1
|
Leonte D, Ungureanu D, Zaharia V. Flavones and Related Compounds: Synthesis and Biological Activity. Molecules 2023; 28:6528. [PMID: 37764304 PMCID: PMC10535985 DOI: 10.3390/molecules28186528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This review focuses on the synthesis and biological activity of flavones and their related flavonoidic compounds, namely flavonols and aurones. Among the biological activities of natural and synthetic flavones and aurones, their anticancer, antioxidant, and antimicrobial properties are highlighted and detailed in this review. Starting from the structures of natural flavones acting on multiple anticancer targets (myricetin, genkwanin, and other structurally related compounds), new flavone analogs were recently designed and evaluated for their anticancer activity. The most representative compounds and their anticancer activity are summarized in this review. Natural flavones recognized for their antimicrobial properties (baicalein, luteolin, quercetol, apigenin, kaempferol, tricin) have been recently derivatized or structurally modulated by chemical synthetic methods in order to obtain new effective antimicrobial flavonoidic derivatives with improved biological properties. The most promising antimicrobial agents are systematically highlighted in this review. The most applied method for the synthesis of flavones and aurones is based on the oxidative cyclization of o-hydroxychalcones. Depending on the reaction conditions and the structure of the precursor, in some cases, several cyclization products result simultaneously: flavones, flavanones, flavonols, and aurones. Based on the literature data and the results obtained by our research group, our aim is to highlight the most promising methods for the synthesis of flavones, as well as the synthetic routes for the other structurally related cyclization products, such as hydroxyflavones and aurones, while considering that, in practice, it is difficult to predict which is the main or exclusive cyclization product of o-hydroxychalcones under certain reaction conditions.
Collapse
Affiliation(s)
| | | | - Valentin Zaharia
- Department of Organic Chemistry, Iuliu Hațieganu University of Medicine and Pharmacy, Victor Babeş 41, RO-400012 Cluj-Napoca, Romania; (D.L.); (D.U.)
| |
Collapse
|
2
|
Isolation and Characterization of Novel Hydroxyflavone from Kigelia africana (Lam.) Benth. Fruit Ethyl Acetate Fraction against CHO 1 and HeLa Cancer Cell Lines: In vitro and in silico studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
3
|
Wang Q, Hu X, Shi W, Long H, Wang H. Design, synthesis and biological evaluation of chromone derivatives as novel protein kinase CK2 inhibitors. Bioorg Med Chem Lett 2022; 69:128799. [PMID: 35580724 DOI: 10.1016/j.bmcl.2022.128799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Protein kinase CK2 is a potential target for the discovery of anticancer drugs. Flavonoids are reported to be effective CK2 inhibitors. Herein, based on structural trimming of flavonoids, a series of chromone-2-aminothiazole derivatives (1a-d, 2a-g, 4a-j, 5a-k) were designed and synthesized by hybridizing the chromone skeleton with 2-aminothiazole scaffold. Among these compounds, compound 5i was the most effective CK2 inhibitor (IC50 = 0.08 μM) and possessed potent anti-proliferative activity against HL-60 tumor cells (IC50 = 0.25 μM). Cellular thermal shift assay (CESTA) confirmed that 5i directly bound to the CK2, and the possible binding mode of 5i toward CK2 was also simulated. Further studies showed that 5i induced the apoptosis of HL-60 cells and arrested the cell cycle. Finally, western-blot analysis showed that 5i could inhibit the downstream of CK2, including α-catenin/Akt pathway and PARP/Survivin pathway.
Collapse
Affiliation(s)
- Quan Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - XiaoLong Hu
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wei Shi
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Huan Long
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Natural Medicines, Department of TCM Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
4
|
Darbem MP, Esteves HA, Burrow RA, Soares-Paulino AA, Pimenta DC, Stefani HA. Synthesis of unprotected glyco-alkynones via molybdenum-catalyzed carbonylative Sonogashira cross-coupling reaction. RSC Adv 2022; 12:2145-2149. [PMID: 35425248 PMCID: PMC8979075 DOI: 10.1039/d1ra08388k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 12/03/2022] Open
Abstract
Herein we report a novel Mo-catalyzed carbonylative Sonogashira cross-coupling between 2-iodoglycals and terminal alkynes. The reaction displays major improvements compared to a related Pd-catalyzed procedure previously published by our group, such as utilizing unprotected sugar derivatives as starting materials and tolerance to substrates bearing chelating groups. In this work we also demonstrate the utility of the glyco-alkynone products as platform for further functionalization by synthesizing glyco-flavones via Au-catalyzed 6-endo-dig cyclization.
Collapse
Affiliation(s)
- Mariana P Darbem
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| | - Henrique A Esteves
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Robert A Burrow
- Departamento de Química, Universidade Federal de Santa Maria Santa Maria 97105-340 Brazil
| | - Antônio A Soares-Paulino
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| | | | - Hélio A Stefani
- Departamento de Farmácia, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo Avenida Prof. Lineu Prestes, 580 - Bl. 13 São Paulo 05508-000 Brazil
| |
Collapse
|
5
|
Machine Learning Models for the Classification of CK2 Natural Products Inhibitors with Molecular Fingerprint Descriptors. Processes (Basel) 2021. [DOI: 10.3390/pr9112074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Casein kinase 2 (CK2) is considered an important target for anti-cancer drugs. Given the structural diversity and broad spectrum of pharmaceutical activities of natural products, numerous studies have been performed to prove them as valuable sources of drugs. However, there has been little study relevant to identifying structural factors responsible for their inhibitory activity against CK2 with machine learning methods. In this study, classification studies were conducted on 115 natural products as CK2 inhibitors. Seven machine learning methods along with six molecular fingerprints were employed to develop qualitative classification models. The performances of all models were evaluated by cross-validation and test set. By taking predictive accuracy(CA), the area under receiver operating characteristic (AUC), and (MCC)as three performance indicators, the optimal models with high reliability and predictive ability were obtained, including the Extended Fingerprint-Logistic Regression model (CA = 0.859, AUC = 0.826, MCC = 0.520) for training test andPubChem fingerprint along with the artificial neural model (CA = 0.826, AUC = 0.933, MCC = 0.628) for test set. Meanwhile, the privileged substructures responsible for their inhibitory activity against CK2 were also identified through a combination of frequency analysis and information gain. The results are expected to provide useful information for the further utilization of natural products and the discovery of novel CK2 inhibitors.
Collapse
|
6
|
Protopopov MV, Vdovin VS, Starosyla SA, Borysenko IP, Prykhod'ko AO, Lukashov SS, Bilokin YV, Bdzhola VG, Yarmoluk SM. Flavone inspired discovery of benzylidenebenzofuran-3(2H)-ones (aurones) as potent inhibitors of human protein kinase CK2. Bioorg Chem 2020; 102:104062. [PMID: 32683178 DOI: 10.1016/j.bioorg.2020.104062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
In this work, we describe the design, synthesis and SAR studies of 2-benzylidenebenzofuran-3-ones (aurones), a new family of potent inhibitors of CK2. A series of aurones have been synthesized. These compounds are structurally related to the synthetic flavones and showed nanomolar activities towards CK2. Biochemical tests revealed that 20 newly synthesized compounds inhibited CK2 with IC50 values in the nanomolar range. Further property-based optimization of aurones was performed, yielding a series of CK2 inhibitors with enhanced lipophilic efficiency. The most potent compound 12m (BFO13) has CLipE = 4.94 (CLogP = 3.5; IC50 = 3.6 nM) commensurable with the best known inhibitors of CK2.
Collapse
Affiliation(s)
- M V Protopopov
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.
| | - V S Vdovin
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - S A Starosyla
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - I P Borysenko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine; LLC Scientific and Service Firm "Otava", 117/125 Borschagivska St., Suite 79, 03056 Kyiv, Ukraine
| | - A O Prykhod'ko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine; LLC Scientific and Service Firm "Otava", 117/125 Borschagivska St., Suite 79, 03056 Kyiv, Ukraine
| | - S S Lukashov
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Y V Bilokin
- OTAVA Ltd., 400 Applewood Crescent, Unit 100, Vaughan, Ontario L4K 0C3, Canada
| | - V G Bdzhola
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - S M Yarmoluk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| |
Collapse
|
7
|
Hammad S, Bouaziz-Terrachet S, Meghnem R, Meziane D. Pharmacophore development, drug-likeness analysis, molecular docking, and molecular dynamics simulations for identification of new CK2 inhibitors. J Mol Model 2020; 26:160. [PMID: 32472293 DOI: 10.1007/s00894-020-04408-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022]
Abstract
Protein kinase 2 (CK2), an essential serine/threonine casein kinase, is considered an interesting target for cancer treatments. Different molecular modeling approaches such as pharmacophore modeling, molecular docking, and molecular dynamics simulations have been used to develop new CK2 inhibitors. This study presents a pharmacophore model that was generated by combining and merging the structure-based and ligand-based pharmacophore features and validated using receiver operating characteristic (ROC). Based on validation results revealing good predictive ability, this pharmacophore model was used as a three-dimensional query in a virtual screening simulation. Several compounds with different chemical scaffolds were retrieved as hits, which were further analyzed and refined using several molecular property filters. The obtained compounds were then filtered and compared to the crystallographic ligand on the basis of their predicted docking energies, binding mode, and interactions with CK2 active site residues. This step resulted in a compound with a high pharmacophore fit value and better docking energy. Molecular dynamics simulation indicated stable binding of the predicted compound to CK2 protein, characterized by root mean square deviation (RMSD) and root mean square fluctuation (RMSF) and hydrogen bond. Graphical abstract.
Collapse
Affiliation(s)
- Sara Hammad
- Department of Chemistry, Faculty of Sciences, University of Mouloud Maamri, Tizi Ouzou, Algeria.,Laboratory of Theoretical Physico-Chemistry and Computer Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumédiène, Algiers, Algeria
| | - Souhila Bouaziz-Terrachet
- Laboratory of Theoretical Physico-Chemistry and Computer Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumédiène, Algiers, Algeria. .,Department of Chemistry, Faculty of Sciences, University of Mohamed Bouguerra, Boumerdes, Algeria.
| | - Rosa Meghnem
- Department of Chemistry, Faculty of Sciences, University of Mouloud Maamri, Tizi Ouzou, Algeria.,Laboratory of Theoretical Physico-Chemistry and Computer Chemistry, Faculty of Chemistry, University of Science and Technology Houari Boumédiène, Algiers, Algeria
| | - Dalila Meziane
- Department of Chemistry, Faculty of Sciences, University of Mouloud Maamri, Tizi Ouzou, Algeria
| |
Collapse
|
8
|
Ligand-based pharmacophore filtering, atom based 3D-QSAR, virtual screening and ADME studies for the discovery of potential ck2 inhibitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Demulder M, De Veylder L, Loris R. Crystal structure of Arabidopsis thaliana casein kinase 2 α1. Acta Crystallogr F Struct Biol Commun 2020; 76:182-191. [PMID: 32254052 PMCID: PMC7137383 DOI: 10.1107/s2053230x20004537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 11/11/2022] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous pleiotropic enzyme that is highly conserved across eukaryotic kingdoms. CK2 is singular amongst kinases as it is highly rigid and constitutively active. Arabidopsis thaliana is widely used as a model system in molecular plant research; the biological functions of A. thaliana CK2 are well studied in vivo and many of its substrates have been identified. Here, crystal structures of the α subunit of A. thaliana CK2 in three crystal forms and of its complex with the nonhydrolyzable ATP analog AMppNHp are presented. While the C-lobe of the enzyme is highly rigid, structural plasticity is observed for the N-lobe. Small but significant displacements within the active cleft are necessary in order to avoid steric clashes with the AMppNHp molecule. Binding of AMppNHp is influenced by a rigid-body motion of the N-lobe that was not previously recognized in maize CK2.
Collapse
Affiliation(s)
- Manon Demulder
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark 71, B-9052 Ghent, Belgium
| | - Remy Loris
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
10
|
Synthesis of Flavone Derivatives via N-Amination and Evaluation of Their Anticancer Activities. Molecules 2019; 24:molecules24152723. [PMID: 31357486 PMCID: PMC6695693 DOI: 10.3390/molecules24152723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/24/2022] Open
Abstract
Seventeen new flavone derivatives substituted at the 4′-OH position were designed, synthesized and evaluated for their anticancer and antibacterial activities. Among them, compounds 3, 4, 6f, 6e, 6b, 6c and 6k demonstrated the most potent antiproliferative activities against a human erythroleukemia cell line (HEL) and a prostate cancer cell line (PC3). The results also showed that the IC50 value of compounds 3, 4, 6f, 6e, 6b, 6c and 6k were close to that of the anticancer drug cisplatin (DDP) and lower than that of apigenin. All of the derivatives did not present antibacterial activities. The structure–activity relationships evaluation showed that the configuration of methyl amino acid might affect their biological activities.
Collapse
|
11
|
Zhao L, Yuan X, Wang J, Feng Y, Ji F, Li Z, Bian J. A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg Med Chem 2019; 27:677-685. [DOI: 10.1016/j.bmc.2019.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/10/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023]
|
12
|
Uivarosi V, Munteanu AC, Nițulescu GM. An Overview of Synthetic and Semisynthetic Flavonoid Derivatives and Analogues: Perspectives in Drug Discovery. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019. [DOI: 10.1016/b978-0-444-64181-6.00002-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Protopopov MV, Ostrynska OV, Starosyla SA, Vodolazhenko MA, Sirko SM, Gorobets NY, Bdzhola V, Desenko SM, Yarmoluk SM. Dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-ones as a new class of CK2 inhibitors. Mol Divers 2018; 22:991-998. [PMID: 29845490 DOI: 10.1007/s11030-018-9836-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/14/2018] [Indexed: 01/08/2023]
Abstract
Identification of new small molecules inhibiting protein kinase CK2 is highly required for the study of this protein's functions in cell and for the further development of novel pharmaceuticals against a variety of disorders associated with CK2 activity. In this article, a virtual screening of a random small-molecule library was performed and 12 compounds were initially selected for biochemical tests toward CK2. Among them, the most active compound 1 ([Formula: see text]) belonged to dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-ones. The complex of this compound with CK2 was analyzed, and key ligand-enzyme interactions were determined. Then, a virtual screening of 231 dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-one derivatives was performed and 37 compounds were chosen for in vitro testing. It was found that 32 compounds inhibit CK2 with [Formula: see text] values from 2.5 to 7.5 [Formula: see text]. These results demonstrate that dihydrobenzo[4,5]imidazo[1,2-a]pyrimidine-4-one is a novel class of CK2 inhibitors.
Collapse
Affiliation(s)
- Mykola V Protopopov
- Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kiev, 01601, Ukraine.,Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine
| | - Olga V Ostrynska
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine
| | - Sergiy A Starosyla
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine
| | - Maria A Vodolazhenko
- Department of Organic and Bioorganic Chemistry, SSI "Institute for Single Crystals" of NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.,Department of Medical and Bioorganic Chemistry, Kharkiv National Medical University, 4 Nauky Ave., Kharkiv, 61022, Ukraine
| | - Svetlana M Sirko
- Department of Organic and Bioorganic Chemistry, SSI "Institute for Single Crystals" of NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine
| | - Nikolay Yu Gorobets
- Department of Organic and Bioorganic Chemistry, SSI "Institute for Single Crystals" of NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.,Department of Organic Chemistry, V. N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61077, Ukraine
| | - Volodymyr Bdzhola
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine
| | - Sergey M Desenko
- Department of Organic and Bioorganic Chemistry, SSI "Institute for Single Crystals" of NAS of Ukraine, 60 Nauky Ave., Kharkiv, 61072, Ukraine.,Department of Organic Chemistry, V. N. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61077, Ukraine
| | - Sergiy M Yarmoluk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo Street, Kiev, 03143, Ukraine.
| |
Collapse
|
14
|
Ostrynska OV, Balanda AO, Bdzhola VG, Golub AG, Kotey IM, Kukharenko OP, Gryshchenko AA, Briukhovetska NV, Yarmoluk SM. Design and synthesis of novel protein kinase CK2 inhibitors on the base of 4-aminothieno[2,3-d]pyrimidines. Eur J Med Chem 2016; 115:148-60. [PMID: 27017545 DOI: 10.1016/j.ejmech.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 01/20/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
An extension of our previous research work has resulted in a number of new ATP-competitive CK2 inhibitors that have been identified among 4-aminothieno[2,3-d]pyrimidine derivatives. The most active compounds obtained in the course of the research are 3-(5-p-tolyl-thieno[2,3-d]pyrimidin-4-ylamino)-benzoic acid, 5e (NHTP23, IC50 = 0.01 μM), 3-(5-phenyl-thieno[2,3-d]pyrimidin-4-ylamino)-benzoic acid, 5g (NHTP25, IC50 = 0.065 μM) and 3-(6-methyl-5-phenyl-thieno[2,3-d]pyrimidin-4-ylamino)-benzoic acid, 5n (NHTP33, IC50 = 0.008 μM). Structure-activity relationships of the tested 4-aminothieno[2,3-d]pyrimidine derivatives have been studied and their binding mode with ATP-acceptor site of CK2 has been proposed. A negative effect of intramolecular hydrogen bonding in the compounds' structure is discussed.
Collapse
Affiliation(s)
- Olga V Ostrynska
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680 Kyiv, Ukraine
| | - Anatoliy O Balanda
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680 Kyiv, Ukraine
| | - Volodymyr G Bdzhola
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680 Kyiv, Ukraine
| | - Andriy G Golub
- Otava Ltd, 400 Applewood Crescent, Unit 100, Vaughan, Ontario L4K 0C3, Canada
| | - Igor M Kotey
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680 Kyiv, Ukraine
| | - Olexander P Kukharenko
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680 Kyiv, Ukraine
| | - Andrii A Gryshchenko
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680 Kyiv, Ukraine
| | - Nadiia V Briukhovetska
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680 Kyiv, Ukraine
| | - Sergiy M Yarmoluk
- Department of Medicinal Chemistry, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine, 150 Zabolotnogo Str., 03680 Kyiv, Ukraine.
| |
Collapse
|
15
|
Abstract
INTRODUCTION The conventional term 'casein kinase' (CK) denotes three classes of kinases - CK1, CK2 and Golgi-CK (G-CK)/Fam20C (family with sequence similarity 20, member C) - sharing the ability to phoshorylate casein in vitro, but otherwise unrelated to each other. All CKs have been reported to be implicated in human diseases, and reviews individually dealing with the druggability of CK1 and CK2 are available. Our aim is to provide a comparative analysis of the three classes of CKs as therapeutic targets. AREAS COVERED CK2 is the CK for which implication in neoplasia is best documented, with the survival of cancer cells often relying on its overexpression. An ample variety of cell-permeable CK2 inhibitors have been developed, with a couple of these now in clinical trials. Isoform-specific CK1 inhibitors that are expected to play a beneficial role in oncology and neurodegeneration have been also developed. In contrast, the pathogenic potential of G-CK/Fam20C is caused by its loss of function. Activators of Fam20C, notably sphingolipids and their analogs, may prove beneficial in this respect. EXPERT OPINION Optimization of CK2 and CK1 inhibitors will prove useful to develop new therapeutic strategies for treating cancer and neurodegenerative disorders, while the design of potent activators of G-CK/Fam20C will provide a new tool in the fields of bio-mineralization and hypophosphatemic diseases.
Collapse
Affiliation(s)
- Giorgio Cozza
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Lorenzo A Pinna
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy .,b 2 University of Padova, Department of Biomedical Sciences and CNR Institute of Neurosciences , Padova, Italy ;
| |
Collapse
|
16
|
The Selectivity of CK2 Inhibitor Quinalizarin: A Reevaluation. BIOMED RESEARCH INTERNATIONAL 2015; 2015:734127. [PMID: 26558278 PMCID: PMC4628998 DOI: 10.1155/2015/734127] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/14/2015] [Indexed: 12/19/2022]
Abstract
Many polyphenolic compounds have been reported to inhibit protein kinases, with special reference to CK2, a pleiotropic serine/threonine kinase, implicated in neoplasia, neurodegenerative disease, and viral infections. In general however these compounds are not endowed with stringent selectivity. Among them quinalizarin (1,2,5,8-tetrahydroxyanthraquinone) turned out to be particularly potent (Ki = 0.058 μM) and quite selective as judged by profiling it on a small panel of 70 protein kinases. Here, by profiling quinalizarin on a larger panel of 140 kinases we reach the conclusion that quinalizarin is one of the most selective inhibitors of CK2, superior to the first-in-class CK2 inhibitor, CX-4945, now in clinical trials for the treatment of cancer. Moreover here we show that quinalizarin is able to discriminate between the isolated CK2 catalytic subunit (CK2α) and CK2 holoenzyme (CK2α2 β2), consistent with in silico and in vitro analyses.
Collapse
|
17
|
Guerra B, Hochscherf J, Jensen NB, Issinger OG. Identification of a novel potent, selective and cell permeable inhibitor of protein kinase CK2 from the NIH/NCI Diversity Set Library. Mol Cell Biochem 2015; 406:151-61. [PMID: 25963666 DOI: 10.1007/s11010-015-2433-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/05/2015] [Indexed: 01/06/2023]
Abstract
The anti-apoptotic protein kinase CK2 increasingly becomes an attractive target in cancer research with great therapeutic potential. Here, we have performed an in vitro screening of the Diversity Set III of the DTP program from the NCI/NIH, comprising 1600 compounds. We have identified 1,3-Dichloro-6-[(E)-((4-methoxyphenyl)imino)methyl] dibenzo(b,d) furan-2,7-diol (referred to as D11) to be a potent and selective inhibitor of protein kinase CK2. The D11 compound was tested against 354 eukaryotic protein kinases. By setting the threshold for inhibition to <2% remaining kinase activity, only DYRK1B, IRAK1 and PIM3 were inhibited to an extent as the tetrameric CK2 holoenzyme and its catalytic subunits α and α'. The IC50 values for the CK2α and CK2α' were on average 1-2 nM in comparison to the DYRK1B, IRAK1 and PIM3 kinases, which ranged from 18 to 49 nM. Cell permeability and efficacy of D11 were tested with cells in culture. In MIA PaCa-2 cells (human pancreatic carcinoma cell line), the phosphorylation of the CK2 biomarker CDC37 at S13 was almost completely inhibited in the presence of D11. This was observed both under normoxia and hypoxia. In the case of the human non-small cell lung carcinoma cell line, H1299, increasing amounts of D11 led to an inhibition of S380/T382/383 phosphorylation in PTEN, another biomarker for CK2 activity.
Collapse
Affiliation(s)
- Barbara Guerra
- Department of Biochemistry and Molecular Biology, Biomedical Research Group, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | | | | | | |
Collapse
|
18
|
Lv M, Ma S, Tian Y, Zhang X, Zhai H, Lv W. Structural insights into flavones as protein kinase CK2 inhibitors derived from a combined computational study. RSC Adv 2015. [DOI: 10.1039/c4ra10381e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Binding conformation of flavone inhibitors to protein kinase CK2.
Collapse
Affiliation(s)
- Min Lv
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Shuying Ma
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Yueli Tian
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Xiaoyun Zhang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Wenjuan Lv
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| |
Collapse
|
19
|
Swider R, Masłyk M, Zapico JM, Coderch C, Panchuk R, Skorokhyd N, Schnitzler A, Niefind K, de Pascual-Teresa B, Ramos A. Synthesis, biological activity and structural study of new benzotriazole-based protein kinase CK2 inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra12114k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A new series of TBB-derivatives was synthesized and characterized as CK2 inhibitors. Crystallographic analysis and docking studies were used to understand the mode of binding.
Collapse
|
20
|
Wang X, Pan P, Li Y, Li D, Hou T. Exploring the prominent performance of CX-4945 derivatives as protein kinase CK2 inhibitors by a combined computational study. MOLECULAR BIOSYSTEMS 2014; 10:1196-210. [PMID: 24647611 DOI: 10.1039/c4mb00013g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase CK2, also known as casein kinase II, is related to various cellular events and is a potential target for numerous cancers. In this study, we attempted to gain more insight into the inhibition process of CK2 by a series of CX-4945 derivatives through an integrated computational study that combines molecular docking, molecular dynamics (MD) simulations, and binding free energy calculations. Based on the binding poses predicted by molecular docking, the MD simulations were performed to explore the dynamic binding processes for ten selected inhibitors. Then, both Molecular Mechanics/Poisson Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) techniques were employed to predict the binding affinities of the studied systems. The predicted binding energies of the selected inhibitors correlate well with their experimental activities (r(2) = 0.78). The van der Waals term is the most favorable component for the total energies. The free energy decomposition on a per residue basis reveals that the residue K68 is essential for the electrostatic interactions between CK2 and the studied inhibitors and numerous residues, including L45, V53, V66, F113, M163 and I174, play critical roles in forming van der Waals interactions with the inhibitors. Finally, a number of new derivatives were designed and the binding affinity and the predicted binding free energies of each designed molecule were obtained on the basis of molecular docking and MM/PBSA. It is expected that our research will benefit the future rational design of novel and potent inhibitors of CK2.
Collapse
Affiliation(s)
- Xuwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | | | | | | | | |
Collapse
|
21
|
Naik MM, Tilve SG, Kamat VP. Pyrrolidine and iodine catalyzed domino aldol-Michael-dehydrogenative synthesis of flavones. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.04.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Ostrynska OV. EFFECT OF INHIBITORS OF PROTEIN KINASE CK2 ON THE ACTIVITY ITS CATALYTIC SUBUNITS СК2α AND СК2α′. BIOTECHNOLOGIA ACTA 2014. [DOI: 10.15407/biotech7.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|