1
|
Wanka V, Fottner M, Cigler M, Lang K. Genetic Code Expansion Approaches to Decipher the Ubiquitin Code. Chem Rev 2024; 124:11544-11584. [PMID: 39311880 PMCID: PMC11503651 DOI: 10.1021/acs.chemrev.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The covalent attachment of Ub (ubiquitin) to target proteins (ubiquitylation) represents one of the most versatile PTMs (post-translational modifications) in eukaryotic cells. Substrate modifications range from a single Ub moiety being attached to a target protein to complex Ub chains that can also contain Ubls (Ub-like proteins). Ubiquitylation plays pivotal roles in most aspects of eukaryotic biology, and cells dedicate an orchestrated arsenal of enzymes to install, translate, and reverse these modifications. The entirety of this complex system is coined the Ub code. Deciphering the Ub code is challenging due to the difficulty in reconstituting enzymatic machineries and generating defined Ub/Ubl-protein conjugates. This Review provides a comprehensive overview of recent advances in using GCE (genetic code expansion) techniques to study the Ub code. We highlight strategies to site-specifically ubiquitylate target proteins and discuss their advantages and disadvantages, as well as their various applications. Additionally, we review the potential of small chemical PTMs targeting Ub/Ubls and present GCE-based approaches to study this additional layer of complexity. Furthermore, we explore methods that rely on GCE to develop tools to probe interactors of the Ub system and offer insights into how future GCE-based tools could help unravel the complexity of the Ub code.
Collapse
Affiliation(s)
- Vera Wanka
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Fottner
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Marko Cigler
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
2
|
Schneider T, Sawade K, Berner F, Peter C, Kovermann M. Specifying conformational heterogeneity of multi-domain proteins at atomic resolution. Structure 2023; 31:1259-1274.e10. [PMID: 37557171 DOI: 10.1016/j.str.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
The conformational landscape of multi-domain proteins is inherently linked to their specific functions. This also holds for polyubiquitin chains that are assembled by two or more ubiquitin domains connected by a flexible linker thus showing a large interdomain mobility. However, molecular recognition and signal transduction are associated with particular conformational substates that are populated in solution. Here, we apply high-resolution NMR spectroscopy in combination with dual-scale MD simulations to explore the conformational space of K6-, K29-, and K33-linked diubiquitin molecules. The conformational ensembles are evaluated utilizing a paramagnetic cosolute reporting on solvent exposure plus a set of complementary NMR parameters. This approach unravels a conformational heterogeneity of diubiquitins and explains the diversity of structural models that have been determined for K6-, K29-, and K33-linked diubiquitins in free and ligand-bound states so far. We propose a general application of the approach developed here to demystify multi-domain proteins occurring in nature.
Collapse
Affiliation(s)
- Tobias Schneider
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Kevin Sawade
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Graduate School Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | - Frederic Berner
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Christine Peter
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
3
|
Marx A, Julier A, Radtke V, Scheffner M. Generation and characterization of site-specifically mono-ubiquitylated p53. Chembiochem 2022; 23:e202100659. [PMID: 35025136 PMCID: PMC9303418 DOI: 10.1002/cbic.202100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/12/2022] [Indexed: 11/11/2022]
Abstract
The tumor suppressor p53 is regulated by various posttranslational modifications including different types of ubiquitylation, which exert distinct effects on p53. While modification by ubiquitin chains targets p53 for degradation, attachment of single ubiquitin moieties (mono‐ubiquitylation) affects the intracellular location of p53 and/or its interaction with chromatin. However, how this is achieved at the molecular level remains largely unknown. Similarly, since p53 can be ubiquitylated at different lysine residues, it remains unclear if the eventual effect depends on the position of the lysine modified. Here, we combined genetic code expansion with oxime ligation to generate p53 site‐specifically mono‐ubiquitylated at position 120. We found that mono‐ubiquitylation at this position neither interferes with p53 ubiquitylation by the E3 ligases HDM2 and E6AP in complex with the viral E6 oncoprotein nor affects p53 binding to a cognate DNA sequence. Thus, ubiquitylation per se does not affect physiologically relevant properties of p53.
Collapse
Affiliation(s)
- Andreas Marx
- Konstanz University, Department of Chemistry, Universitaetsstrasse 10, 78457, Konstanz, GERMANY
| | | | - Vanessa Radtke
- University of Konstanz: Universitat Konstanz, Chemistry, GERMANY
| | | |
Collapse
|
4
|
Höllmüller E, Geigges S, Niedermeier ML, Kammer KM, Kienle SM, Rösner D, Scheffner M, Marx A, Stengel F. Site-specific ubiquitylation acts as a regulator of linker histone H1. Nat Commun 2021; 12:3497. [PMID: 34108453 PMCID: PMC8190259 DOI: 10.1038/s41467-021-23636-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/03/2021] [Indexed: 01/05/2023] Open
Abstract
Decoding the role of histone posttranslational modifications (PTMs) is key to understand the fundamental process of epigenetic regulation. This is well studied for PTMs of core histones but not for linker histone H1 in general and its ubiquitylation in particular due to a lack of proper tools. Here, we report on the chemical synthesis of site-specifically mono-ubiquitylated H1.2 and identify its ubiquitin-dependent interactome on a proteome-wide scale. We show that site-specific ubiquitylation of H1 at position K64 modulates interactions with deubiquitylating enzymes and the deacetylase SIRT1. Moreover, it affects H1-dependent chromatosome assembly and phase separation resulting in a more open chromatosome conformation generally associated with a transcriptionally active chromatin state. In summary, we propose that site-specific ubiquitylation plays a general regulatory role for linker histone H1. While the role of specific posttranslational modifications (PTMs) is increasingly well understood for core histones, this is not the case for linker histone H1. Here the authors show that site-specific ubiquitylation of H1 results in distinct interactomes, regulates phase separation, and modulates assembly of chromatosomes.
Collapse
Affiliation(s)
- Eva Höllmüller
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Simon Geigges
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Marie L Niedermeier
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Kai-Michael Kammer
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Simon M Kienle
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel Rösner
- Department of Chemistry, University of Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Andreas Marx
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| | - Florian Stengel
- Department of Biology, University of Konstanz, Konstanz, Germany. .,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
5
|
Zhao X, Mißun M, Schneider T, Müller F, Lutz J, Scheffner M, Marx A, Kovermann M. Artificially Linked Ubiquitin Dimers Characterised Structurally and Dynamically by NMR Spectroscopy. Chembiochem 2019; 20:1772-1777. [PMID: 30920720 PMCID: PMC6771822 DOI: 10.1002/cbic.201900146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Indexed: 12/23/2022]
Abstract
As one of the most prevalent post-translational modifications in eukaryotic cells, ubiquitylation plays vital roles in many cellular processes, such as protein degradation, DNA metabolism, and cell differentiation. Substrate proteins can be tagged by distinct types of polymeric ubiquitin (Ub) chains, which determine the eventual fate of the modified protein. A facile, click chemistry based approach for the efficient generation of linkage-defined Ub chains, including Ub dimers, was recently established. Within these chains, individual Ub moieties are connected through a triazole linkage, rather than the natural isopeptide bond. Herein, it is reported that the conformation of an artificially K48-linked Ub dimer resembles that of the natively linked dimer, with respect to structural and dynamic characteristics, as demonstrated by means of high-resolution NMR spectroscopy. Thus, it is proposed that artificially linked Ub dimers, as generated by this approach, represent potent tools for studying the inherently different properties and functions of distinct Ub chains.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Maite Mißun
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Tobias Schneider
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Franziska Müller
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Joachim Lutz
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Martin Scheffner
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Andreas Marx
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| | - Michael Kovermann
- Universität KonstanzChemieUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
6
|
Zhao X, Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. Identification of Proteins Interacting with Ubiquitin Chains. Angew Chem Int Ed Engl 2017; 56:15764-15768. [DOI: 10.1002/anie.201705898] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaohui Zhao
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Joachim Lutz
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Eva Höllmüller
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Martin Scheffner
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Andreas Marx
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| | - Florian Stengel
- Departments of Chemistry and Biology; Konstanz Research School Chemical Biology; University of Konstanz; Universitätsstrasse 10 78457 Konstanz Germany
| |
Collapse
|
7
|
Zhao X, Lutz J, Höllmüller E, Scheffner M, Marx A, Stengel F. Identifizierung von Interaktoren von Ubiquitinketten. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaohui Zhao
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Joachim Lutz
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Eva Höllmüller
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Martin Scheffner
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Andreas Marx
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| | - Florian Stengel
- Fachbereich Chemie und Biologie; Konstanz Research School Chemical Biology; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
| |
Collapse
|
8
|
Chemical ubiquitination for decrypting a cellular code. Biochem J 2017; 473:1297-314. [PMID: 27208213 PMCID: PMC5298413 DOI: 10.1042/bj20151195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023]
Abstract
The modification of proteins with ubiquitin (Ub) is an important regulator of eukaryotic biology and deleterious perturbation of this process is widely linked to the onset of various diseases. The regulatory capacity of the Ub signal is high and, in part, arises from the capability of Ub to be enzymatically polymerised to form polyubiquitin (polyUb) chains of eight different linkage types. These distinct polyUb topologies can then be site-specifically conjugated to substrate proteins to elicit a number of cellular outcomes. Therefore, to further elucidate the biological significance of substrate ubiquitination, methodologies that allow the production of defined polyUb species, and substrate proteins that are site-specifically modified with them, are essential to progress our understanding. Many chemically inspired methods have recently emerged which fulfil many of the criteria necessary for achieving deeper insight into Ub biology. With a view to providing immediate impact in traditional biology research labs, the aim of this review is to provide an overview of the techniques that are available for preparing Ub conjugates and polyUb chains with focus on approaches that use recombinant protein building blocks. These approaches either produce a native isopeptide, or analogue thereof, that can be hydrolysable or non-hydrolysable by deubiquitinases. The most significant biological insights that have already been garnered using such approaches will also be summarized.
Collapse
|
9
|
van Tilburg GB, Elhebieshy AF, Ovaa H. Synthetic and semi-synthetic strategies to study ubiquitin signaling. Curr Opin Struct Biol 2016; 38:92-101. [PMID: 27315041 PMCID: PMC7125694 DOI: 10.1016/j.sbi.2016.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 01/30/2023]
Abstract
The post-translational modification ubiquitin can be attached to the ɛ-amino group of lysine residues or to a protein's N-terminus as a mono ubiquitin moiety. Via its seven intrinsic lysine residues and its N-terminus, it can also form ubiquitin chains on substrates in many possible ways. To study ubiquitin signals, many synthetic and semi-synthetic routes have been developed for generation of ubiquitin-derived tools and conjugates. The strength of these methods lies in their ability to introduce chemo-selective ligation handles at sites that currently cannot be enzymatically modified. Here, we review the different synthetic and semi-synthetic methods available for ubiquitin conjugate synthesis and their contribution to how they have helped investigating conformational diversity of diubiquitin signals. Next, we discuss how these methods help understanding the ubiquitin conjugation-deconjugation system by recent advances in ubiquitin ligase probes and diubiquitin-based DUB probes. Lastly, we discuss how these methods help studying post-translational modification of ubiquitin itself.
Collapse
Affiliation(s)
- Gabriëlle Ba van Tilburg
- Department of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Angela F Elhebieshy
- Department of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Huib Ovaa
- Department of Cell Biology II, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands; Department of Chemical Immunology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
10
|
Schneider D, Schneider T, Aschenbrenner J, Mortensen F, Scheffner M, Marx A. Anionic surfactants enhance click reaction-mediated protein conjugation with ubiquitin. Bioorg Med Chem 2016; 24:995-1001. [DOI: 10.1016/j.bmc.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 10/22/2022]
|
11
|
Rösner D, Schneider T, Schneider D, Scheffner M, Marx A. Click chemistry for targeted protein ubiquitylation and ubiquitin chain formation. Nat Protoc 2015; 10:1594-611. [PMID: 26401915 DOI: 10.1038/nprot.2015.106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Herein we describe a simple protocol for the efficient generation of site-specific ubiquitin-protein conjugates using click chemistry. By using two different methods to expand the genetic code, the two bio-orthogonal functionalities that are necessary for Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), an alkyne and an azide, are co-translationally incorporated into the proteins of interest with unnatural amino acids. Protein ubiquitylation is subsequently carried out with the purified proteins in vitro by CuAAC. In addition, we provide a protocol for the incorporation of two unnatural amino acids into a single ubiquitin, resulting in a 'bifunctional' protein that contains both an alkyne and an azide functionality, thereby enabling assembly of free ubiquitin chains as well as ubiquitin chains conjugated to a target protein. Our procedure enables the synthesis of nonhydrolyzable ubiquitin-protein conjugates within 1 week (given that the relevant cDNAs are at hand), and it yields conjugates in milligram quantities from 1-liter expression cultures. The approach described herein is faster and less laborious than other methods, and it requires only standard molecular biology equipment. Moreover, the protocol can be readily adapted to achieve conjugation at any site of any target protein, which facilitates the generation of custom-tailored ubiquitin-protein conjugates.
Collapse
Affiliation(s)
- Daniel Rösner
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Tatjana Schneider
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel Schneider
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany.,Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Martin Scheffner
- Department of Biology, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
12
|
Ta DT, Redeker ES, Billen B, Reekmans G, Sikulu J, Noben JP, Guedens W, Adriaensens P. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Protein Eng Des Sel 2015; 28:351-63. [PMID: 26243885 DOI: 10.1093/protein/gzv032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/01/2015] [Indexed: 11/13/2022] Open
Abstract
In this study, several expression strategies were investigated in order to develop a generic, highly productive and efficient protocol to produce nanobodies modified with a clickable alkyne function at their C-terminus via the intein-mediated protein ligation (IPL) technique. Hereto, the nanobody targeting the vascular cell adhesion molecule 1 (NbVCAM1) was used as a workhorse. The highlights of the protocol can be ascribed to a cytoplasmic expression of the nanobody-intein-chitin-binding domain fusion protein in the Escherichia coli SHuffle(®) T7 cells with a C-terminal extension, i.e. LEY, EFLEY or His6 spacer peptide, in the commonly used Luria-Bertani medium. The combination of these factors led to a high yield (up to 22 mg/l of culture) and nearly complete alkynation efficiency of the C-terminally modified nanobody via IPL. This yield can even be improved to ∼45 mg/l in the EnPresso(®) growth system but this method is more expensive and time-consuming. The resulting alkynated nanobodies retained excellent binding capacity towards the recombinant human VCAM1. The presented protocol benefits from time- and cost-effectiveness, which allows a feasible production up-scaling of generic alkynated nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to new biosurface applications that demand for a homogeneously oriented nanobody coupling. Prospectively, the alkynated nanobodies can be covalently coupled to a multitude of azide-containing counterparts, e.g. contrast labeling agents, particles or surfaces for numerous innovative applications.
Collapse
Affiliation(s)
- Duy Tien Ta
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium Faculty of Food Technology and Biotechnology, Can Tho University of Technology, Can Tho, Vietnam
| | - Erik Steen Redeker
- Maastricht Science Programme, Maastricht University, Maastricht 6200 MD, The Netherlands
| | - Brecht Billen
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Gunter Reekmans
- Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Josephine Sikulu
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute (Biomed) and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt University, Agoralaan-Building C, Diepenbeek BE-3590, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Agoralaan-Building D, Diepenbeek BE-3590, Belgium
| |
Collapse
|
13
|
Sommer S, Ritterhoff T, Melchior F, Mootz HD. A stable chemical SUMO1-Ubc9 conjugate specifically binds as a thioester mimic to the RanBP2-E3 ligase complex. Chembiochem 2015; 16:1183-9. [PMID: 25917782 DOI: 10.1002/cbic.201500011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 01/20/2023]
Abstract
Ubiquitin and ubiquitin-like (Ubl) modifiers such as SUMO are conjugated to substrate proteins by E1, E2, and E3 enzymes. In the presence of an E3 ligase, the E2∼Ubl thioester intermediate becomes highly activated and is prone to chemical decomposition, thus making biochemical and structural studies difficult. Here we explored a stable chemical conjugate of the E2 enzyme from the SUMO pathway, Ubc9, with its modifier SUMO1 as a structural analogue of the Ubc9∼SUMO1 thioester intermediate, by introducing a triazole linkage by biorthogonal click chemistry. The chemical conjugate proved stable against proteolytic cleavage, in contrast to a Ubc9-SUMO1 isopeptide analogue obtained by auto-SUMOylation. Triazole-linked Ubc9-SUMO1 bound specifically to the preassembled E3 ligase complex RanBP2/RanGAP1*SUMO1/Ubc9, thus suggesting that it is a suitable thioester mimic. We anticipate interesting prospects for its use as a research tool to study protein complexes involving E2 and E3 enzymes.
Collapse
Affiliation(s)
- Stefanie Sommer
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany)
| | - Tobias Ritterhoff
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg (Germany)
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg (Germany).
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse 2, 48149 Münster (Germany).
| |
Collapse
|
14
|
Schneider T, Schneider D, Rösner D, Malhotra S, Mortensen F, Mayer TU, Scheffner M, Marx A. Analyse des Ubiquitincodes durch proteasebeständige Ubiquitinketten mit definierter Verknüpfung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Schneider T, Schneider D, Rösner D, Malhotra S, Mortensen F, Mayer TU, Scheffner M, Marx A. Dissecting ubiquitin signaling with linkage-defined and protease resistant ubiquitin chains. Angew Chem Int Ed Engl 2014; 53:12925-9. [PMID: 25196034 DOI: 10.1002/anie.201407192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Indexed: 01/08/2023]
Abstract
Ubiquitylation is a complex posttranslational protein modification and deregulation of this pathway has been associated with different human disorders. Ubiquitylation comes in different flavors: Besides mono-ubiquitylation, ubiquitin chains of various topologies are formed on substrate proteins. The fate of ubiquitylated proteins is determined by the linkage-type of the attached ubiquitin chains, however, the underlying mechanism is poorly characterized. Herein, we describe a new method based on codon expansion and click-chemistry-based polymerization to generate linkage-defined ubiquitin chains that are resistant to ubiquitin-specific proteases and adopt native-like functions. The potential of these artificial chains for analyzing ubiquitin signaling is demonstrated by linkage-specific effects on cell-cycle progression.
Collapse
Affiliation(s)
- Tatjana Schneider
- Departments of Chemistry and Biology, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz (Germany)
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Lim SI, Mizuta Y, Takasu A, Kim YH, Kwon I. Site-specific bioconjugation of a murine dihydrofolate reductase enzyme by copper(I)-catalyzed azide-alkyne cycloaddition with retained activity. PLoS One 2014; 9:e98403. [PMID: 24887377 PMCID: PMC4041766 DOI: 10.1371/journal.pone.0098403] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/02/2014] [Indexed: 12/27/2022] Open
Abstract
Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is an efficient reaction linking an azido and an alkynyl group in the presence of copper catalyst. Incorporation of a non-natural amino acid (NAA) containing either an azido or an alkynyl group into a protein allows site-specific bioconjugation in mild conditions via CuAAC. Despite its great potential, bioconjugation of an enzyme has been hampered by several issues including low yield, poor solubility of a ligand, and protein structural/functional perturbation by CuAAC components. In the present study, we incorporated an alkyne-bearing NAA into an enzyme, murine dihydrofolate reductase (mDHFR), in high cell density cultivation of Escherichia coli, and performed CuAAC conjugation with fluorescent azide dyes to evaluate enzyme compatibility of various CuAAC conditions comprising combination of commercially available Cu(I)-chelating ligands and reductants. The condensed culture improves the protein yield 19-fold based on the same amount of non-natural amino acid, and the enzyme incubation under the optimized reaction condition did not lead to any activity loss but allowed a fast and high-yield bioconjugation. Using the established conditions, a biotin-azide spacer was efficiently conjugated to mDHFR with retained activity leading to the site-specific immobilization of the biotin-conjugated mDHFR on a streptavidin-coated plate. These results demonstrate that the combination of reactive non-natural amino acid incorporation and the optimized CuAAC can be used to bioconjugate enzymes with retained enzymatic activity.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Yukina Mizuta
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Akinori Takasu
- Department of Frontier Materials, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - Yong Hwan Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Inchan Kwon
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| |
Collapse
|
17
|
Recent advances in target characterization and identification by photoaffinity probes. Molecules 2013; 18:10425-51. [PMID: 23994969 PMCID: PMC6270116 DOI: 10.3390/molecules180910425] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 11/17/2022] Open
Abstract
Target identification of biologically active molecules such as natural products, synthetic small molecules, peptides, and oligonucleotides mainly relies on affinity chromatography, activity-based probes, or photoaffinity labeling (PAL). Amongst them, activity-based probes and PAL have offered great advantages in target identification technology due to their ability to form covalent bonds with the corresponding targets. Activity-based probe technology mainly relies on the chemical reactivity of the target proteins, thereby limiting the majority of the biological targets to enzymes or proteins which display reactive residues at the probe-binding site. In general, the probes should bear a reactive moiety such as an epoxide, a Michael acceptor, or a reactive alkyl halide in their structures. On the other hand, photoaffinity probes (PAPs) are composed of a target-specific ligand and a photoactivatable functional group. When bound to the corresponding target proteins and activated with wavelength-specific light, PAPs generate highly reactive chemical species that covalently cross-link proximal amino acid residues. This process is better known as PAL and is widely employed to identify cellular targets of biologically active molecules. This review highlights recent advances in target identification by PAL, with a focus on the structure and chemistry of the photoaffinity probes developed in the recent decade, coupled to the target proteins identified using these probes.
Collapse
|