1
|
Patel K, Patel DK. Biological Potential and Therapeutic Effectiveness of Phytoproduct 'Fargesin' in Medicine: Focus on the Potential of an Active Phytochemical of Magnolia fargesii. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:79-89. [PMID: 38726781 DOI: 10.2174/0127722708286664240429093913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 10/16/2024]
Abstract
Flos Magnoliae is one of the important medicinal plants in different traditional medicine, including Chinese herbal medicine. Lignans and neolignans, including tetrahydrofurofuran, tetrahydrofuran, and aryltetralin, are present in the Flos Magnoliae species. A wide range of pharmacological activity of Flos Magnoliae has been reported in medicine. Fargesin has been isolated from Magnolia fargesii and it is a lignan-class phytochemical. Fargesin has numerous pharmacological activities in medicine, including its effectiveness on lipid and glucose metabolism, oxidative stress, myocardial apoptosis, etc. In the present work, we have summarized the detailed scientific information of fargesin concerning its medicinal properties and pharmacological activities. Numerous biological and chemical aspects of fargesin are discussed here, including the detailed pharmacological activities and analytical aspects of fargesin. In this review, we have also compiled analytical data on fargesin based on available scientific literature. Ethnopharmacological information on fargesin was gathered by a literature survey on PubMed, Science Direct, Google, and Scopus using the terms fargesin, Flos Magnoliae, phytochemical, and herbal medicine. The present review paper compiled the scientific data on fargesin in medicine for its pharmacological activities and analytical aspects in a very concise manner with proper citations. The present work signified the biological importance of fargesin in medicine due to its significant impact on bone disorders, lung injury, colon cancer, atherosclerosis, neurological disorders, ischemia, sars-cov-2, allergy, lipid and glucose metabolism, melanin synthesis, and different classes of enzymes. Furthermore, fargesin also has anti-inflammatory, antihypertensive, antiprotozoal, antimycobacterial, and antifeedant activity. However, analytical methods used for the separation, identification and isolation of fargesin in different biological and non-biological samples were also covered in the present review. The present work revealed the pharmacological activities and analytical aspects of fargesin in medicine and other allied health sectors.
Collapse
Affiliation(s)
- Kanika Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| |
Collapse
|
2
|
Kalimuthu AK, Parasuraman P, Sivakumar P, Murugesan S, Arunachalam S, Pandian SRK, Ravishankar V, Ammunje DN, Sampath M, Panneerselvam T, Kunjiappan S. In silico, in vitro screening of antioxidant and anticancer potentials of bioactive secondary metabolites from an endophytic fungus (Curvularia sp.) from Phyllanthus niruri L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48908-48925. [PMID: 35201581 DOI: 10.1007/s11356-022-19249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The main objective of this research work is to discover novel and efficient phytochemical substances from endophytic fungus found in medicinal plants. Curvularia geniculata L. (C. geniculata L.), an endophytic fungus isolated from Phyllanthus niruri L. (P. niruri L.), was tested against hepatoma cell lines (HepG2) in order to screen their antioxidant and anticancer potentials. The profiling of phytochemicals from the fungal extract was characterized using gas chromatography-mass spectrometry (GC-MS), and molecular docking was done for the identified compounds against one of the potential receptors predominantly present in the hepatocellular carcinoma cell lines. Among the phytochemicals found, 2-methyl-7-phenylindole had the highest binding affinity (- 8.8 kcal mol-1) for the epidermal growth factor receptor (EGFR). The stability of 2-methyl-7-phenylindole in the EGFR-binding pockets was tested using in silico molecular dynamics simulation. The fungal extract showed the highest antioxidant activity as measured by DPPH, ABTS radical scavenging, and FRAP assays. In vitro cytotoxicity assay of fungal extract demonstrated the concentration-dependent cytotoxicity against HepG2 cells after 24 h, and the IC50 (50% cell death) value was estimated to be 62.23 μg mL-1. Typical morphological changes such as condensation of nuclei and deformed membrane structures are indicative of ongoing apoptosis. The mitochondria of HepG2 cells were also targeted by the endophytic fungal extract, which resulted in substantial generation of reactive oxygen species (ROS) leading to the destruction of mitochondrial transmembrane potential integrity. These outcomes suggest that the ethyl acetate extract of C. geniculata L. has the potential to be an antioxidant agent and further to be exploited in developing potential anticancer agents.
Collapse
Affiliation(s)
- Arjun Kumar Kalimuthu
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Pavadai Parasuraman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Pandian Sivakumar
- School of Petroleum Technology, Pandit Deendayal Energy University, Gandhinagar, 382426, Gujarat, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Birla Institute of Technology & Science Pilani, Pilani Campus, Pilani, 333031, Rajasthan, India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Sureshbabu Ram Kumar Pandian
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India
| | - Vigneshwaran Ravishankar
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi, 626005, Tamil Nadu, India
| | - Damodar Nayak Ammunje
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, 560054, Karnataka, India
| | - Muthukumar Sampath
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi-835215, Mesra, Jharkhand, India
| | - Theivendran Panneerselvam
- Department of Pharmaceutical Chemistry, Swamy Vivekanandha College of Pharmacy, Tiruchengodu, 637205, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Srivilliputhur, 626126, Tamil Nadu, India.
| |
Collapse
|
3
|
Moutabian H, Majdaeen M, Ghahramani-Asl R, Yadollahi M, Gharepapagh E, Ataei G, Falahatpour Z, Bagheri H, Farhood B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: with a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int 2022; 22:142. [PMID: 35366874 PMCID: PMC8976963 DOI: 10.1186/s12935-022-02561-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/27/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE 5-fluorouracil (5-FU), an effective chemotherapy drug, is commonly applied for colorectal cancer treatment. Nevertheless, its toxicity to normal tissues and the development of tumor resistance are the main obstacles to successful cancer chemotherapy and hence, its clinical application is limited. The use of resveratrol can increase 5-FU-induced cytotoxicity and mitigate the unwanted adverse effects. This study aimed to review the potential therapeutic effects of resveratrol in combination with 5-FU against colorectal cancer. METHODS According to the PRISMA guideline, a comprehensive systematic search was carried out for the identification of relevant literature in four electronic databases of PubMed, Web of Science, Embase, and Scopus up to May 2021 using a pre-defined set of keywords in their titles and abstracts. We screened 282 studies in accordance with our inclusion and exclusion criteria. Thirteen articles were finally included in this systematic review. RESULTS The in vitro findings showed that proliferation inhibition of colorectal cancer cells in the groups treated by 5-FU was remarkably higher than the untreated groups and the co-administration of resveratrol remarkably increased cytotoxicity induced by 5-FU. The in vivo results demonstrated a decrease in tumor growth of mice treated by 5-FU than the untreated group and a dramatic decrease was observed following combined treatment of resveratrol and 5-FU. It was also found that 5-FU alone and combined with resveratrol could regulate the cell cycle profile of colorectal cancer cells. Moreover, this chemotherapeutic agent induced the biochemical and histopathological changes in the cancerous cells/tissues and these alterations were synergized by resveratrol co-administration (for most of the cases), except for the inflammatory mediators. CONCLUSION The results obtained from this systematic review demonstrated that co-administration of resveratrol could sensitize the colorectal cancer cells to 5-FU treatment via various mechanisms, including regulation of cell cycle distribution, oxidant, apoptosis, anti-inflammatory effects.
Collapse
Affiliation(s)
- Hossein Moutabian
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran
| | - Mehrsa Majdaeen
- Department of Radiotherapy and Oncology, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ruhollah Ghahramani-Asl
- Department of Medical Physics and Radiological Sciences, Faculty of Paramedicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoumeh Yadollahi
- Department of Allied Medical Sciences, Semnan University of Medical Sciences, Semnan, Iran
| | - Esmaeil Gharepapagh
- Medical Radiation Sciences Research Team, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Ataei
- Department of Radiology Technology, Faculty of Paramedical Sciences, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Falahatpour
- Department of Medical Physics, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Bagheri
- Radiation Sciences Research Center (RSRC), AJA University of Medical Sciences, Tehran, Iran.
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Bagher Farhood
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Li P, Zeng Y, Chen Y, Huang P, Chen X, Zheng W. LRP11-AS1 promotes the proliferation and migration of triple negative breast cancer cells via the miR-149-3p/NRP2 axis. Cancer Cell Int 2022; 22:116. [PMID: 35279146 PMCID: PMC8917722 DOI: 10.1186/s12935-022-02536-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Background Breast cancer is the most commonly diagnosed cancer in women. Triple negative breast cancer (TNBC) is the most difficult subtype of breast cancer to treat due to the deficiency in drug-targetable receptors. LRP11-AS1, a newly identified oncogenic long noncoding RNA (lncRNA) was found to be significantly overexpressed in TNBC cells. The aim of this study is to investigate the malignant roles and the oncogenic mechanisms of LRP11-AS1 in TNBC. Methods CCK-8, colony formation, transwell migration and transwell invasion assays were performed to study the functions of LRP11-AS1. Quantitative PCR and western blot were used to determine the gene expression. Bioinformatics analysis and dual-luciferase reporter assay were conducted to study lncRNA and miRNA interactions. Results LRP11-AS1 was found to be significantly overexpressed in TNBC cells compared to the non-TNBC cells and normal mammary epithelial cells. Knockdown of LRP11-AS1 could inhibit the growth and metastasis of TNBC cells and regulate cell cycle. Mechanistically, LRP11-AS1 was found to act as a competing endogenous RNA (ceRNA) to sponge miR-149-3p. Silencing of LRP11-AS1 increased the expression of miR-149-3p and overexpression of miR-149-3p suppressed the expression of LRP11-AS1. Inhibition of miR-149-3p could reverse the anticancer effect of LRP11-AS1 deficiency in TNBC cells. Moreover, Neuropilin-2 (NRP2) was found to be the target of miR-149-3p. Rescue experiments revealed that NRP2 overexpression could rescue the anticancer effect of LRP11-AS1 deficiency in TNBC cells. Conclusion LRP11-AS1 overexpressed in TNBC showed the oncogenic effects possibly by sponging miR-149-3p and regulating the miR-149-3p/NRP2 axis, which indicated LRP11-AS1 as a potential diagnostic biomarker and therapeutic target in TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02536-8.
Collapse
|
5
|
Liu W, Zheng L, Zhang R, Hou P, Wang J, Wu L, Li J. Circ-ZEB1 promotes PIK3CA expression by silencing miR-199a-3p and affects the proliferation and apoptosis of hepatocellular carcinoma. Mol Cancer 2022; 21:72. [PMID: 35277182 PMCID: PMC8915544 DOI: 10.1186/s12943-022-01529-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/01/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Although the prognostic outcomes of liver cancer (LC) cases have improved with the advancement in diagnostic technology and treatment methods, the transferability and recurrence of HCC and the 5-year and 10-year survival rates of patients have remained unsatisfactory. As a result, there is a need for more accurate diagnostic indicators that can detect liver cancer early, effectively improving the prognosis of patients. Whole-genome sequencing (WGS) revealed that circ-ZEB1 and PIK3CA are highly expressed in HCC tissues, whereas miR-199a-3p is significantly downregulated in HCC. Multiple databases search and biological analysis revealed that elevated expression of circ-ZEB1 and PIK3CA was related to poor prognosis of HCC. In vitro and in vivo studies revealed that upregulated levels of PIK3CA and circ-ZEB1 were closely associated with HCC proliferation and apoptosis. Based on these results, we believe that circ-ZEB1 and PIK3CA could be used as biomarkers to diagnose and treat patients with HCC. More importantly, circ-ZEB1 can promotes the expression of PIK3CA by silencing miR-199a-3p and affecting the progression of HCC. METHODS AND RESULTS Postoperative specimens from 56 patients with HCC who had not undergone chemotherapy from 2015 to 2018 were collected from the Department of Hepatobiliary Surgery, Second Affiliated Hospital of Nanchang University. WGS revealed differential expression of genes in HCC. Furthermore, RT-qPCR detected the expression of circ-ZEB1, miR-199a-3p, and PIK3CA in HCC tissues. MTT, EdU, and plate cloning experiments were conducted to detect cell proliferation, whereas flow cytometry analysis was used to detect apoptosis. FISH was used to co-localize circ-ZEB1 and miR-199a-3p, and biotin-coupled probe pull-down assay was used to detect the specific binding of circ-ZEB1 and miR-199a-3p. The dual-luciferase report assay detected the association of miR-199a-3p with PIK3CA. Western blotting was used to study the expression of PIK3CA protein. Circ-ZEB1 and PIK3CA were upregulated in HCC and predicted a poor prognosis. MiR-199a-3p showed low expression in HCC, whereas downregulation of circ-ZEB1 reduced HCC cell proliferation and promoted cell apoptosis. MiR-199a-3p blocked the effect of circ-ZEB1 on HCC. Circ-ZEB1 served as a biomarker of HCC. Circ-ZEB1 promoted the expression of PIK3CA by silencing miR-199a-3p to affect the progress of HCC. CONCLUSIONS Circ-ZEB1 promoted the expression of PIK3CA by depleting miR-199a-3p, thereby affecting HCC proliferation and apoptosis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China
| | - Rongguiyi Zhang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Ping Hou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Jiakun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Linquan Wu
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, 1 Mindle Road, Nanchang, Jiangxi, 330006, People's Republic of China.
| | - Jing Li
- Department of Hepatobiliary Surgery, Xinqiao Hospital, Third Military Medical University, 83 Xinqiao Main Street, Chongqing, 400000, People's Republic of China.
| |
Collapse
|
6
|
Wen W, Xu D, Piao Y, Li X. Prognostic value of maximum standard uptake value, metabolic tumour volume, and total lesion glycolysis of 18F-FDG PET/CT in patients with malignant pleural mesothelioma: a systematic review and meta-analysis. Cancer Cell Int 2022; 22:60. [PMID: 35114996 PMCID: PMC8811994 DOI: 10.1186/s12935-022-02482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/22/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Present work systematically reviewed relevant literature based on 18F-FDG PET parameters and conducted a meta-analysis to examine the prognostic value of maximal standard uptake value (SUVmax), total lesional glycolysis (TLG), and metabolic tumour volume (MTV) in the prognosis of malignant pleural mesothelioma (MPM). METHODS The relevant literature published in English were searched on PubMed, Cochrane Library, and EMBASE databases. We also evaluated the significance of SUVmax, TLG, and MTV in prognosis prediction using pooled hazard ratios (HRs). RESULTS The current study comprised 12 primary studies with a total of 1307 MPM cases. According to our results, the pooled HR (95% confidence interval [CI]) of increased SUVmax for overall survival (OS) was 1.30 (95% CI 1.13-1.49, P = 0.000), whereas the increased TLG was 1.81(95% CI 1.25-2.61, P = 0.089). The increased MTV was not significantly related to OS (1.14 [95% CI 0.87-1.50, P = 0.18]).However, study design-stratified subgroup analysis suggested that differences in OS of retrospective and prospective subgroups were statistically significant, and no significant heterogeneity among different studies was observed. CONCLUSION Based on the findings from the present work, PET/CT can significantly affect the prognosis prediction in MPM cases. Also, the increased SUVmax and TLG values predict an increased risk of mortality.
Collapse
Affiliation(s)
- Weibo Wen
- Department of Nuclear Medicine, Yanbian University Hospital, Yanji, Jilin Province, China.,Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China
| | - Dongyuan Xu
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China
| | - Yongnan Piao
- Department of Nuclear Medicine, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Xiangdan Li
- Center of Morphological Experiment, Medical College of Yanbian University, Yanji, Jilin Province, China.
| |
Collapse
|
7
|
Pan B, Wei X, Xu X. Patient-derived xenograft models in hepatopancreatobiliary cancer. Cancer Cell Int 2022; 22:41. [PMID: 35090441 PMCID: PMC8796540 DOI: 10.1186/s12935-022-02454-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Animal models are crucial tools for evaluating the biological progress of human cancers and for the preclinical investigation of anticancer drugs and cancer prevention. Various animals are widely used in hepatopancreatobiliary cancer research, and mouse models are the most popular. Generally, genetic tools, graft transplantation, and chemical and physical measures are adopted to generate sundry mouse models of hepatopancreatobiliary cancer. Graft transplantation is commonly used to study tumour progression. Over the past few decades, subcutaneous or orthotopic cell-derived tumour xenograft models (CDX models) have been developed to simulate distinct tumours in patients. However, two major limitations exist in CDX models. One model poorly simulates the microenvironment of tumours in humans, such as the vascular, lymphatic and immune environments. The other model loses genetic heterogeneity compared with the corresponding primary tumour. Increased efforts have focused on developing better models for hepatopancreatobiliary cancer research. Hepatopancreatobiliary cancer is considered a tumour with high molecular heterogeneity, making precision medicine challenging in cancer treatment. Developing a new animal model that can better mimic tumour tissue and more accurately predict the efficacy of anticancer treatments is urgent. For the past several years, the patient-derived xenograft model (PDX model) has emerged as a promising tool for translational research. It can retain the genetic and histological stability of their originating tumour at limited passages and shed light on precision cancer medicine. In this review, we summarize the methodology, advantages/disadvantages and applications of PDX models in hepatopancreatobiliary cancer research.
Collapse
|
8
|
Zhou X, Wang H, Li D, Song N, Yang F, Xu W. MST1/2 inhibitor XMU-MP-1 alleviates the injury induced by ionizing radiation in haematopoietic and intestinal system. J Cell Mol Med 2022; 26:1621-1628. [PMID: 35088536 PMCID: PMC8899195 DOI: 10.1111/jcmm.17203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 02/02/2023] Open
Abstract
The Hippo signalling pathway has been considered as potential therapeutic target in self‐renewal and differentiation of stem and progenitor cells. Thus, mammalian Ste20‐like kinase 1/2 (MST1/2) as the core serine‐threonine kinases in the Hippo signalling pathway has been investigated for its role in immunological disease. However, little information of MST1/2 function in bone marrow suppression induced by ionizing radiation was fully investigated. Here, we reported that MST1/2 inhibitor XMU‐MP‐1 could rescue the impaired haematopoietic stem cells (HSCs) and progenitor cells (HPCs) function under oxidative stress condition. Also, XMU‐MP‐1 pretreatment markedly alleviated the small intestinal system injury caused by the total body irradiation 9 Gy and extended the average survival days of the mice exposed to the lethal dose radiation. Therefore, irradiation exposure causes the serious pathological changes of haematopoietic and intestinal system, and XMU‐MP‐1 could prevent the ROS production, the haematopoietic cells impairment and the intestinal injury. These detrimental effects may be associated with regulating NOX/ROS/P38MARK pathway by MST1/2.
Collapse
Affiliation(s)
- Xiaoliang Zhou
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Hao Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Naling Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Fujun Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wenqing Xu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
9
|
Zhou J, Wang J, Zhang X, Tang Q. New Insights Into Cancer Chronotherapies. Front Pharmacol 2021; 12:741295. [PMID: 34966277 PMCID: PMC8710512 DOI: 10.3389/fphar.2021.741295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/25/2021] [Indexed: 02/01/2023] Open
Abstract
Circadian clocks participate in the coordination of various metabolic and biological activities to maintain homeostasis. Disturbances in the circadian rhythm and cancers are closely related. Circadian clock genes are differentially expressed in many tumors, and accelerate the development and progression of tumors. In addition, tumor tissues exert varying biological activities compared to normal tissues due to resetting of altered rhythms. Thus, chronotherapeutics used for cancer treatment should exploit the timing of circadian rhythms to achieve higher efficacy and mild toxicity. Due to interpatient differences in circadian functions, our findings advocate an individualized precision approach to chronotherapy. Herein, we review the specific association between circadian clocks and cancers. In addition, we focus on chronotherapies in cancers and personalized biomarkers for the development of precision chronotherapy. The understanding of circadian clocks in cancer will provide a rationale for more effective clinical treatment of tumors.
Collapse
Affiliation(s)
- Jingxuan Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiechen Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiaozhao Zhang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
10
|
Yang P, Chen W, Xu H, Yang J, Jiang J, Jiang Y, Xu G. Correlation of CCL8 expression with immune cell infiltration of skin cutaneous melanoma: potential as a prognostic indicator and therapeutic pathway. Cancer Cell Int 2021; 21:635. [PMID: 34844613 PMCID: PMC8628426 DOI: 10.1186/s12935-021-02350-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is critical in the progression and metastasis of skin cutaneous melanoma (SKCM). Differences in tumor-infiltrating immune cells (TICs) and their gene expression have been linked to cancer prognosis. Given that immunotherapy can be effective against SKCM, we aimed to identify key genes that regulate the immunological state of the TME in SKCM. METHODS Data from 471 SKCM patients in the The Cancer Genome Atlas were analyzed using ESTIMATE algorithms to generate an ImmuneScore, StromalScore, and EstimateScore for each patient. Patients were classified into low- or high-score groups based on median values, then compared in order to identify differentially expressed genes (DEGs). Then a protein-protein interaction (PPI) network was developed, and a prognostic model was created using uni- and multivariate Cox regression as well as the least absolute shrinkage and selection operator (LASSO). Key DEGs were identified using the web-based tool GEPIA. Profiles of TIC subpopulations in each patient were analyzed using CIBORSORT, and possible correlations between key DEG expression and TICs were explored. Levels of CCL8 were determined in SKCM and normal skin tissue using immunohistochemistry. RESULTS Two scores correlated positively with the prognosis of SKCM patients. Comparison of the low- and high-score groups revealed 1684 up-regulated and 18 down-regulated DEGs, all of which were enriched in immune-related functions. The prognostic model identified CCL8 as a key gene, which CIBERSORT found to correlate with M1 macrophages. Immunohistochemistry revealed strong expression in SKCM tissue, but failed to detect the protein in normal skin tissue. CONCLUSIONS CCL8 is a potential prognostic marker for SKCM, and it may become an effective target for melanoma in which M1 macrophages play an important role.
Collapse
Affiliation(s)
- Peipei Yang
- Department of Dermatology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China
| | - Wanrong Chen
- Graduate School, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hua Xu
- Department of Pathology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China
| | - Junhan Yang
- Department of Dermatology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China
| | - Jinghang Jiang
- Graduate School, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
- The Reproductive Medicine Center, Jingmen No. 2 People's Hospital, Jingmen, Hubei, China
| | - Yunhui Jiang
- Department of Pathology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China.
| | - Ganglin Xu
- Department of Dermatology, Jingmen No. 2 People's Hospital, No. 39 Xiangshan Road Dongbao Zone, Jingmen, 448000, Hubei, China.
| |
Collapse
|
11
|
He Y, Chen J, Peng X, Xia Y, Su Y. Clinicopathological and prognostic significance of speckle-type POZ protein in cancers: a systematic review and meta-analysis. Cancer Cell Int 2021; 21:626. [PMID: 34838022 PMCID: PMC8627083 DOI: 10.1186/s12935-021-02329-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Controversial findings have been reported in the impact of speckle-type POZ protein (SPOP) on clinicopathological features and prognosis in diverse cancers. We conducted this meta-analysis to confirm whether SPOP was an effective biomarker to predict clinical stage, cancer differentiation and survival. METHODS We searched studies published before June 2021 through Medline, Embase, the Cochrane library register of controlled trials and Wanfang databases. The corrections of SPOP expression with expression disparity, tumor differentiation, clinical stage and survival were analyzed. RESULTS Our meta-analysis found that higher expression of SPOP was significantly associated with earlier clinical stage, well differentiation and better overall survival. Subgroup analysis showed that the SPOP expression of adjacent tissue was significantly higher than that in cancer tissues of prostate and liver. However, renal cancer presented improved expression of SPOP in cancer tissue. CONCLUSIONS SPOP has the potential function to act as a novel and effective biomarker for cancer diagnosis and prognostic stratification.
Collapse
Affiliation(s)
- Yan He
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jun Chen
- Department of Ophalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yanli Xia
- College of Food and Biological Engineering, Chengdu University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Yonglin Su
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Liu R, Wan Q, Zhao R, Xiao H, Cen Y, Xu X. Risk of non-melanoma skin cancer with biological therapy in common inflammatory diseases: a systemic review and meta-analysis. Cancer Cell Int 2021; 21:614. [PMID: 34809619 PMCID: PMC8607648 DOI: 10.1186/s12935-021-02325-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Most previous studies compared the risk for non-melanoma skin cancer (NMSC) in biologic-treated common inflammatory diseases with the general population. Whether the increased NMSC risk is caused by the disease itself, the biologics, or both remains unknown. METHODS We systematically searched PubMed, Embase, Medline, Web of Science, and Cochrane Library from inception to May 2021. Studies were included if they assessed the risk of NMSC for rheumatoid arthritis (RA), inflammatory bowel disease (IBD), or psoriasis patients treated with biologics compared with patients not receiving biologics. Pooled relative risks (RRs) and 95% confidence intervals (CIs) were calculated using the fixed- or random-effects model. RESULTS The current meta-analysis included 12 studies. Compared with patients with the inflammatory disease without biologics, patients receiving biological therapy were associated with an increased risk for NMSC (RR 1.25, 95% CI 1.14 to 1.37), especially in patients with RA (RR 1.24, 95% CI 1.13 to 1.36) and psoriasis (RR 1.28, 95% CI 1.07 to 1.52), but not in patients with IBD (RR 1.49, 95% CI 0.46 to 4.91). The risks for squamous cell skin cancer and basal cell skin cancer were both increased for patients receiving biologics. However, the risk of NMSC did not increase in patients treated with biologics less than 2 years. CONCLUSIONS Current evidence suggests that increased risk of NMSC was identified in RA and psoriasis treated with biologics compared with patients not receiving biologics, but not in patients with IBD. The inner cause for the increased risk of NMSC in IBD patients should be further discussed.
Collapse
Affiliation(s)
- Ruolin Liu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China
| | - Qianyi Wan
- Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Rui Zhao
- Department of Gastrointestinal Surgery, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Haitao Xiao
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China.
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital of Sichuan University, No 37 Wainan Guoxue Road, Chengdu, 610041, China.
| |
Collapse
|
13
|
Guo J, Zheng J, Zhang H, Tong J. RNA m6A methylation regulators in ovarian cancer. Cancer Cell Int 2021; 21:609. [PMID: 34794452 PMCID: PMC8600856 DOI: 10.1186/s12935-021-02318-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/05/2021] [Indexed: 12/19/2022] Open
Abstract
N6-methyladenosine (m6A) is the most abundant RNA modification of mammalian mRNAs and plays a vital role in many diseases, especially tumours. In recent years, m6A has become the topic of intense discussion in epigenetics. M6A modification is dynamically regulated by methyltransferases, demethylases and RNA-binding proteins. Ovarian cancer (OC) is a common but highly fatal malignancy in female. Increasing evidence shows that changes in m6A levels and the dysregulation of m6A regulators are associated with the occurrence, development or prognosis of OC. In this review, the latest studies on m6A and its regulators in OC have been summarized, and we focus on the key role of m6A modification in the development and progression of OC. Additionally, we also discuss the potential use of m6A modification and its regulators in the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jialu Guo
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jianfeng Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Obstetrics and Gynecology, Affiliated Hangzhou Hospital, Nanjing Medical University, 310008, Hangzhou, Zhejiang Province, People's Republic of China
| | - Huizhi Zhang
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China
| | - Jinyi Tong
- Department of the Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, 310053, Hangzhou, Zhejiang Province, People's Republic of China. .,Department of Obstetrics and Gynecology, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), 310008, Hangzhou, Zhejiang Province, People's Republic of China.
| |
Collapse
|
14
|
Marinho EM, Batista de Andrade Neto J, Silva J, Rocha da Silva C, Cavalcanti BC, Marinho ES, Nobre Júnior HV. Virtual screening based on molecular docking of possible inhibitors of Covid-19 main protease. Microb Pathog 2020; 148:104365. [PMID: 32619669 PMCID: PMC7834391 DOI: 10.1016/j.micpath.2020.104365] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus (COVID-19) is an enveloped RNA virus that is diversely found in humans and that has now been declared a global pandemic by the World Health Organization. Thus, there is an urgent need to develop effective therapies and vaccines against this disease. In this context, this study aimed to evaluate in silico the molecular interactions of drugs with therapeutic indications for treatment of COVID-19 (Azithromycin, Baricitinib and Hydroxychloroquine) and drugs with similar structures (Chloroquine, Quinacrine and Ruxolitinib) in docking models from the SARS-CoV-2 main protease (M-pro) protein. The results showed that all inhibitors bound to the same enzyme site, more specifically in domain III of the SARS-CoV-2 main protease. Therefore, this study allows proposing the use of baricitinib and quinacrine, in combination with azithromycin; however, these computer simulations are just an initial step for conceiving new projects for the development of antiviral molecules.
Collapse
Affiliation(s)
- Emanuelle Machado Marinho
- Department of Analytical Chemistry and Physical Chemistry, Group of Theoretical Chemistry (GQT), Science Center, Federal University of Ceará, Fortaleza, CE, 60.455-760, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Emmanuel Silva Marinho
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceara, Fortaleza, CE, Brazil; Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
15
|
Saidi I, Nimbarte VD, Schwalbe H, Waffo-Téguo P, Harrath AH, Mansour L, Alwasel S, Ben Jannet H. Anti-tyrosinase, anti-cholinesterase and cytotoxic activities of extracts and phytochemicals from the Tunisian Citharexylum spinosum L.: Molecular docking and SAR analysis. Bioorg Chem 2020; 102:104093. [PMID: 32717693 DOI: 10.1016/j.bioorg.2020.104093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022]
Abstract
Previously phytochemical investigations carried out on the flowers and trunk bark extracts of Citharexylum spinosum L. tree, allowed the isolation of twenty molecules belonging to several families of natural substances [triterpene acids, iridoid glycosides, phenylethanoid glycosides, 8,3'-neolignan glycosides, together with other phenolic compounds]. In the present work, a biological evaluation (anti-tyrosinase, anticholinesterase and cytotoxic activities) was performed on the prepared extracts and the isolated secondary metabolites. The results showed that the EtOAc extract of the trunk bark displayed the highest anti-tyrosinase effect with a percent inhibition of 55.0 ± 1.8% at a concentration of 100 µg/mL. The highest anticholinesterase activity was presented by the same extract with an IC50 value of 99.97 ± 3.01 µg/mL. The EtOAc extract of flowers and that of the trunk bark displayed the best cytotoxic property with IC50 values of 96.00 ± 2.85 and 88.75 ± 2.00 µg/mL, respectively, against the human cervical cancer cell line (HeLa), and IC50 values of 188.23 ± 3.88 and 197.00 ± 4.25 µg/mL, respectively, against the human lung cancer (A549) cell lines. Biological investigation of the pure compounds showed that the two 8,3'-neolignan glycosides, plucheosides D1-D2, generate the highest anti-tyrosinase potency with a percent inhibition of 61.4 ± 2.0 and 79.5 ± 2.3%, respectively, at a concentration of 100 µM. The iridoid glycosides exhibited a significant anticholinesterase activity with IC50 values ranging from 17.19 ± 1.02 to 52.24 ± 2.50 µM. Triterpene pentacyclic acids and iridoid glycosides exerted encouraging cytotoxic effects against HeLa with IC50 values ranging from 9.00 ± 1.10 to 25.00 ± 1.00 µM. The study of the structure-activity relationship (SAR) has been sufficiently and widely discussed. The natural compounds that exhibited the significant bioactivities were docked.
Collapse
Affiliation(s)
- Ilyes Saidi
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia
| | - Vijaykumar D Nimbarte
- Institute for Organic Chemistry and Chemical Biology. Center for Biomolecular Magnetic Resonance Goethe University Frankfurt am Main Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology. Center for Biomolecular Magnetic Resonance Goethe University Frankfurt am Main Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | - Pierre Waffo-Téguo
- Univ. de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie 210 chemin de leysotte, CS50008, 33882 Villenave d'Ornon, France; INRA, ISVV, USC 1366 Œnologie, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Lamjed Mansour
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, Saudi Arabia
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia.
| |
Collapse
|
16
|
Tsai YC, Hohmann J, El-Shazly M, Chang LK, Dankó B, Kúsz N, Hsieh CT, Hunyadi A, Chang FR. Bioactive constituents of Lindernia crustacea and its anti-EBV effect via Rta expression inhibition in the viral lytic cycle. JOURNAL OF ETHNOPHARMACOLOGY 2020; 250:112493. [PMID: 31863859 DOI: 10.1016/j.jep.2019.112493] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/18/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lindernia crustacea (L.) F.Muell. (Scrophulariaceae) was selected for phytochemical investigation owing to its traditional use against human herpes virus infection and its anti-Epstein-Barr virus (EBV) effect. AIMS OF THE STUDY The present study focused on the phytochemical investigation of L. crustacea including the isolation and structure determination of its biologically active compounds. Compounds with anti-EBV effects were also investigated. MATERIALS AND METHODS The EtOH extract of L. crustacea was subsequently partitioned using different solvents. The EtOAc fraction was subjected to several chromatographic methods to obtain pure compounds. The structures of all isolates were established by spectroscopic analysis and compared with previously reported physical data. The anti-EBV effect was evaluated in an EBV-containing Burkitt's lymphoma cell line (P3HR1) to study the expression of EBV lytic proteins. RESULTS Thirty-three compounds, including one diterpene (1), four anthraquinones (2-5), two ionones (6 and 7), fourteen phenylpropanoid glycosides (8-21), five flavonoids (22-26), one lignan glycoside (27), one phenethyl alcohol glycoside (28), one phenylpropene glycoside (29), one glucosyl glycerol derivative (30), one furanone (31), and two cinnamic acid derivatives (32 and 33), were isolated from the ethanolic extract of the plant. All isolated compounds were obtained for the first time from Lindernia sp. The evaluation of the anti-EBV activity of L. crustacea crude extract, partitioned fractions, and constituents was performed for the first time. Phytol (1), aloe-emodin (2), byzantionoside B (7), a mixture of trans-martynoside (8) and cis-martynoside (9), a mixture of trans-isomartynoside (10) and cis-isomartynoside (11), luteolin-7-O-β-D-glucopyranoside (24), and apigenin-7-O-[β-D-apiofuranosyl (1→6)-β-D-glucopyranoside] (25) exhibited significant inhibitory effects on the EBV lytic cycle at 20 μg/mL in the immunoblot analysis. On the other hand, (6R,7E,9R)-3-oxo-α-ionol-β-D-glucopyranoside (6) and a mixture of trans-dolichandroside A (12) and cis-dolichandroside A (13) showed moderate anti-EBV activity at 20 μg/mL. CONCLUSIONS L. crustacea and its active isolates could be developed as potential candidates against EBV. Our findings provide scientific evidence for the traditional use of L. crustacea for its antiviral effects.
Collapse
Affiliation(s)
- Yu-Chi Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 807, Kaohsiung, Taiwan; Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary
| | - Judit Hohmann
- Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary; Interdisciplinary Excellence Centre, University of Szeged, 6720, Szeged, Hungary; Interdisciplinary Centre of Natural Products, University of Szeged, 6720, Szeged, Hungary
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, 11566, Cairo, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, The German University in Cairo, 11835, Cairo, Egypt
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, 106, Taipei, Taiwan
| | - Balázs Dankó
- Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary
| | - Norbert Kúsz
- Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary
| | - Chi-Ting Hsieh
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
| | - Attila Hunyadi
- Department of Pharmacognosy, University of Szeged, 6720, Szeged, Hungary.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, 807, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, 804, Kaohsiung, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 112, Taipei, Taiwan.
| |
Collapse
|
17
|
Hu Z, Silipo A, Li W, Molinaro A, Yu B. Synthesis of Forsythenethoside A, a Neuroprotective Macrocyclic Phenylethanoid Glycoside, and NMR Analysis of Conformers. J Org Chem 2019; 84:13733-13743. [DOI: 10.1021/acs.joc.9b01956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhifei Hu
- School of Physical Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Napoli, Italy
| | - Wei Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, China
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 4, 80126 Napoli, Italy
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
18
|
Antihypertensive activity of diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate: A continuation study in L-NAME treated wistar rats. Eur J Pharmacol 2019; 858:172482. [PMID: 31233749 DOI: 10.1016/j.ejphar.2019.172482] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 11/23/2022]
Abstract
In the present study, we report that neolignan1 (Diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate) relaxes the superior mesenteric artery in a concentration dependent manner (pD2 value 5.392 ± 0.04; n = 8 for endothelium intact and 5.204 ± 0.03; n = 8 for endothelium denuded mesenteric rings, respectively). The relaxation response of neolignan1 was found to be endothelium independent and sensitive to 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-on (ODQ; 1 μM) and tetraethyl ammonium (TEA; 1 mM). In-silico studies showed good LibDock score (92.66) of neolignan1 with BKCa channel and are in well corroboration with ex-vivo study. Further, neolignan1 significantly decreased the systolic blood pressure, diastolic blood pressure and mean arterial pressure in the Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 50 mg/kg) treated Wistar rats at the dose of 30 and 100 mg/kg given once orally for 15 days. In addition, neolignan1 is well tolerated up to 100 mg/kg when given as a repeated dose, once orally for 28 days in Swiss albino mice. Neolignan1 was well absorbed from oral route, reached peak at 4 h and eliminated below detection level by 12 h after administration. Our present study concludes that neolignan1 produced relaxation in superior mesenteric artery by opening of BKCa channel and produced significant antihypertensive activity in L-NAME treated Wistar rats and was well tolerated by the experimental animal.
Collapse
|
19
|
Saidi I, Waffo-Téguo P, Ayeb-Zakhama AEL, Harzallah-Skhiri F, Marchal A, Ben Jannet H. Phytochemical study of the trunk bark of Citharexylum spinosum L. growing in Tunisia: Isolation and structure elucidation of iridoid glycosides. PHYTOCHEMISTRY 2018; 146:47-55. [PMID: 29223063 DOI: 10.1016/j.phytochem.2017.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/04/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
A phytochemical investigation of the trunk bark ethyl acetate extract of Citharexylum spinosum L. has led to the isolation of four previously undescribed iridoid glycosides, tunispinosides A-D, and five known phenylethanoid glycosides, verbascoside, leucosceptoside A, martynoside, isoverbascoside and plantainoside C, together with 4-hydroxy-2,6-dimethoxyphenyl 6'-O-vanilloyl-β-D-glucopyranoside, two 8,3'-neolignan glycosides, plucheosides D1-D2, coniferyl aldehyde, vanillic acid, syringic acid, ferulic acid and tyrosol. All compounds were isolated for the first time from C. spinosum. Their isolation was carried out using silica gel column and high performance liquid chromatography (HPLC). Structures were established by spectroscopic means including 1D and 2D NMR experiments, and spectrometric ESI-HRMS analysis.
Collapse
Affiliation(s)
- Ilyes Saidi
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia
| | - Pierre Waffo-Téguo
- Univ. de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, 210 chemin de leysotte, CS50008, 33882 Villenave d'Ornon, France; INRA, ISVV, USC 1366 Œnologie, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France.
| | - Asma E L Ayeb-Zakhama
- Université de Monastir, Laboratoire de Bioressources: Biologie Intégrative & Valorisation, Institut Supérieur de Biotechnologie de Monastir, Avenue Tahar Haddad, 5000 Monastir, Tunisia
| | - Fethia Harzallah-Skhiri
- Université de Monastir, Laboratoire de Bioressources: Biologie Intégrative & Valorisation, Institut Supérieur de Biotechnologie de Monastir, Avenue Tahar Haddad, 5000 Monastir, Tunisia
| | - Axel Marchal
- Univ. de Bordeaux, ISVV, EA 4577, Unité de recherche Œnologie, 210 chemin de leysotte, CS50008, 33882 Villenave d'Ornon, France; INRA, ISVV, USC 1366 Œnologie, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Hichem Ben Jannet
- Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11ES39), Equipe: Chimie Médicinale et Produits Naturels, Faculté des Sciences de Monastir, Université de Monastir, Avenue de l'environnement, 5019 Monastir, Tunisia.
| |
Collapse
|
20
|
Konrádová D, Kozubíková H, Doležal K, Pospíšil J. Microwave-Assisted Synthesis of Phenylpropanoids and Coumarins: Total Synthesis of Osthol. European J Org Chem 2017. [DOI: 10.1002/ejoc.201701021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Daniela Konrádová
- Laboratory of Growth Regulators; Palacký University & Institute of Experimental Botany AS CR; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Hana Kozubíková
- Department of Chemical Biology and Genetics; Centre of the Region Haná for Biotechnological and Agricultural Research; Faculty of Science; Palacký University; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Karel Doležal
- Laboratory of Growth Regulators; Palacký University & Institute of Experimental Botany AS CR; Šlechtitelů 27 78371 Olomouc Czech Republic
- Department of Chemical Biology and Genetics; Centre of the Region Haná for Biotechnological and Agricultural Research; Faculty of Science; Palacký University; Šlechtitelů 27 78371 Olomouc Czech Republic
| | - Jiří Pospíšil
- Laboratory of Growth Regulators; Palacký University & Institute of Experimental Botany AS CR; Šlechtitelů 27 78371 Olomouc Czech Republic
- Department of Chemical Biology and Genetics; Centre of the Region Haná for Biotechnological and Agricultural Research; Faculty of Science; Palacký University; Šlechtitelů 27 78371 Olomouc Czech Republic
| |
Collapse
|
21
|
Lao K, Sun J, Wang C, Lyu W, Zhou B, Zhao R, Xu Q, You Q, Xiang H. Design, synthesis and biological evaluation of novel androst-3,5-diene-3-carboxylic acid derivatives as inhibitors of 5α-reductase type 1 and 2. Steroids 2017; 124:29-34. [PMID: 28549802 DOI: 10.1016/j.steroids.2017.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/12/2017] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
Abstract
5α-Reductase is a key enzyme responsible for dihydrotestosterone biosynthesis and has been recognized as an important target for discovering new drugs against benign prostatic hyperplasia (BPH). In this study, a series of novel steroidal androst-3,5-diene-3-carboxylic acids have been designed and synthesized. Biological evaluations were performed on their 5α-reductase inhibitory activities by both in vitro enzyme inhibition assay and in vivo by prostate weighing method. Results showed that most of them displayed excellent 5α-reductase inhibitory potency. Detailed evaluation indicated that most of the compounds displayed slightly higher inhibition potency towards type 2 isozyme. Among all the compounds, 16a was found to be the most potential inhibitor with the IC50 of 0.25μM and 0.13μM against type 1 and 2 isozymes respectively. In vivo 5a-reductase inhibitory evaluation of 16a also showed a more significant reduction effect (p<0.001) in rat prostate weight than epristeride. Furthermore, the results of in silico ADME study indicated that compound 16a exhibited good pharmacokinetic properties. Thus, 16a could serve as promising lead candidates for further study.
Collapse
Affiliation(s)
- Kejing Lao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Jie Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Chong Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Weiting Lyu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Boshen Zhou
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ruheng Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qian Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
22
|
Singh J, Singh R, Gupta P, Rai S, Ganesher A, Badrinarayan P, Sastry GN, Konwar R, Panda G. Targeting progesterone metabolism in breast cancer with l-proline derived new 14-azasteroids. Bioorg Med Chem 2017; 25:4452-4463. [PMID: 28693914 DOI: 10.1016/j.bmc.2017.06.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/05/2017] [Accepted: 06/17/2017] [Indexed: 02/08/2023]
Abstract
Breast cancer cell proliferation is promoted by a variety of mitogenic signals. Classically estrogen is considered as most predominant mitogenic signal in hormone-dependent breast cancer and progesterone is primarily considered to have protective effect. However, it is suggested that some progesterone metabolite may promote breast cancer and progesterone metabolites like 5α-pregnane and 4-pregnene could serve as regulators of estrogen-responsiveness of breast cancer cells. Here, we estimated the potential of alternate targeting of breast cancer via progesterone signalling. l-Proline derived novel 14-azasteroid compounds were screened against MCF-7 and MDA-MB-231 cell lines using MTT assay. In silico studies, cell cycle, Annexin-V-FITC/PI, JC-1 mitochondrial assay, ROS analysis were performed to analyse the impact of hit compound 3b on breast cancer cells. Further, we analysed the impact of hit 3b on the progesterone, its metabolites and enzymes responsible for the conversion of progesterone and its metabolites using ELISA. Data suggests that compound 3b binds and down regulates of 5α-reductase by specifically inhibiting production of progesterone metabolites that are capable of promoting breast cancer proliferation, epithelial mesenchymal transition and migration. This study establishes the proof of concept and generation of new leads for additional targeting of breast cancer.
Collapse
Affiliation(s)
- Jyotsana Singh
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ritesh Singh
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Preeti Gupta
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Smita Rai
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Asha Ganesher
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Preethi Badrinarayan
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - G Narahari Sastry
- Centre for Molecular Modelling, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Rituraj Konwar
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Chennai 600 113, India.
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific & Innovative Research (AcSIR), Chennai 600 113, India.
| |
Collapse
|
23
|
Luo G, Muyaba M, Lyu W, Tang Z, Zhao R, Xu Q, You Q, Xiang H. Design, synthesis and biological evaluation of novel 3-substituted 4-anilino-coumarin derivatives as antitumor agents. Bioorg Med Chem Lett 2017; 27:867-874. [DOI: 10.1016/j.bmcl.2017.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/11/2023]
|
24
|
Diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate exhibits antihypertensive activity in rats through increase in intracellular cGMP level and blockade of calcium channels. Eur J Pharmacol 2017; 799:84-93. [PMID: 28159537 DOI: 10.1016/j.ejphar.2017.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/24/2022]
Abstract
We report here the antihypertensive and vasorelaxant potential of some steroidal and non-steroidal compounds identified through a library of compounds. All the novel analogues showed vasorelaxant potential in isolated rat aorta. The most potent lead neolignan1 (Diethyl-4,4'-dihydroxy-8,3'-neolign-7,7'-dien-9,9'-dionate) produced concentration dependent relaxation with [pD2 5.16±0.05; n=16 and Emax 96.97%±1.12%; n=16]. The neolignan1 relaxation is independent of endothelium and is sensitive to ODQ (1H-[1, 2, 4] oxadiazolo [4, 3-a] quinoxalin-1-one; a blocker of soluble guanylyl cyclase (sGC) which synthesizes cGMP (cyclic guanosine monophosphate)). ELISA analysis of treated arterial tissues showed concentration-dependent increase in cGMP level in treated tissues compared to control (2.03 and 7.16 fold of control at 10 and 30µM of neolignan1, respectively) and a synergistic increase in cGMP level by 26.66 fold compared to control when used in combination with sildenafil (10µM; a known inducer of cGMP level by selectively blocking cGMP specific phosphodiesterase 5). Our present study reports for the first time that neolignans produce relaxation in isolated rat aorta through increase in intracellular cGMP level. The ODQ resistant relaxation of neolignan1 is mediated by blockade of voltage dependent L-type calcium channel (VDCC) as observed in the experiment with CaCl2. Neolignan1 upon intravenous administration via tail vein in Spontaneously Hypertensive Rats (SHR) produced significant decrease in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP). The present study concludes that neolignan1 exhibited antihypertensive potential in rats through rise in intracellular cGMP and blockade of VDCC.
Collapse
|
25
|
Hanusch AL, de Oliveira GR, de Sabóia-Morais SMT, Machado RC, dos Anjos MM, Chen Chen L. Genotoxicity and Cytotoxicity Evaluation of the Neolignan Analogue 2-(4-Nitrophenoxy)-1Phenylethanone and its Protective Effect Against DNA Damage. PLoS One 2015; 10:e0142284. [PMID: 26554835 PMCID: PMC4640812 DOI: 10.1371/journal.pone.0142284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/19/2015] [Indexed: 11/30/2022] Open
Abstract
Neolignans are secondary metabolites found in various groups of Angiosperms. They belong to a class of natural compounds with great diversity of chemical structures and pharmacological activities. These compounds are formed by linking two phenylpropanoid units. Several compounds that have ability to prevent genetic damage have been isolated from plants, and can be used to prevent or delay the development of tumor cells. Genetic toxicology evaluation is widely used in risk assessment of new drugs in preclinical screening tests. In this study, we evaluated the genotoxicity and cytotoxicity of the neolignan analogue 2-(4-nitrophenoxy)-1-phenylethanone (4NF) and its protective effect against DNA damage using the mouse bone marrow micronucleus test and the comet assay in mouse peripheral blood. Our results showed that this neolignan analogue had no genotoxic activity and was able to reduce induced damage both in mouse bone marrow and peripheral blood. Although the neolignan analogue 4NF was cytotoxic, it reduced cyclophosphamide-induced cytotoxicity. In conclusion, it showed no genotoxic action, but exhibited cytotoxic, antigenotoxic, and anticytotoxic activities.
Collapse
Affiliation(s)
- Alex Lucas Hanusch
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
- * E-mail:
| | | | | | - Rafael Cosme Machado
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Lee Chen Chen
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
26
|
Tripathi S, Kumar A, Kumar BS, Negi AS, Sharma A. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers byin silicomolecular docking, molecular dynamics, and binding free energy calculations. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1074941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|