), regarded as safe and non-toxic food additives, have been reported due to their potential inhibitory capability against tyrosinase, but their ambiguous inhibitory mechanisms have severely limited their application. In the present work, fluorescence spectroscopy, cyclic voltammetry (CV), oximetry and molecular simulation approaches were employed to shed light on the underlying inhibitory mechanisms of TPs with different structures including (+)-catechin, (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG) against tyrosinase. Fluorescence spectra show that the three TPs are capable of binding tyrosinase with a molar proportion of 1 : 1. The analysis of CV curves and oxygen utilization suggests that these three TPs can be oxidized by tyrosinase, revealing that these three TPs are suicide inhibitors of tyrosinase. Furthermore, ECG and catechin make tyrosinase irreversibly inactivated due to their catechol group (ring B) being catalyzed by tyrosinase through a cresolase-like pathway, while EGCG inhibits the activity of tyrosinase by competing with or delaying the oxidation of substrate. Molecular simulations further confirm that ring B of ECG and catechin makes a significant contribution to tyrosinase inhibitory activities, and has a direct interaction with the coupled binuclear copper ions in the optimal orientation required by the cresolase-like pathway.
Collapse
Affiliation(s)
- Haifeng Tang
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- School of Life Science, Jilin University Changchun Jilin 130012 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengchao Cui
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| | - Qingrong Huang
- Department of Food Science, Rutgers University 65 Dudley Road New Brunswick NJ 08901 USA
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
| |
Collapse
|
16
|
Zhang L, Zhao X, Tao GJ, Chen J, Zheng ZP. Investigating the inhibitory activity and mechanism differences between norartocarpetin and luteolin for tyrosinase: A combinatory kinetic study and computational simulation analysis. Food Chem 2017; 223:40-48. [DOI: 10.1016/j.foodchem.2016.12.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/14/2016] [Accepted: 12/08/2016] [Indexed: 01/11/2023]
|
17
|
Gerfaud T, Martin C, Bouquet K, Talano S, Millois-Barbuis C, Musicki B, Boiteau JG, Cardinaud I. Process Development and Good Manufacturing Practice Production of a Tyrosinase Inhibitor via Titanium-Mediated Coupling between Unprotected Resorcinols and Ketones. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thibaud Gerfaud
- Nestlé Skin Health R&D, 2400 Route des colles BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Cédric Martin
- Nestlé Skin Health R&D, 2400 Route des colles BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Karinne Bouquet
- Nestlé Skin Health R&D, 2400 Route des colles BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Sandrine Talano
- Nestlé Skin Health R&D, 2400 Route des colles BP 87, 06902 Sophia-Antipolis Cedex, France
| | | | - Branislav Musicki
- Nestlé Skin Health R&D, 2400 Route des colles BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Jean-Guy Boiteau
- Nestlé Skin Health R&D, 2400 Route des colles BP 87, 06902 Sophia-Antipolis Cedex, France
| | - Isabelle Cardinaud
- Nestlé Skin Health R&D, 2400 Route des colles BP 87, 06902 Sophia-Antipolis Cedex, France
| |
Collapse
|
18
|
Electrochemical Study of Trametes Versicolor Laccase Compatibility to Different Polyphenolic Substrates. CHEMOSENSORS 2017. [DOI: 10.3390/chemosensors5010009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Tang J, Liu J, Wu F. Molecular docking studies and biological evaluation of 1,3,4-thiadiazole derivatives bearing Schiff base moieties as tyrosinase inhibitors. Bioorg Chem 2016; 69:29-36. [PMID: 27669118 DOI: 10.1016/j.bioorg.2016.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/17/2022]
Abstract
1,3,4-Thiadiazole derivatives bearing Schiff base moieties were designed, synthesized, and their tyrosinase inhibitory activities were evaluated. Some compounds displayed potent tyrosinase inhibitory activities, especially, 4-(((5-mercapto-1,3,4-thiadiazol-2-yl)-imino)methyl)-2-methoxy-phenol (14) exhibited superior inhibitory effect to the other compounds with an IC50 value of 0.036μM. The structure-activity relationships (SARs) were preliminarily discussed and docking studies showed compound 14 had strong binding affinity to mushroom tyrosinase. Hydroxy might be the active groups. The inhibition kinetics study revealed that compounds (13 and 14) inhibited tyrosinase by acting as uncompetitive inhibitors. The LD50 value of the compound 14 was 5000mg/kg.
Collapse
Affiliation(s)
- Junyuan Tang
- Department of Biology and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang 422100, PR China
| | - Jinbing Liu
- Department of Biology and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang 422100, PR China.
| | - Fengyan Wu
- Department of Biology and Chemical Engineering, Shaoyang University, Shao Shui Xi Road, Shaoyang 422100, PR China
| |
Collapse
|
20
|
Characterization of the action of tyrosinase on resorcinols. Bioorg Med Chem 2016; 24:4434-4443. [PMID: 27480027 DOI: 10.1016/j.bmc.2016.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022]
Abstract
The action of tyrosinase on resorcinol and some derivatives (4-ethylresorcinol, 2-methylresorcinol and 4-methylresorcinol) was investigated. If the catalytic cycle is completed with a reductant such as ascorbic acid or an o-diphenol such as 4-tert-butylcatechol, these compounds act as substrates of tyrosinase in all cases. The reaction can also be carried out, adding hydrogen peroxide to the medium. All the above compounds were characterized as substrates of the enzyme and their kinetic constants, KM (Michaelis constant) and kcat (catalytic constant) were determined. Measurement of the activity of the enzyme after pre-incubation with resorcinol, 4-ethylresorcinol or 4-methylresorcinol points to an apparent loss of activity at short times, which could correspond to an enzymatic inactivation process. However, if the measurements are extended over longer times, a burst is observed and the enzymatic activity is recovered, demonstrating that these compounds are not suicide substrates of the enzyme. These effects are not observed with 2-methylresorcinol. The docking results indicate that the binding of met-tyrosinase with these resorcinols occurs in the same way, but not with 2-methylresorcinol, due to steric hindrance.
Collapse
|
21
|
Garcia-Jimenez A, Teruel-Puche JA, Ortiz-Ruiz CV, Berna J, Tudela J, Garcia-Canovas F. 4-n-butylresorcinol, a depigmenting agent used in cosmetics, reacts with tyrosinase. IUBMB Life 2016; 68:663-72. [DOI: 10.1002/iub.1528] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/06/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Antonio Garcia-Jimenez
- Department of Biochemistry and Molecular Biology-A, GENZ-Group of Research on Enzymology (www.um.es/genz), Regional Campus of International Excellence “Campus Mare Nostrum,”; University of Murcia; Espinardo, Murcia Spain
| | - Jose Antonio Teruel-Puche
- Department of Biochemistry and Molecular Biology-A, Group of Molecular Interactions in Membranes; University of Murcia; Espinardo, Murcia Spain
| | - Carmen Vanessa Ortiz-Ruiz
- Department of Biochemistry and Molecular Biology-A, GENZ-Group of Research on Enzymology (www.um.es/genz), Regional Campus of International Excellence “Campus Mare Nostrum,”; University of Murcia; Espinardo, Murcia Spain
| | - Jose Berna
- Department of Organic Chemistry, Faculty of Chemistry, Group of Synthetic Organic Chemistry; University of Murcia; Espinardo, Murcia Spain
| | - Jose Tudela
- Department of Biochemistry and Molecular Biology-A, GENZ-Group of Research on Enzymology (www.um.es/genz), Regional Campus of International Excellence “Campus Mare Nostrum,”; University of Murcia; Espinardo, Murcia Spain
| | - Francisco Garcia-Canovas
- Department of Biochemistry and Molecular Biology-A, GENZ-Group of Research on Enzymology (www.um.es/genz), Regional Campus of International Excellence “Campus Mare Nostrum,”; University of Murcia; Espinardo, Murcia Spain
| |
Collapse
|
22
|
Land EJ, Ramsden CA, Riley PA, Stratford MRL. Investigation of the anomalous action of 5-hydroxyresorcinol on tyrosinase. Pigment Cell Melanoma Res 2016; 29:474-6. [PMID: 27166874 DOI: 10.1111/pcmr.12490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward J Land
- Lennard Jones Laboratories, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, UK
| | - Christopher A Ramsden
- Lennard Jones Laboratories, School of Physical and Geographical Sciences, Keele University, Keele, Staffordshire, UK
| | | | - Michael R L Stratford
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Huang Z, Askari MS, Esguerra KVN, Dai TY, Kwon O, Ottenwaelder X, Lumb JP. A bio-inspired synthesis of oxindoles by catalytic aerobic dual C-H functionalization of phenols. Chem Sci 2015; 7:358-369. [PMID: 29861988 PMCID: PMC5952266 DOI: 10.1039/c5sc02395e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/05/2015] [Indexed: 11/30/2022] Open
Abstract
We report a bio-inspired approach to the synthesis of oxindoles, which couples the energetic requirements of dehydrogenative C–N bond formation to the reduction of oxygen.
Nitrogen-containing heterocycles are fundamentally important to the function of pharmaceuticals, agrochemicals and materials. Herein, we report a bio-inspired approach to the synthesis of oxindoles, which couples the energetic requirements of dehydrogenative C–N bond formation to the reduction of molecular oxygen (O2). Our method is inspired by the biosynthesis of melanin pigments (melanogenesis), but diverges from the biosynthetic polymerization. Mechanistic analysis reveals the involvement of CuII-semiquinone radical intermediates, which enable dehydrogenative carbon–heteroatom bond formation that avoids a catechol/quinone redox couple. This mitagates the deleterious polarity reversal that results from phenolic dearomatization, and enables a high-yielding phenolic C–H functionalization under catalytic aerobic conditions. Our work highlights the broad synthetic utility and efficiency of forming C–N bonds via a catalytic aerobic dearomatization of phenols, which is currently an underdeveloped transformation.
Collapse
Affiliation(s)
- Zheng Huang
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada .
| | - Mohammad S Askari
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada .
| | | | - Tian-Yang Dai
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada .
| | - Ohhyeon Kwon
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada .
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry , Concordia University , Montreal , QC H4B 1R6 , Canada .
| | - Jean-Philip Lumb
- Department of Chemistry , McGill University , Montreal , QC H3A 0B8 , Canada .
| |
Collapse
|
24
|
A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. J Dermatol Sci 2015; 80:18-24. [PMID: 26228294 DOI: 10.1016/j.jdermsci.2015.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/01/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Tyrosinase is able to oxidize a great number of phenols and catechols to form ortho-quinones. Ortho-quinones are highly reactive compounds that exert cytotoxicity through binding with thiol enzymes and the production of reactive oxygen species. Certain phenolic (and catecholic) compounds are known to induce contact/occupational leukoderma through activation to ortho-quinones. OBJECTIVE We report a convenient screening method to follow the oxidation of those leukoderma-inducing phenols by mushroom tyrosinase. METHODS Oxidation of phenolic compounds by mushroom tyrosinase was followed periodically by UV-vis spectrophotometry. The production of ortho-quinones were confirmed by their absorptions around 400-420 nm. HPLC analysis after reduction with NaBH4 detected the corresponding catechols. RESULTS Leukoderma-inducing phenols, rhododendrol, raspberry ketone, 4-methoxyphenol, 4-benzyloxyphenol, 4-tert-butylphenol, and 4-tert-butylcatechol, were readily oxidized by mushroom tyrosinase to form ortho-quinones. On the other hand, phenolic skin whitening tyrosinase inhibitors, ellagic acid, 4-n-butylresorcinol, potassium 4-methoxysalicylate, and 2,2'-dihydroxy-5,5'-di-n-propylbiphenyl, were not oxidized by mushroom tyrosinase, while arbutin was only slowly oxidized. CONCLUSION This study has provided a convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. A common chemical feature of the latter group of compounds is that they are readily oxidized by tyrosinase to form reactive ortho-quinone species. The present results point out the necessity that tyrosinase inhibitors should also be examined as substrates if they are phenolic compounds.
Collapse
|
25
|
Molitor C, Mauracher SG, Rompel A. Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora. Acta Crystallogr F Struct Biol Commun 2015; 71:746-51. [PMID: 26057806 PMCID: PMC4461341 DOI: 10.1107/s2053230x15007542] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022] Open
Abstract
Aurone synthase (AUS), a member of a novel group of plant polyphenol oxidases (PPOs), catalyzes the oxidative conversion of chalcones to aurones. Two active cgAUS1 (41.6 kDa) forms that differed in the level of phosphorylation or sulfation as well as the latent precursor form (58.9 kDa) were purified from the petals of Coreopsis grandiflora. The differing active cgAUS1 forms and the latent cgAUS1 as well as recombinantly expressed latent cgAUS1 were crystallized, resulting in six different crystal forms. The active forms crystallized in space groups P2(1)2(1)2(1) and P12(1)1 and diffracted to ∼ 1.65 Å resolution. Co-crystallization of active cgAUS1 with 1,4-resorcinol led to crystals belonging to space group P3(1)21. The crystals of latent cgAUS1 belonged to space group P12(1)1 and diffracted to 2.50 Å resolution. Co-crystallization of recombinantly expressed pro-AUS with the hexatungstotellurate(VI) salt Na6[TeW6O24] within the liquid-liquid phase separation zone significantly improved the quality of the crystals compared with crystals obtained without hexatungstotellurate(VI).
Collapse
Affiliation(s)
- Christian Molitor
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| | - Stephan Gerhard Mauracher
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Althanstrasse 14, 1090 Wien, Austria
| |
Collapse
|
26
|
Abstract
Tyrosinase plays a pivotal role in the synthesis of melanin pigment synthesis on skin utilizing tyrosine as a substrate. Melanin is responsible for the protection against harmful ultraviolet irradiation, which can cause significant pathological conditions, such as skin cancers. However, it can also create esthetic problems when accumulated as hyperpigmented spots. Various skin-whitening ingredients which inhibit tyrosinase activity have been identified. Some of them, especially ones with natural product origins, possess phenolic moiety and have been employed in cosmetic products. Semi-synthetic and synthetic inhibitors have also been developed under inspiration of the natural inhibitors yet some of which have no phenolic groups. In this review, tyrosinase inhibitors with natural, semi-synthetic and synthetic origins are listed up with their structures, activities and characteristics. Further, a recent report on the adverse effect of a natural melanin synthesis inhibitor which was included in skin-whitening cosmetics is also briefly discussed.
Collapse
Affiliation(s)
- Sang Yeul Lee
- a Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do , South Korea
| | - Namhuk Baek
- a Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do , South Korea
| | - Tae-gyu Nam
- a Department of Pharmacy and Institute of Pharmaceutical Science and Technology , Hanyang University , Ansan , Gyeonggi-do , South Korea
| |
Collapse
|
27
|
Hair dyes resorcinol and lawsone reduce production of melanin in melanoma cells by tyrosinase activity inhibition and decreasing tyrosinase and microphthalmia-associated transcription factor (MITF) expression. Int J Mol Sci 2015; 16:1495-508. [PMID: 25584612 PMCID: PMC4307316 DOI: 10.3390/ijms16011495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/04/2015] [Indexed: 12/20/2022] Open
Abstract
Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone) are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF) in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.
Collapse
|
28
|
Salwiński A, Da Silva D, Delépée R, Maunit B. The use of enzyme-coupled magnetic nanoparticles for studying the spectra of unusual substrates of mushroom tyrosinase by direct surface-assisted laser desorption/ionisation and high-resolution electrospray ionisation quadrupole-quadrupole-time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1957-1963. [PMID: 25132295 DOI: 10.1002/rcm.6978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/03/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Tyrosinase-coupled magnetic particles (EMPs) were used to demonstrate that resorcinol-containing tyrosinase inhibitors are oxidised by tyrosinase only in the presence of the enzyme's classic substrate. This shows the potential for the application of EMPs as a non-organic matrix for monitoring enzymatic conversion of a novel substrate family directly on-the-spot, principally due to minimal enzyme requirement per analysis. METHODS Tyrosinase was covalently coupled to core-shell-type silica-coated iron oxide magnetic nanoparticles (EMPs) that were applied as non-organic SALDI matrix suitable for studying low-mass compounds using a classic matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometer. Because of the dual function of the EMPs - enzyme host and non-organic matrix - we describe this ionisation method as Enzyme-coupled Nanoparticles-Assisted LDI-MS (ENALDI-MS). Supplementary studies of the enzymatic conversion of glabridin and 3-(2,4-dihydroxyphenyl)propionic acid (DHPA) were conducted by high-resolution electrospray ionisation quadrupole-quadrupole-time-of-flight mass spectrometry (ESI-QqTOF-MS). RESULTS The initial experiment involving EMPs as non-organic matrix (ENALDI-MS) showed enzymatic conversion of glabridin, a strong tyrosinase inhibitor, only in the presence of L-Tyr, the classic tyrosinase substrate. These findings were evaluated by ESI-QqTOF-MS proving that glabridin and DHPA are converted into the corresponding quinones by tyrosinase only in the presence of the auxiliary monophenol or o-diphenol substrates (L-Tyr and catechin, respectively) capable of regenerating the active site of tyrosinase. CONCLUSIONS EMPs were shown to be useful as a non-organic matrix to monitor enzymatic conversion of the novel tyrosinase substrate family directly on-the-spot with a minimal enzyme consumption (6.5 pmol/spot). Results obtained by ENALDI-MS were fully confirmed by ESI-QqTOF-MS demonstrating that resorcinol-containing tyrosinase inhibitors may be oxidised by the enzyme in the presence of its classic substrates.
Collapse
|
29
|
Josypčuk O, Barek J, Josypčuk B. Electrochemical Biosensors Based on Enzymatic Reactor of Silver Solid Amalgam Powder for Measurements in Flow Systems. ELECTROANAL 2014. [DOI: 10.1002/elan.201400224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Haudecoeur R, Gouron A, Dubois C, Jamet H, Lightbody M, Hardré R, Milet A, Bergantino E, Bubacco L, Belle C, Réglier M, Boumendjel A. Investigation of binding-site homology between mushroom and bacterial tyrosinases by using aurones as effectors. Chembiochem 2014; 15:1325-33. [PMID: 24849818 DOI: 10.1002/cbic.201402003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Indexed: 02/04/2023]
Abstract
Tyrosinase is a copper-containing enzyme found in plants and bacteria, as well as in humans, where it is involved in the biosynthesis of melanin-type pigments. Tyrosinase inhibitors have attracted remarkable research interest as whitening agents in cosmetology, antibrowning agents in food chemistry, and as therapeutics. In this context, commercially available tyrosinase from mushroom (TyM) is frequently used for the identification of inhibitors. This and bacterial tyrosinase (TyB) have been the subjects of intense biochemical and structural studies, including X-ray diffraction analysis, and this has led to the identification of structural homology and divergence among enzymes from different sources. To better understand the behavior of potential inhibitors of TyM and TyB, we selected the aurone family-previously identified as potential inhibitors of melanin biosynthesis in human melanocytes. In this study, a series of 24 aurones with different hydroxylation patterns at the A- and B-rings were evaluated on TyM and TyB. The results show that, depending on the hydroxylation pattern of A- and B-rings, aurones can behave as inhibitors, substrates, and activators of both enzymes. Computational analysis was performed to identify residues surrounding the aurones in the active sites of both enzymes and to rationalize the interactions. Our results highlight similarities and divergence in the behavior of TyM and TyB toward the same set of molecules.
Collapse
|
31
|
Ramsden CA, Riley PA. Tyrosinase: the four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg Med Chem 2014; 22:2388-95. [PMID: 24656803 DOI: 10.1016/j.bmc.2014.02.048] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 10/25/2022]
Abstract
Tyrosinase is an enzyme widely distributed in the biosphere. It is one of a group of proteins with a strongly conserved bicopper active centre able to bind molecular oxygen. Tyrosinase manifests two catalytic properties; monooxygenase and oxidase activity. These actions reflect the oxidation states of the active centre. Tyrosinase has four possible oxidation states and the details of their interaction are shown to give rise to the unusual kinetic behaviour of the enzyme. The resting state of the enzyme is met-tyrosinase [Cu(II)2] and activation, associated with a 'lag period', involves reduction to deoxy-tyrosinase [Cu(I)2] which is capable of binding dioxygen to form oxy-tyrosinase [Cu(II)2·O2]. Initially the conversion of met- to deoxy-tyrosinase is brought about by a catechol that is indirectly formed from an ortho-quinone product of tyrosinase action. The primary function of the enzyme is monooxygenation of phenols to ortho-quinones by oxy-tyrosinase. Inactivation of the enzyme results from monooxygenase processing of catechols which can lead to reductive elimination of one of the active-site copper ions and conversion of oxy-tyrosinase to the inactive deact-tyrosinase [Cu(II)Cu(0)]. This review describes the tyrosinase pathways and the role of each oxidation state in the enzyme's oxidative transformations of phenols and catechols.
Collapse
Affiliation(s)
- Christopher A Ramsden
- Lennard-Jones Laboratories, School of Physical and Geographical Sciences, Keele University, Staffordshire ST5 5BG, UK.
| | - Patrick A Riley
- Totteridge Institute for Advanced Studies, The Grange, Grange Avenue, London N20 8AB, UK
| |
Collapse
|
32
|
Hiasa M, Kurokawa M, Ohta K, Esumi T, Akita H, Niki K, Yagi Y, Echigo N, Hatakeyama D, Kuzuhara T. Identification and purification of resorcinol, an antioxidant specific to Awa-ban (pickled and anaerobically fermented) tea. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|