1
|
Nguyen ATN, Tran QL, Baltos JA, McNeill SM, Nguyen DTN, May LT. Small molecule allosteric modulation of the adenosine A 1 receptor. Front Endocrinol (Lausanne) 2023; 14:1184360. [PMID: 37435481 PMCID: PMC10331460 DOI: 10.3389/fendo.2023.1184360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/23/2023] [Indexed: 07/13/2023] Open
Abstract
G protein-coupled receptors (GPCRs) represent the target for approximately a third of FDA-approved small molecule drugs. The adenosine A1 receptor (A1R), one of four adenosine GPCR subtypes, has important (patho)physiological roles in humans. A1R has well-established roles in the regulation of the cardiovascular and nervous systems, where it has been identified as a potential therapeutic target for a number of conditions, including cardiac ischemia-reperfusion injury, cognition, epilepsy, and neuropathic pain. A1R small molecule drugs, typically orthosteric ligands, have undergone clinical trials. To date, none have progressed into the clinic, predominantly due to dose-limiting unwanted effects. The development of A1R allosteric modulators that target a topographically distinct binding site represent a promising approach to overcome current limitations. Pharmacological parameters of allosteric ligands, including affinity, efficacy and cooperativity, can be optimized to regulate A1R activity with high subtype, spatial and temporal selectivity. This review aims to offer insights into the A1R as a potential therapeutic target and highlight recent advances in the structural understanding of A1R allosteric modulation.
Collapse
Affiliation(s)
- Anh T. N. Nguyen
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Quan L. Tran
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Samantha M. McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Diep T. N. Nguyen
- Department of Information Technology, Faculty of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
2
|
The Detrimental Action of Adenosine on Glutamate-Induced Cytotoxicity in PC12 Cells Can Be Shifted towards a Neuroprotective Role through A 1AR Positive Allosteric Modulation. Cells 2020; 9:cells9051242. [PMID: 32443448 PMCID: PMC7290574 DOI: 10.3390/cells9051242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
Glutamate cytotoxicity is implicated in neuronal death in different neurological disorders including stroke, traumatic brain injury, and neurodegenerative diseases. Adenosine is a nucleoside that plays an important role in modulating neuronal activity and its receptors have been identified as promising therapeutic targets for glutamate cytotoxicity. The purpose of this study is to elucidate the role of adenosine and its receptors on glutamate-induced injury in PC12 cells and to verify the protective effect of the novel A1 adenosine receptor positive allosteric modulator, TRR469. Flow cytometry experiments to detect apoptosis revealed that adenosine has a dual role in glutamate cytotoxicity, with A2A and A2B adenosine receptor (AR) activation exacerbating and A1 AR activation improving glutamate-induced cell injury. The overall effect of endogenous adenosine in PC12 cells resulted in a facilitating action on glutamate cytotoxicity, as demonstrated by the use of adenosine deaminase and selective antagonists. However, enhancing the action of endogenous adenosine on A1ARs by TRR469 completely abrogated glutamate-mediated cell death, caspase 3/7 activation, ROS production, and mitochondrial membrane potential loss. Our results indicate a novel potential therapeutic strategy against glutamate cytotoxicity based on the positive allosteric modulation of A1ARs.
Collapse
|
3
|
Wold EA, Chen J, Cunningham KA, Zhou J. Allosteric Modulation of Class A GPCRs: Targets, Agents, and Emerging Concepts. J Med Chem 2019; 62:88-127. [PMID: 30106578 PMCID: PMC6556150 DOI: 10.1021/acs.jmedchem.8b00875] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) have been tractable drug targets for decades with over one-third of currently marketed drugs targeting GPCRs. Of these, the class A GPCR superfamily is highly represented, and continued drug discovery for this family of receptors may provide novel therapeutics for a vast range of diseases. GPCR allosteric modulation is an innovative targeting approach that broadens the available small molecule toolbox and is proving to be a viable drug discovery strategy, as evidenced by recent FDA approvals and clinical trials. Numerous class A GPCR allosteric modulators have been discovered recently, and emerging trends such as the availability of GPCR crystal structures, diverse functional assays, and structure-based computational approaches are improving optimization and development. This Perspective provides an update on allosterically targeted class A GPCRs and their disease indications and the medicinal chemistry approaches toward novel allosteric modulators and highlights emerging trends and opportunities in the field.
Collapse
Affiliation(s)
- Eric A. Wold
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jianping Chen
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Kathryn A. Cunningham
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas 77555, United States
- Department of Pharmacology and Toxicology, Center for Addiction Research, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
4
|
Cascade reactions as efficient and universal tools for construction and modification of 6-, 5-, 4- and 3-membered sulfur heterocycles of biological relevance. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
2-Aminothiophene scaffolds: Diverse biological and pharmacological attributes in medicinal chemistry. Eur J Med Chem 2017; 140:465-493. [PMID: 28987607 DOI: 10.1016/j.ejmech.2017.09.039] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/02/2017] [Accepted: 09/19/2017] [Indexed: 12/30/2022]
Abstract
2-Aminothiophenes are important five-membered heterocyclic building blocks in organic synthesis, and the chemistry of these small molecules is still developing based on the discovery of cyclization by Gewald. Another attractive feature of 2-aminothiophene scaffolds is their ability to act as synthons for the synthesis of biological active thiophene-containing heterocycles, conjugates and hybrids. Currently, the biological actions of 2-aminothiophenes or their 2-N-substituted analogues are still being investigated because of their various mechanisms of action (e.g., pharmacophore and pharmacokinetic properties). Likewise, the 2-aminothiophene family is used as diverse promising selective inhibitors, receptors, and modulators in medicinal chemistry, and these compounds even exhibit effective pharmacological properties in the various clinical phases of appropriate diseases. In this review, major biological and pharmacological reports on 2-aminothiophenes and related compounds have been highlighted; most perspective drug-candidate hits were selected for discussion and described, along with additional synthetic pathways. In addition, we focused on the literature dedicated to 2-aminothiophenes and 2-N-substituted derivatives, which have been published from 2010 to 2017.
Collapse
|
6
|
Varani K, Vincenzi F, Merighi S, Gessi S, Borea PA. Biochemical and Pharmacological Role of A1 Adenosine Receptors and Their Modulation as Novel Therapeutic Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1051:193-232. [DOI: 10.1007/5584_2017_61] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Guo D, Heitman LH, IJzerman AP. Kinetic Aspects of the Interaction between Ligand and G Protein-Coupled Receptor: The Case of the Adenosine Receptors. Chem Rev 2016; 117:38-66. [DOI: 10.1021/acs.chemrev.6b00025] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dong Guo
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Laura H. Heitman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Adriaan P. IJzerman
- Division of Medicinal Chemistry,
Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
8
|
Abstract
Adenosine is an ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1, A2A, A2B and A3 adenosine receptors (ARs). Allosteric enhancers to A1ARs may represent novel therapeutic agents because they increase the activity of these receptors by mediating a shift to their active form in the A1AR-G protein ternary complex. In this manner, they are able to amplify the action of endogenous adenosine, which is produced in high concentrations under conditions of metabolic stress. A1AR allosteric enhancers could be used as a justifiable alternative to the exogenous agonists that are characterized by receptor desensitization and downregulation. In this review, an analysis of some of the most interesting allosteric modulators of A1ARs has been reported.
Collapse
|
9
|
Synthesis and biological evaluation of a new series of 2-amino-3-aroyl thiophene derivatives as agonist allosteric modulators of the A1 adenosine receptor. A position-dependent effect study. Eur J Med Chem 2015; 101:185-204. [PMID: 26141910 DOI: 10.1016/j.ejmech.2015.06.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/05/2015] [Accepted: 06/22/2015] [Indexed: 11/20/2022]
Abstract
The 2-amino-3-(p-chlorobenzoyl)thiophene scaffold has been widely employed as a pharmacophore for the identification of small molecules acting as allosteric modulators at the adenosine A1 receptor. A new series of 2-amino-3-(p-chlorobenzoyl)-4-benzyl-5-arylthiophene derivatives, characterized by the absence as well as the presence of electron-releasing or electron-withdrawing groups on the phenyl ring at the 4- and 5-positions of the thiophene ring, were identified as positive allosteric enhancers at the adenosine A1 receptor in binding (saturation, competition and dissociation kinetics) and functional assays. To better understand the positional requirements of substituents on the 2-amino-3-(p-chlorobenzoyl)thiophene core, the corresponding regioisomeric 4-aryl-5-benzylthiophene analogues were synthesized and found to possess reduced allosteric enhancer activity.
Collapse
|
10
|
Romagnoli R, Baraldi PG, IJzerman AP, Massink A, Cruz-Lopez O, Lopez-Cara LC, Saponaro G, Preti D, Aghazadeh Tabrizi M, Baraldi S, Moorman AR, Vincenzi F, Borea PA, Varani K. Synthesis and Biological Evaluation of Novel Allosteric Enhancers of the A1 Adenosine Receptor Based on 2-Amino-3-(4′-Chlorobenzoyl)-4-Substituted-5-Arylethynyl Thiophene. J Med Chem 2014; 57:7673-86. [DOI: 10.1021/jm5008853] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Romeo Romagnoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Pier Giovanni Baraldi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Adriaan P. IJzerman
- Leiden Academic
Centre for Drug Research, Division of Medicinal Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Arnault Massink
- Leiden Academic
Centre for Drug Research, Division of Medicinal Chemistry, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Olga Cruz-Lopez
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Luisa Carlota Lopez-Cara
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Giulia Saponaro
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Delia Preti
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Mojgan Aghazadeh Tabrizi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Stefania Baraldi
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università di Ferrara, Via Fossato
di Mortara 17-19, 44121 Ferrara, Italy
| | - Allan R. Moorman
- King Pharmaceuticals
Inc., Research and Development, 4000
CentreGreen Way, Suite 300, Cary, North Carolina 27513
| | - Fabrizio Vincenzi
- Dipartimento
di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Savonarola 9, 44121 Ferrara, Italy
| | - Pier Andrea Borea
- Dipartimento
di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Savonarola 9, 44121 Ferrara, Italy
| | - Katia Varani
- Dipartimento
di Scienze Mediche, Sezione di Farmacologia, Università di Ferrara, Via Savonarola 9, 44121 Ferrara, Italy
| |
Collapse
|