1
|
Abd-Rabo ZS, Serry AM, George RF. An overview of pyridazin-3(2 H)-one: a core for developing bioactive agents targeting cardiovascular diseases and cancer. Future Med Chem 2024; 16:1685-1703. [PMID: 39105606 PMCID: PMC11370926 DOI: 10.1080/17568919.2024.2379234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) and cancer are the top two leading causes of death globally. Vasodilators are commonly used to treat various CVDs. In cancer treatment, targeted anticancer agents have been developed to minimize side effects compared with traditional chemotherapy. Many hypertension patients are more prone to cancer, a case known as reverse cardio-oncology. This leads to the search for drugs with dual activity or repurposing strategy to discover new therapeutic uses for known drugs. Recently, medicinal chemists have shown great interest in synthesizing pyridazinone derivatives due to their significant biological activities in tackling these critical health challenges. This review will concentrate on pyridazin-3(2H)-one-containing compounds as vasodilators and anticancer agents, along with a brief overview of various methods for their synthesis.
Collapse
Affiliation(s)
- Zeinab S Abd-Rabo
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology & Information MTI, Cairo, 11571, Egypt
| | - Aya M Serry
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology & Information MTI, Cairo, 11571, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| |
Collapse
|
2
|
Lakhanpal G, Tiwari H, Shukla MK, Kumar D. In silico exploration of hypothetical proteins in Neisseria gonorrhoeae for identification of therapeutic targets. In Silico Pharmacol 2024; 12:10. [PMID: 38327876 PMCID: PMC10844189 DOI: 10.1007/s40203-023-00186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024] Open
Abstract
Neisseria gonorrhoeae, a World Health Organization (WHO) declared superbug and the second-most frequent cause of bacterial sexually transmitted infections worldwide is responsible for gonorrhea. Hypothetical proteins are gene products that are predicted to be encoded by a particular gene based on the DNA sequence, but their specific functions and characteristics have not been experimentally determined or verified. In the context of this research, annotating hypothetical proteins is crucial for identifying their potential as therapeutic targets. Without proper annotation, these proteins would remain vague, hindering efforts to understand their roles in disease. The methodology used aims to bridge this gap by employing algorithm-based tools and software to annotate hypothetical proteins and assess their suitability as therapeutic targets based on factors such as essentiality, virulence, subcellular localization, and druggability. Out of 716 N. gonorrhoeae hypothetical proteins reported in UniProt, assessment of crucial pathogenic factors, including essentiality, virulence, subcellular localization, and druggability, effectively filtered and prioritized the hypothetical proteins for further therapeutic exploration and lead to 5 proteins being chosen as targets. The molecular docking studies conducted identified 10 hits targeting the five targets. Conclusively, this study aided in identification of targets and hit compounds for therapeutic targeting of gonorrhea disease. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00186-w.
Collapse
Affiliation(s)
| | - Harshita Tiwari
- Drug Chemistry Research Centre, Kanadia Road, Indore, Madhya Pradesh 452003 India
| | - Monu Kumar Shukla
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173212 India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173212 India
| |
Collapse
|
3
|
Shinde Y, Pathan A, Chinnam S, Rathod G, Patil B, Dhangar M, Mathew B, Kim H, Mundada A, Kukreti N, Ahmad I, Patel H. Mycobacterial FtsZ and inhibitors: a promising target for the anti-tubercular drug development. Mol Divers 2023:10.1007/s11030-023-10759-8. [PMID: 38010605 DOI: 10.1007/s11030-023-10759-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
The emergence of multidrug-resistant tuberculosis (MDR-TB) strains has rendered many anti-TB drugs ineffective. Consequently, there is an urgent need to identify new drug targets against Mycobacterium tuberculosis (Mtb). Filament Forming Temperature Sensitive Gene Z (FtsZ), a member of the cytoskeletal protein family, plays a vital role in cell division by forming a cytokinetic ring at the cell's center and coordinating the division machinery. When FtsZ is depleted, cells are unable to divide and instead elongate into filamentous structures that eventually undergo lysis. Since the inactivation of FtsZ or alterations in its assembly impede the formation of the Z-ring and septum, FtsZ shows promise as a target for the development of anti-mycobacterial drugs. This review not only discusses the potential role of FtsZ as a promising pharmacological target for anti-tuberculosis therapies but also explores the structural and functional aspects of the mycobacterial protein FtsZ in cell division. Additionally, it reviews various inhibitors of Mtb FtsZ. By understanding the importance of FtsZ in cell division, researchers can explore strategies to disrupt its function, impeding the growth and proliferation of Mtb. Furthermore, the investigation of different inhibitors that target Mtb FtsZ expands the potential for developing effective treatments against tuberculosis.
Collapse
Affiliation(s)
- Yashodeep Shinde
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Asama Pathan
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Autonomous Institute, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Gajanan Rathod
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Mohali, Punjab, 160062, India
| | - Bhatu Patil
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Mayur Dhangar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 690525, India
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Anand Mundada
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University-Dehradun, Dehradun, Uttarakhand, 248002, India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Harun Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
4
|
Murase LS, Perez de Souza JV, Meneguello JE, Palomo CT, Fernandes Herculano Ramos Milaré ÁC, Negri M, Dias Siqueira VL, Demarchi IG, Vieira Teixeira JJ, Cardoso RF. Antibacterial and immunological properties of piperine evidenced by preclinical studies: a systematic review. Future Microbiol 2023; 18:1279-1299. [PMID: 37882762 DOI: 10.2217/fmb-2023-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/23/2023] [Indexed: 10/27/2023] Open
Abstract
Aim: To review in vitro, in vivo, and in silico studies examining the antibacterial and immunomodulatory properties of piperine (PPN). Methods: This systematic review followed PRISMA guidelines, and five databases were searched. Results: A total of 40 articles were included in this study. Six aspects of PPN activity were identified, including antibacterial spectrum, association with antibiotics, efflux pump inhibition, biofilm effects, protein target binding, and modulation of immune functions/virulence factors. Most studies focused on Mycobacterium spp. and Staphylococcus aureus. Cell lineages and in vivo models were employed to study PPN antibacterial effects. Conclusion: We highlight PPN as a potential adjuvant in the treatment of bacterial infections. PPN possesses several antibacterial properties that need further exploration to determine the mechanisms behind its pharmacological activity.
Collapse
Affiliation(s)
- Letícia Sayuri Murase
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | - João Vítor Perez de Souza
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Jean Eduardo Meneguello
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Carolina Trevisolli Palomo
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
| | | | - Melyssa Negri
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Vera Lúcia Dias Siqueira
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Izabel Galhardo Demarchi
- Department of Clinical Analysis, Federal University of Santa Catarina, Florianopólis, Santa Catarina, 88040-900, Brazil
| | - Jorge Juarez Vieira Teixeira
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringa, Maringá, Paraná, 87020-900, Brazil
- Postgraduate Program in Biosciences and Physiopathology, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Paraná, 87020-900, Brazil
| |
Collapse
|
5
|
A Comparative Study of the Inhibitory Action of Berberine Derivatives on the Recombinant Protein FtsZ of E. coli. Int J Mol Sci 2023; 24:ijms24065674. [PMID: 36982749 PMCID: PMC10057996 DOI: 10.3390/ijms24065674] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Medicinal plants belonging to the genus Berberis may be considered an interesting source of drugs to counteract the problem of antimicrobial multiresistance. The important properties associated with this genus are mainly due to the presence of berberine, an alkaloid with a benzyltetrahydroisoquinoline structure. Berberine is active against both Gram-negative and Gram-positive bacteria, influencing DNA duplication, RNA transcription, protein synthesis, and the integrity of the cell surface structure. Countless studies have shown the enhancement of these beneficial effects following the synthesis of different berberine analogues. Recently, a possible interaction between berberine derivatives and the FtsZ protein was predicted through molecular docking simulations. FtsZ is a highly conserved protein essential for the first step of cell division in bacteria. The importance of FtsZ for the growth of numerous bacterial species and its high conservation make it a perfect candidate for the development of broad-spectrum inhibitors. In this work, we investigate the inhibition mechanisms of the recombinant FtsZ of Escherichia coli by different N-arylmethyl benzodioxolethylamines as berberine simplified analogues appropriately designed to evaluate the effect of structural changes on the interaction with the enzyme. All the compounds determine the inhibition of FtsZ GTPase activity by different mechanisms. The tertiary amine 1c proved to be the best competitive inhibitor, as it causes a remarkable increase in FtsZ Km (at 40 μM) and a drastic reduction in its assembly capabilities. Moreover, a fluorescence spectroscopic analysis carried out on 1c demonstrated its strong interaction with FtsZ (Kd = 26.6 nM). The in vitro results were in agreement with docking simulation studies.
Collapse
|
6
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
7
|
Leng J, Zhao Y, Sheng P, Xia Y, Chen T, Zhao S, Xie S, Yan X, Wang X, Yin Y, Kong L. Discovery of Novel N-Heterocyclic-Fused Deoxypodophyllotoxin Analogues as Tubulin Polymerization Inhibitors Targeting the Colchicine-Binding Site for Cancer Treatment. J Med Chem 2022; 65:16774-16800. [PMID: 36471625 DOI: 10.1021/acs.jmedchem.2c01595] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Natural products are a major source of anticancer agents and play critical roles in anticancer drug development. Inspired by the complexity-to-diversity strategy, novel deoxypodophyllotoxin (DPT) analogues were designed and synthesized. Among them, compound C3 exhibited the potent antiproliferative activity against four human cancer cell lines with IC50 values in the low nanomolar range. Additionally, it showed marked activity against paclitaxel-resistant MCF-7 cells and A549 cells. Moreover, compound C3 can inhibit tubulin polymerization by targeting the colchicine-binding site of tubulin. Further study revealed that compound C3 could arrest cancer cells in the G2/M phase and disrupt the angiogenesis in human umbilical vein endothelial cells. Meanwhile, C3 remarkably inhibited cancer cell motility and migration, as well as considerably inhibited tumor growth in MCF-7 and MCF-7/TxR xenograft model without obvious toxicity. Collectively, these results indicated that compound C3 may be a promising tubulin polymerization inhibitor development for cancer treatment.
Collapse
Affiliation(s)
- Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yongjun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Sheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yuanzheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tingting Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiangyu Yan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xiaobing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
8
|
Li Y, Du YF, Gao F, Xu JB, Zheng LL, Liu G, Lei Y. Taccalonolides: Structure, semi-synthesis, and biological activity. Front Pharmacol 2022; 13:968061. [PMID: 36034793 PMCID: PMC9407980 DOI: 10.3389/fphar.2022.968061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Microtubules are the fundamental part of the cell cytoskeleton intimately involving in cell proliferation and are superb targets in clinical cancer therapy today. Microtubule stabilizers have become one of the effectively main agents in the last decades for the treatment of diverse cancers. Taccalonolides, the highly oxygenated pentacyclic steroids isolated from the genus of Tacca, are considered a class of novel microtubule-stabilizing agents. Taccalonolides not only possess a similar microtubule-stabilizing activity as the famous drug paclitaxel but also reverse the multi-drug resistance of paclitaxel and epothilone in cellular and animal models. Taccalonolides have captured numerous attention in the field of medicinal chemistry due to their variety of structures, unique mechanism of action, and low toxicity. This review focuses on the structural diversity, semi-synthesis, modification, and pharmacological activities of taccalonolides, providing bright thoughts for the discovery of microtubule-stabilizing drugs.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacy, The First Afflicted Hospital of Chengdu Medical College, Chengdu, China
| | - Yu-Feng Du
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Feng Gao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Jin-Bu Xu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Afflicted Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Ling-Li Zheng, ; Gang Liu, ; Yu Lei,
| | - Gang Liu
- Department of Pharmacy, The First Afflicted Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Ling-Li Zheng, ; Gang Liu, ; Yu Lei,
| | - Yu Lei
- Department of Pharmacy, The First Afflicted Hospital of Chengdu Medical College, Chengdu, China
- *Correspondence: Ling-Li Zheng, ; Gang Liu, ; Yu Lei,
| |
Collapse
|
9
|
Wang C, Chen L, Sun Y, Guo W, Taouil AK, Ojima I. Design, synthesis and SAR study of Fluorine-containing 3rd-generation taxoids. Bioorg Chem 2021; 119:105578. [PMID: 34979464 DOI: 10.1016/j.bioorg.2021.105578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/29/2022]
Abstract
It has been shown that the incorporation of fluorine or organofluorine groups into pharmaceutical and agricultural drugs often induces desirable pharmacological properties through unique protein-drug interactions involving fluorine. We have reported separately remarkable effects of the 2,2-difluorovinyl (DFV) group at the C3' position, as well as those of the CF3O and CHF2O groups at the 3-position of the C2-benzoyl moiety of the 2nd- and 3rd-generation taxoids on their potency and pharmacological properties. Thus, it was very natural for us to investigate the combination of these two modifications in the 3rd-generation taxoids and to find out whether these two modifications are cooperative at the binding site in the β-tubulin or not, as well as to see how these effects are reflected in the biological activities of the new 3rd-generation DFV-taxoids. Accordingly, we designed, synthesized and fully characterized 14 new 3rd-generation DFV-taxoids. These new DFV-taxoids exhibited remarkable cytotoxicity against human breast, lung, colon, pancreatic and prostate cancer cell lines. All of these new DFV-taxoids exhibited subnanomolar IC50 values against drug-sensitive cell lines, A549, HT29, Vcap and PC3, as well as CFPAC-1. All of the novel DFV-taxoids exhibited 2-4 orders of magnitude greater potency against extremely drug-resistant cancer cell lines, LCC6-MDR and DLD-1, as compared to paclitaxel, indicating that these new DFV-taxoids can overcome MDR caused by the overexpression of Pgp and other ABC cassette transporters. Dose-response (kill) curve analysis of the new DFV-taxoids in LCC6-MDR and DLD-1 cell lines revealed highly impressive profiles of several new DFV-taxoids. The cooperative effects of the combination of the 3'-DFV group and 3-CF3O/CHF2O-benzoyl moiety at the C2 position were investigated in detail by molecular docking analysis. We found that both the 3'-DFV moiety and the 3-CF3O/3-CHF2O group of the C2-benzoate moiety are nicely accommodated to the deep hydrophobic pocket of the paclitaxel/taxoid binding site in the β-tubulin, enabling an enhanced binding mode through unique attractive interactions between fluorine/CF3O/CHF2O and the protein beyond those of paclitaxel and new-generation taxoids without bearing organofluorine groups, which are reflected in the remarkable potency of the new 3rd-generation DFV-taxoids.
Collapse
Affiliation(s)
- Changwei Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA; Drug Discovery Pipeline, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| | - Lei Chen
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Yi Sun
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Wanrong Guo
- Drug Discovery Pipeline, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China
| | - Adam K Taouil
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794-3400, USA.
| |
Collapse
|
10
|
Cao S, Li W, Li C, Wang G, Jiang W, Sun H, Deng Y, Chen H. The CHY-Type Zinc Finger Protein FgChy1 Regulates Polarized Growth, Pathogenicity, and Microtubule Assembly in Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:362-375. [PMID: 33369502 DOI: 10.1094/mpmi-07-20-0206-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microtubules (MTs), as transport tracks, play important roles in hyphal-tip growth in filamentous fungi, but MT-associated proteins involved in polarized growth remain unknown. Here, we found that one novel zinc finger protein, FgChy1, is required for MT morphology and polarized growth in Fusarium graminearum. The Fgchy1 mutant presented curved and directionless growth of hyphae. Importantly, the conidia and germ tubes of the Fgchy1 mutant exhibited badly damaged and less-organized beta-tubulin cytoskeletons. Compared with the wild type, the Fgchy1 mutant lost the ability to maintain polarity and was also more sensitive to the anti-MT drugs carbendazim and nocodazole, likely due to the impaired MT cytoskeleton. Indeed, the hyphae of the wild type treated with nocodazole exhibited a morphology consistent with that of the Fgchy1 mutant. Interestingly, the disruption of FgChy1 resulted in the off-center localization of actin patches and the polarity-related polarisome protein FgSpa2 from the hyphal-tip axis. A similar defect in FgSpa2 localization was also observed in the nocodazole-treated wild-type strain. In addition, FgChy1 is also required for conidiogenesis, septation, sexual reproduction, pathogenicity, and deoxynivalenol production. Overall, this study provides the first demonstrations of the functions of the novel zinc finger protein FgChy1 in polarized growth, development, and virulence in filamentous fungi.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Shulin Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Wei Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Chaohui Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiang Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou 434025, Hubei, China
| | - Haiyan Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Yuanyu Deng
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
| | - Huaigu Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, Jiangsu, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
| |
Collapse
|
11
|
Chen CC, Zhang YQ, Zhong DX, Huang XH, Zhang YH, Jiang WH, Li M, Chen Q, Wong WL, Lu YJ. The study of 9,10-dihydroacridine derivatives as a new and effective molecular scaffold for antibacterial agent development. Biochem Biophys Res Commun 2021; 546:40-45. [PMID: 33561747 DOI: 10.1016/j.bbrc.2021.01.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
The emergence of worldwide spreading drug-resistant bacteria has been a serious threat to public health during the past decades. The development of new and effective antibacterial agents to address this critical issue is an urgent action. In the present study, we investigated the antibacterial activity of two 9,10-dihydroacridine derivatives and their mechanism. Both compounds were found possessing strong antibacterial activity against some selected Gram-positive bacteria including MRSA, VISA and VRE. The biological study suggests that the compounds promoted FtsZ polymerization and also disrupted Z-ring formation at the dividing site and consequently, the bacterial cell division is interrupted and causing cell death.
Collapse
Affiliation(s)
- Cui-Cui Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yi-Qi Zhang
- College of Marine Science, Shandong University, Weihai, 264209, PR China
| | - Dong-Xiao Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yi-Han Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Wen-Hao Jiang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Ming Li
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, PR China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, PR China.
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, PR China.
| |
Collapse
|
12
|
Design, Synthesis, Evaluation and Molecular Docking Studies of Novel Triazole Linked 1,4‐Dihydropyridine‐isatin Scaffolds as Potent Anticancer Agents. ChemistrySelect 2021. [DOI: 10.1002/slct.202003948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Design, synthesis, and biological evaluation of new series of pyrrol-2(3H)-one and pyridazin-3(2H)-one derivatives as tubulin polymerization inhibitors. Bioorg Chem 2020; 107:104522. [PMID: 33317838 DOI: 10.1016/j.bioorg.2020.104522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/17/2022]
Abstract
A potential microtubule destabilizing series of new thirty-five Pyrrol-2-one, Pyridazin-3(2H)-one and Pyridazin-3(2H)-one/oxime derivatives has been synthesized and tested for their antiproliferative activity against a panel of 60 human cancer cell lines. Compounds IVc, IVg and IVf showed a broad spectrum of growth inhibitory activity against cancer cell lines representing renal, cancer of lung, colon, central nervous system, ovary, and kidney. Among them, compound IVg was found to have broad spectrum anti-tumor activity against the tested nine tumor subpanels with selectivity ratios ranging between 0.21 and 3.77 at the GI50 level. In vitro assaying revealed tubulin polymerization inhibition by all active compounds IVc, IVg and IVf. The results of the docking study revealed nice fitting of compounds IVc, IVf, and IVg into CA-4 binding site in tubulin. The three compounds exhibited high binding affinities (ΔGb = -12.49 to -12.99 kcal/mol) toward tubulin compared to CA-4 (-8.87 kcal/mol). Investigation of the binding modes of the three compounds IVc, IVf, and IVg revealed that they interacted mainly hydrophobically with tubulin and similar binding orientations to that of CA-4. These observations suggest that tubulin is a possible target for these compounds.
Collapse
|
14
|
Dorababu A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch Pharm (Weinheim) 2020; 354:e2000232. [PMID: 33210348 DOI: 10.1002/ardp.202000232] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Accepted: 10/31/2020] [Indexed: 12/22/2022]
Abstract
Although most of the heterocycles have been reported to possess a significant pharmacological activity, only a few of them, namely quinoline derivatives, have exhibited the finest biological activities. Despite the few medicinal properties of the plain quinoline molecule, its derivatives exhibit diverse pharmacological properties such as anticancer, anti-inflammatory, antibacterial, antiviral, antifungal, antiprotozoal activities, and so on. The potential antimicrobial properties of the quinoline derivatives are evident from the decades of research on these derivatives. Owing to limitations like drug resistance, high cost, severe side effects, and less bioavailability of previously synthesized antimicrobial agents, these drugs have become obsolete in recent years. Hence, the design of more efficient antimicrobial drugs must be given topmost priority. A breakthrough in drug discovery is a must to prevent malevolent microbial diseases. Addressing all these issues, researchers have been continuously contributing to antimicrobial drug discovery. Herein, a short description of the pharmacology of antimicrobial agents such as antibacterials and antifungals synthesized recently is provided. The versatile derivatization of the quinoline moiety leading to significant antimicrobial potencies is discussed, considering the structure-activity relationship.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry, SRMPP Govt. First Grade College, Huvinahadagali, Karnataka, India
| |
Collapse
|
15
|
Han H, Wang Z, Li T, Teng D, Mao R, Hao Y, Yang N, Wang X, Wang J. Recent progress of bacterial FtsZ inhibitors with a focus on peptides. FEBS J 2020; 288:1091-1106. [PMID: 32681661 DOI: 10.1111/febs.15489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/27/2020] [Accepted: 07/08/2020] [Indexed: 12/23/2022]
Abstract
In recent years, the rise of antibiotic resistance has become a primary health problem. With the emergence of bacterial resistance, the need to explore and develop novel antibacterial drugs has become increasingly urgent. Filamentous temperature-sensitive mutant Z (FtsZ), a crucial cell division protein of bacteria, has become a vital antibacterial target. FtsZ is a filamentous GTPase; it is highly conserved in bacteria and shares less than 20% sequence identity with the eukaryotic cytoskeleton protein tubulin, indicating that FtsZ-targeting antibacterial agents may have a low cytotoxicity toward eukaryotes. FtsZ can form a dynamic Z-ring in the center of the cell resulting in cell division. Furthermore, disturbance in the assembly of FtsZ may affect cellular dynamics and bacterial cell survival, making it a fascinating target for drug development. This review focuses on the recent discovery of FtsZ inhibitors, including peptides, natural products, and other synthetic small molecules, as well as their mechanism of action, which could facilitate the discovery of novel FtsZ-targeting clinical drugs in the future.
Collapse
Affiliation(s)
- Huihui Han
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhenlong Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Na Yang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
16
|
Moshafi MH, Ghasemshirazi S, Abiri A. The art of suicidal molecular seduction for targeting drug resistance. Med Hypotheses 2020; 140:109676. [PMID: 32203818 DOI: 10.1016/j.mehy.2020.109676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 12/11/2022]
Abstract
The development of drug resistance is one of the most significant challenges of the current century in the pharmaceutical industry. Superinfections, cancer chemoresistance, and resistance observed in many non-infectious diseases are nullifying the efforts and monetary supplies, put in the advent of new drug molecules. Millions of people die because of this drug resistance developed gradually through extensive use of the drugs. Inherently, some drugs are less prone to become ineffective by drug resistance than others. Covalent inhibitors bind to their targets via a biologically permanent bound with their cognate receptor and therefore display more potent inhibiting characteristics. Suicide inhibitors or mechanism-based inhibitors are one of the covalent inhibitors, which require a pre-activation step by their targeting enzyme. This step accrues their selectivity and specificity with respect to other covalent inhibitors. After that pre-activation step, they produce an analogue of the transition state of the catalytic enzyme, which is practically incapable of dissociating from the enzyme. Suicide inhibitors, due to their high intrinsic affinity toward the related enzyme, are resistant to many mechanisms involved in the development of drug resistance and can be regarded as one of the enemies of this scientific hurdle. These inhibitors compete even with monoclonal antibodies in terms of their cost-effectiveness and efficacy.
Collapse
Affiliation(s)
- Mohammad Hassan Moshafi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeid Ghasemshirazi
- Department of Computer Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
17
|
Shao YY, Yin Y, Lian BP, Leng JF, Xia YZ, Kong LY. Synthesis and biological evaluation of novel shikonin-benzo[b]furan derivatives as tubulin polymerization inhibitors targeting the colchicine binding site. Eur J Med Chem 2020; 190:112105. [PMID: 32035399 DOI: 10.1016/j.ejmech.2020.112105] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022]
Abstract
A novel series of shikonin-benzo[b]furan derivatives were designed and synthesized as tubulin polymerization inhibitors, and their biological activities were evaluated. Most compounds revealed the comparable anti-proliferation activities against the cancer cell lines to that of shikonin and simultaneously low cytotoxicity to non-cancer cells. Among them, compound 6c displayed powerful anti-cancer activity with the IC50 value of 0.18 μM against HT29 cells, which was significantly better than that of the reference drugs shikonin and CA-4. What's more, 6c could inhibit tubulin polymerization and compete with [3H] colchicine in binding to tubulin. Further biological studies depicted that 6c can induce cell apoptosis and cell mitochondria depolarize, regulate the expression of apoptosis related proteins in HT29 cells. Besides, 6c actuated the HT29 cell cycle arrest at G2/M phase, and influenced the expression of the cell-cycle related protein. Moreover, 6c displayed potent inhibition on cell migration and tube formation that contributes to the antiangiogenesis. These results prompt us to consider 6c as a potential tubulin polymerization inhibitor and is worthy for further study.
Collapse
Affiliation(s)
- Yu-Ying Shao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Bao-Ping Lian
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Jia-Fu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Yuan-Zheng Xia
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, PR China.
| |
Collapse
|
18
|
Pal A, Saha BK, Saha J. Comparative in silico analysis of ftsZ gene from different bacteria reveals the preference for core set of codons in coding sequence structuring and secondary structural elements determination. PLoS One 2019; 14:e0219231. [PMID: 31841523 PMCID: PMC6913975 DOI: 10.1371/journal.pone.0219231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/28/2019] [Indexed: 11/19/2022] Open
Abstract
The deluge of sequence information in the recent times provide us with an excellent opportunity to compare organisms on a large genomic scale. In this study we have tried to decipher the variation in the gene organization and structuring of a vital bacterial gene called ftsZ which codes for an integral component of the bacterial cell division, the FtsZ protein. FtsZ is homologous to tubulin protein and has been found to be ubiquitous in eubacteria. FtsZ is showing increasing promise as a target for antibacterial drug discovery. Our study of ftsZ protein from 143 different bacterial species spanning a wider range of morphological and physiological type demonstrates that the ftsZ gene of about ninety three percent of the organisms show relatively biased codon usage profile and significant GC deviation from their genomic GC content. Comparative codon usage analysis of ftsZ and a core housekeeping gene rpoB demonstrated that codon usage pattern of ftsZ CDS is shaped by natural selection to a large extent and mimics that of a housekeeping gene. We have also detected a tendency among the different organisms to utilize a core set of codons in structuring the ftsZ coding sequence. We observed that the compositional frequency of the amino acid serine in the FtsZ protein appears to be a indicator of the bacterial lifestyle. Our meticulous analysis of the ftsZ gene linked with the corresponding FtsZ protein show that there is a bias towards the use of specific synonymous codons particularly in the helix and strand regions of the multi-domain FtsZ protein. Overall our findings suggest that in an indispensable and vital protein such as FtsZ, there is an inherent tendency to maintain form for optimized performance in spite of the extrinsic variability in coding features.
Collapse
Affiliation(s)
- Ayon Pal
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Barnan Kumar Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| | - Jayanti Saha
- Microbiology & Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
19
|
Thirupathi A, Shanmugavadivelu CM, Natarajan S. Fastidious Anatomization of Biota Procured Compounds on Cancer Drug Discovery. Curr Pharm Biotechnol 2019; 21:354-363. [PMID: 31778106 DOI: 10.2174/1389201020666191128145015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/20/2019] [Accepted: 11/20/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products are the rootstock for identifying new drugs since ancient times. In comparison with synthetic drugs, they have abounding beneficial effects in bestowing protection against many diseases, including cancer. Cancer has been observed as a major threat in recent decades, and its prevalence is expected to increase over the next decades. Also, current treatment methods in cancer therapy such as radiation therapy and chemotherapy cause severe adverse side effects among the cancer population. Therefore, it is exigent to find a remedy without any side effects. METHODS In recent years, research has focused on obtaining naturally derived products to encounter this complication. The current pace of investigations, such as gene identification and advancement in combinatorial chemistry, leads to the aberrant access to a wide range of new synthetic drugs. In fact, natural products act as templates in structure predictions and synthesis of new compounds with enhanced biological activities. RESULTS Recent developments in genomics have established the importance of polymorphism, which implies that patients require different drugs for their treatment. This demands the discovery of a large number of drugs, but limited sources restrict the pharmaceutical industry to overcome these major obstacles. The use of natural products and their semisynthetic and synthetic analogues could alleviate these problems. However, the lack of standardization in terms of developing methods for evaluating the chemical composition, efficacy, isolation and international approval is still a major limitation in this field. In the past few years, several drug-approval authorities, including the FDA and WHO have allowed using these naturally derived compounds in humans. CONCLUSION In this review, we described the use of some natural products from plant and marine sources in cancer treatment and shed some light on semi-synthetic and synthetic compounds derived from natural sources used in cancer therapy.
Collapse
Affiliation(s)
- Anand Thirupathi
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, Hebei Province, China
| | | | - Sampathkumar Natarajan
- Department of Chemistry, SSM Institute of Engineering and Technology, Dindigul, Tamil Nadu, India
| |
Collapse
|
20
|
King SA, Liu H, Wu X. Biomedical potential of mammalian spectraplakin proteins: Progress and prospect. Exp Biol Med (Maywood) 2019; 244:1313-1322. [PMID: 31398993 DOI: 10.1177/1535370219864920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cytoskeleton is an essential element of a eukaryotic cell which informs both form and function and ultimately has physiological consequences for the organism. Equally as important as the major cytoskeletal networks are crosslinkers which coordinate and regulate their activities. One such category of crosslinker is the spectraplakins, a family of giant, evolutionarily conserved crosslinking proteins with the rare ability to interact with each of the three major cytoskeletal networks. In particular, a mammalian spectraplakin isotype called MACF1 (microtubule actin crosslinking factor 1), also known as ACF7 (actin crosslinking factor 7), has been of particular interest in the years since its discovery; MACF1 has come under such scrutiny due to the mounting list of biological phenomena in which it has been implicated. This review is an overview of the current knowledge on the structure and function of the known spectraplakin isotypes with an emphasis on MACF1, recent studies on MACF1, and finally, an analysis of the potential of MACF1 to advance medicine. Impact statement Spectraplakins are a highly conserved group of proteins which have the rare ability to bind to each of the three major cytoskeletal networks. The mammalian spectraplakin MACF1/ACF7 has proven to be instrumental in many cellular processes (e.g. signaling and cell migration) since its identification and, as such, has been the focus of various research studies. This review is a synthesis of scientific reports on the structure, confirmed functions, and implicated roles of MACF1/ACF7 as of 2019. Based on what has been revealed thus far in terms of MACF1/ACF7’s role in complex pathologies such as metastatic cancers and inflammatory bowel disease, it appears that MACF1/ACF7 and the continued study thereof hold great potential to both enhance the design of future therapies for various diseases and vastly expand scientific understanding of organismal physiology as a whole.
Collapse
Affiliation(s)
- Sarah A King
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL 60637, USA
| | - Han Liu
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL 60637, USA
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
Pharmacophore based approach to screen and evaluate novel Mycobacterium cell division inhibitors targeting FtsZ – A modelling and experimental study. Eur J Pharm Sci 2019; 135:103-112. [DOI: 10.1016/j.ejps.2019.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/10/2019] [Accepted: 04/24/2019] [Indexed: 01/09/2023]
|
22
|
Ollinger J, Kumar A, Roberts DM, Bailey MA, Casey A, Parish T. A high-throughput whole cell screen to identify inhibitors of Mycobacterium tuberculosis. PLoS One 2019; 14:e0205479. [PMID: 30650074 PMCID: PMC6334966 DOI: 10.1371/journal.pone.0205479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
Tuberculosis is a disease of global importance for which novel drugs are urgently required. We developed a whole-cell phenotypic screen which can be used to identify inhibitors of Mycobacterium tuberculosis growth. We used recombinant strains of virulent M. tuberculosis which express far-red fluorescent reporters and used fluorescence to monitor growth in vitro. We optimized our high throughput assays using both 96-well and 384-well plates; both formats gave assays which met stringent reproducibility and robustness tests. We screened a compound set of 1105 chemically diverse compounds previously shown to be active against M. tuberculosis and identified primary hits which showed ≥ 90% growth inhibition. We ranked hits and identified three chemical classes of interest-the phenoxyalkylbenzamidazoles, the benzothiophene 1-1 dioxides, and the piperidinamines. These new compound classes may serve as starting points for the development of new series of inhibitors that prevent the growth of M. tuberculosis. This assay can be used for further screening, or could easily be adapted to other strains of M. tuberculosis.
Collapse
Affiliation(s)
- Juliane Ollinger
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Anuradha Kumar
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - David M. Roberts
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Mai A. Bailey
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Allen Casey
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Tanya Parish
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Bi F, Song D, Zhang N, Liu Z, Gu X, Hu C, Cai X, Venter H, Ma S. Design, synthesis and structure-based optimization of novel isoxazole-containing benzamide derivatives as FtsZ modulators. Eur J Med Chem 2018; 159:90-103. [DOI: 10.1016/j.ejmech.2018.09.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 11/27/2022]
|
24
|
Synthesis, screening and docking analysis of novel benzimidazolium compounds as potent anti microbial agents targeting FtsZ protein. Microb Pathog 2018; 124:258-265. [PMID: 30149132 DOI: 10.1016/j.micpath.2018.08.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/19/2018] [Accepted: 08/23/2018] [Indexed: 02/02/2023]
Abstract
The dominance of multi drug resistance in the clinically significant bacteria led to urgency in the development of new antibiotics with novel mechanism of action. Among the biochemical targets explored for selective toxicity, molecular mechanisms involving cell division remained focal point for novel antimicrobial drug discovery. For this purpose we have performed in-silico studies of FtsZ protein and obtained benzimidazolium compounds as potential hits. These molecules obtained in the dock results were synthesized via reacting benzimidazoles with appropriate benzyl halides. The structures of the synthesized compounds were confirmed by their 1H NMR, 13C NMR, IR and mass spectral data. These were evaluated for anti-microbial activity. Among the tested compounds B14, B15 and B20 have shown highest activity (MIC 5 μg/mL) against Staphylococcus aureus, Macrococcus caseolyticus, Escherichia coli and Pseudomonas aeruginosa. . Microscopic examination of drug-treated cultures of Staphylococcus aureus and Pseudomonas aeruginosa showed rod-shaped filamentous growth of the dividing cells, which is a characteristic feature of FtsZ inhibition.
Collapse
|
25
|
Kırca K, Kutlutürkan S. Symptoms Experience and Quality of Life in The Patients With Breast Cancer Receiving The Taxane Class of Drugs. Eur J Breast Health 2018; 14:148-155. [PMID: 30123880 DOI: 10.5152/ejbh.2018.3785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/14/2018] [Indexed: 11/22/2022]
Abstract
Objective The aim of this study is to evaluate the symptoms experience and quality of life in patients with breast cancer receiving the taxane class of drugs. Materials and Methods This study was performed between November 2015 March 2016 in a chemotherapy unit of a university hospital with 48 patients, who agreed to participate in the study. The Memorial Symptom Rating Score (MSAS), Socio-demographic and Clinical Features Form, European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) and European Organization for Research and Treatment of Cancer Quality of Life Questionnaire-Breast (EORTC QLQ- BR23) measures specific to breast cancer were used to obtain data. Results The average age of the patients was 45.65. The majority of patients were treated with the paclitaxel/paclitaxel+trastuzumab treatment protocol (60.42%), and more than half (54.16%) of these patients were on 5 or 6 treatments. The symptoms patients experienced the most commonly included being sensitive, weakness or energy loss and pain. The symptoms they experienced severely were included fatigue and energy loss and being sensitive. The most distressing symptoms were pain, worry, numbness in hands and feet. The overall well-being score of the patients as per the quality of life findings was 46.18±11.66. While the lowest score for the functional scales was in the social function subscale (66.32±15.18), the highest score for the symptom scales was in the pain subscale (42.01±15.37). The lowest score for the EORTC QLQ-BR23 scales was in the sexual life subscale (20.83±20.19); the highest score was in the body appearance subscale (65.8±23.96). Conclusion The results of the study are thought to be helpful for the oncology nurses in evaluating the patients in all aspects and in determining priorities for care.
Collapse
Affiliation(s)
- Kamile Kırca
- Department of Nursing, Kırıkkale University School of Health Sciences, Kırıkkale, Turkey
| | - Sevinç Kutlutürkan
- Department of Nursing, Gazi University School of Health Sciences, Ankara, Turkey
| |
Collapse
|
26
|
Fang Z, Ban L, Li Y, Yuan W, Liu Z, Liu T, Li X, Wong KY, Lu Y, Sun N, Yao X. A quinoline-based FtsZ inhibitor for the study of antimicrobial activity and synergistic effects with β-lactam antibiotics. J Pharmacol Sci 2018; 137:283-289. [DOI: 10.1016/j.jphs.2018.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022] Open
|
27
|
Abstract
We report three high-resolution structures of microtubules in different nucleotide states—GMPCPP, GDP, and GTPγS—in the absence of any binding proteins, allowing us to separate the effects of nucleotide- and microtubule (MT)-associated protein (MAPs) binding on MT structure. End-binding (EB) proteins can bind and induce partial lattice compaction of a preformed GMPCPP-bound MT, a lattice type that is far from EBs’ ideal binding platform. We propose a model in which the MT lattice serves as a platform that integrates internal tubulin signals, such as nucleotide state, with outside signals, such as binding of MAPs. These global lattice rearrangements in turn affect the affinity of other MT partners and result in the exquisite regulation of the MT dynamics. Microtubules (MTs) are polymers assembled from αβ-tubulin heterodimers that display the hallmark behavior of dynamic instability. MT dynamics are driven by GTP hydrolysis within the MT lattice, and are highly regulated by a number of MT-associated proteins (MAPs). How MAPs affect MTs is still not fully understood, partly due to a lack of high-resolution structural data on undecorated MTs, which need to serve as a baseline for further comparisons. Here we report three structures of MTs in different nucleotide states (GMPCPP, GDP, and GTPγS) at near-atomic resolution and in the absence of any binding proteins. These structures allowed us to differentiate the effects of nucleotide state versus MAP binding on MT structure. Kinesin binding has a small effect on the extended, GMPCPP-bound lattice, but hardly affects the compacted GDP-MT lattice, while binding of end-binding (EB) proteins can induce lattice compaction (together with lattice twist) in MTs that were initially in an extended and more stable state. We propose a MT lattice-centric model in which the MT lattice serves as a platform that integrates internal tubulin signals, such as nucleotide state, with outside signals, such as binding of MAPs or mechanical forces, resulting in global lattice rearrangements that in turn affect the affinity of other MT partners and result in the exquisite regulation of MT dynamics.
Collapse
|
28
|
Identification of TB-E12 as a novel FtsZ inhibitor with anti-tuberculosis activity. Tuberculosis (Edinb) 2018; 110:79-85. [DOI: 10.1016/j.tube.2018.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 01/15/2023]
|
29
|
Ojima I, Wang X, Jing Y, Wang C. Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery. JOURNAL OF NATURAL PRODUCTS 2018; 81:703-721. [PMID: 29468872 PMCID: PMC5869464 DOI: 10.1021/acs.jnatprod.7b01012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 05/28/2023]
Abstract
Paclitaxel and docetaxel are among the most widely used chemotherapeutic drugs against various types of cancer. However, these drugs cause undesirable side effects as well as drug resistance. Therefore, it is essential to develop next-generation taxoid anticancer agents with better pharmacological properties and improved activity especially against drug-resistant and metastatic cancers. The SAR studies by the authors have led to the development of numerous highly potent novel second- and third-generation taxoids with systematic modifications at the C-2, C-10, and C-3' positions. The third-generation taxoids showed virtually no difference in potency against drug-resistant and drug-sensitive cell lines. Some of the next-generation taxoids also exhibited excellent potency against cancer stem cells. This account summarizes concisely investigations into taxoids over 25 years based on a strong quest for the discovery and development of efficacious next-generation taxoids. Discussed herein are SAR studies on different types of taxoids, a common pharmacophore proposal for microtubule-stabilizing anticancer agents and its interesting history, the identification of the paclitaxel binding site and its bioactive conformation, characteristics of the next-generation taxoids in cancer cell biology, including new aspects of their mechanism of action, and the highly efficacious tumor-targeted drug delivery of potent next-generation taxoids.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Xin Wang
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Yunrong Jing
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Changwei Wang
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
30
|
Bi F, Ji S, Venter H, Liu J, Semple SJ, Ma S. Substitution of terminal amide with 1H-1,2,3-triazole: Identification of unexpected class of potent antibacterial agents. Bioorg Med Chem Lett 2018; 28:884-891. [PMID: 29433923 DOI: 10.1016/j.bmcl.2018.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/25/2017] [Accepted: 02/01/2018] [Indexed: 11/15/2022]
Abstract
3-Methoxybenzamide (3-MBA) derivatives have been identified as novel class of potent antibacterial agents targeting the bacterial cell division protein FtsZ. As one of isosteres for the amide group, 1,2,3-triazole can mimic the topological and electronic features of the amide, which has gained increasing attention in drug discovery. Based on these considerations, we prepared a series of 1H-1,2,3-triazole-containing 3-MBA analogues via isosteric replacement of the terminal amide with triazole, which had increased antibacterial activity. This study demonstrated the possibility of developing the 1H-1,2,3-triazole group as a terminal amide-mimetic element which was capable of both keeping and modulating amide-related bioactivity. Surprisingly, a different action mode of these new 1H-1,2,3-triazole-containing analogues was observed, which could open new opportunities for the development of antibacterial agents.
Collapse
Affiliation(s)
- Fangchao Bi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shengli Ji
- ReaLi Tide Biological Technology (Weihai) Co. Ltd., East Longhai Road & South Yangguang Road, Nanhai New District, Weihai 264207, China
| | - Henrietta Venter
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| | - Jingru Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Susan J Semple
- School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, GPO Box 2471, Adelaide 5001, Australia
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan 250012, China.
| |
Collapse
|
31
|
Lin HY, Han HW, Sun WX, Yang YS, Tang CY, Lu GH, Qi JL, Wang XM, Yang YH. Design and characterization of α -lipoic acyl shikonin ester twin drugs as tubulin and PDK1 dual inhibitors. Eur J Med Chem 2018; 144:137-150. [DOI: 10.1016/j.ejmech.2017.12.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
|
32
|
Chan KF, Sun N, Yan SC, Wong ILK, Lui HK, Cheung KC, Yuan J, Chan FY, Zheng Z, Chan EWC, Chen S, Leung YC, Chan TH, Wong KY. Efficient Synthesis of Amine-Linked 2,4,6-Trisubstituted Pyrimidines as a New Class of Bacterial FtsZ Inhibitors. ACS OMEGA 2017; 2:7281-7292. [PMID: 30023544 PMCID: PMC6044853 DOI: 10.1021/acsomega.7b00701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/12/2017] [Indexed: 06/08/2023]
Abstract
We have recently identified a new class of filamenting temperature-sensitive mutant Z (FtsZ)-interacting compounds that possess a 2,4,6-trisubstituted pyrimidine-quinuclidine scaffold with moderate antibacterial activity. Employing this scaffold as a molecular template, a compound library of amine-linked 2,4,6-trisubstituted pyrimidines with 99 candidates was successfully established by employing an efficient convergent synthesis designed to explore their structure-activity relationship. The results of minimum inhibitory concentration (MIC) assay against Staphylococcus aureus strains and cytotoxicity assay against the mouse L929 cell line identified those compounds with potent antistaphylococcal properties (MIC ranges from 3 to 8 μg/mL) and some extent of cytotoxicity against normal cells (IC50 ranges from 6 to 27 μM). Importantly, three compounds also exhibited potent antibacterial activities against nine clinically isolated methicillin-resistant S. aureus (MRSA) strains. One of the compounds, 14av_amine16, exhibited low spontaneous frequency of resistance, low toxicity against Galleria mellonella larvae, and the ability to rescue G. mellonella larvae (20% survival rate at a dosage of 100 mg/kg) infected with a lethal dose of MRSA ATCC 43300 strain. Biological characterization of compound 14av_amine16 by saturation transfer difference NMR, light scattering assay, and guanosine triphosphatase hydrolysis assay with purified S. aureus FtsZ protein verified that it interacted with the FtsZ protein. Such a property of FtsZ inhibitors was further confirmed by observing iconic filamentous cell phenotype and mislocalization of the Z-ring formation of Bacillus subtilis. Taken together, these 2,4,6-trisubstituted pyrimidine derivatives represent a novel scaffold of S. aureus FtsZ inhibitors.
Collapse
Affiliation(s)
- Kin-Fai Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Ning Sun
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Siu-Cheong Yan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Iris L K Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Hok-Kiu Lui
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Kwan-Choi Cheung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jian Yuan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fung-Yi Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Zhiwei Zheng
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518057, China
| | - Edward W C Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Sheng Chen
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Shenzhen Key Laboratory for Food Biological Safety Control, Food Safety and Technology Research Centre, The Hong Kong PolyU Shenzhen Research Institute, Shenzhen 518057, China
| | - Yun-Chung Leung
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tak Hang Chan
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- Department of Chemistry, McGill University, Montreal, Quebec H3A 2K6, Canada
| | - Kwok-Yin Wong
- State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
33
|
Abstract
FtsZ, a homolog of tubulin, is found in almost all bacteria and archaea where it has a primary role in cytokinesis. Evidence for structural homology between FtsZ and tubulin came from their crystal structures and identification of the GTP box. Tubulin and FtsZ constitute a distinct family of GTPases and show striking similarities in many of their polymerization properties. The differences between them, more so, the complexities of microtubule dynamic behavior in comparison to that of FtsZ, indicate that the evolution to tubulin is attributable to the incorporation of the complex functionalities in higher organisms. FtsZ and microtubules function as polymers in cell division but their roles differ in the division process. The structural and partial functional homology has made the study of their dynamic properties more interesting. In this review, we focus on the application of the information derived from studies on FtsZ dynamics to study microtubule dynamics and vice versa. The structural and functional aspects that led to the establishment of the homology between the two proteins are explained to emphasize the network of FtsZ and microtubule studies and how they are connected.
Collapse
Affiliation(s)
- Rachana Rao Battaje
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| | - Dulal Panda
- Department of Biosciences and BioengineeringIndian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
34
|
Hu Z, Zhang S, Zhou W, Ma X, Xiang G. Synthesis and antibacterial activity of 3-benzylamide derivatives as FtsZ inhibitors. Bioorg Med Chem Lett 2017; 27:1854-1858. [DOI: 10.1016/j.bmcl.2017.02.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/05/2017] [Accepted: 02/15/2017] [Indexed: 11/26/2022]
|
35
|
Ojima I, Awasthi D, Wei L, Haranahalli K. Strategic incorporation of fluorine in the drug discovery of new-generation antitubercular agents targeting bacterial cell division protein FtsZ. J Fluor Chem 2017; 196:44-56. [PMID: 28555087 PMCID: PMC5445929 DOI: 10.1016/j.jfluchem.2016.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This article presents an account of our research on the discovery and development of new-generation fluorine-containing antibacterial agents against drug-resistant tuberculosis, targeting FtsZ. FtsZ is an essential protein for bacterial cell division and a highly promising therapeutic target for antibacterial drug discovery. Through design, synthesis and semi-HTP screening of libraries of novel benzimidazoles, followed by SAR studies, we identified highly potent lead compounds. However, these lead compounds were found to lack sufficient metabolic and plasma stabilities. Accordingly, we have performed extensive study on the strategic incorporation of fluorine into lead compounds to improve pharmacological properties. This study has led to the development of highly efficacious fluorine-containing benzimidazoles as potential drug candidates. We have also performed computational docking analysis of these novel FtsZ inhibitors to identify their putative binding site. Based on the structural data and docking analysis, a plausible mode-of-action for this novel class of FtsZ inhibitors is proposed.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
| | - Divya Awasthi
- Department of Chemistry, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
| | - Longfei Wei
- Department of Chemistry, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
| | - Krupanandan Haranahalli
- Department of Chemistry, Stony Brook University—State University of New York, Stony Brook, NY, 11794-3400, USA
| |
Collapse
|
36
|
Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures. J Mol Biol 2017; 429:633-646. [PMID: 28104363 DOI: 10.1016/j.jmb.2017.01.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 01/08/2023]
Abstract
A number of microtubule (MT)-stabilizing agents (MSAs) have demonstrated or predicted potential as anticancer agents, but a detailed structural basis for their mechanism of action is still lacking. We have obtained high-resolution (3.9-4.2Å) cryo-electron microscopy (cryo-EM) reconstructions of MTs stabilized by the taxane-site binders Taxol and zampanolide, and by peloruside, which targets a distinct, non-taxoid pocket on β-tubulin. We find that each molecule has unique distinct structural effects on the MT lattice structure. Peloruside acts primarily at lateral contacts and has an effect on the "seam" of heterologous interactions, enforcing a conformation more similar to that of homologous (i.e., non-seam) contacts by which it regularizes the MT lattice. In contrast, binding of either Taxol or zampanolide induces MT heterogeneity. In doubly bound MTs, peloruside overrides the heterogeneity induced by Taxol binding. Our structural analysis illustrates distinct mechanisms of these drugs for stabilizing the MT lattice and is of relevance to the possible use of combinations of MSAs to regulate MT activity and improve therapeutic potential.
Collapse
|
37
|
Ojima I. Strategic Incorporation of Fluorine into Taxoid Anticancer Agents for Medicinal Chemistry and Chemical Biology Studies. J Fluor Chem 2017; 198:10-23. [PMID: 28824201 DOI: 10.1016/j.jfluchem.2016.12.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This account exemplifies our recent progress on the strategic incorporation of fluorine and organofluorine groups to taxoid anticancer agents and their tumor-targeted drug delivery systems (TTDDSs) for medicinal chemistry and chemical biology studies. Novel 3'-difluorovinyltaxoids were strategically designed to block the metabolism by cytochrome P-450, synthesized, and evaluated for their cytotoxicity against drug-sensitive and multidrug-resistant (MDR) human cancer cell lines. 3'-Difluorovinyltaxoids exhibited impressive activities against these cancer cell lines. More significantly, a representative 3'-difluorovinyltaxoid exhibited 230-33,000 times higher potency than conventional anticancer drugs against cancer stem cell-enriched HCT-116 cell line. Studies on the mechanism of action (MOA) of these fluorotaxoids were performed by tubulin polymerization assay, morphology analysis by electron microscopy (EM) and protein binding assays. Novel 19F NMR probes, BLT-F2 and BLT-S-F6, were designed by strategically incorporating fluorine, CF3 and CF3O groups into tumor-targeting drug conjugates. These 19F-probes were designed and synthesized to investigate the mechanism of linker cleavage and factors that influence their plasma and metabolic stability by real-time 19F NMR analysis. Time-resolved 19F NMR study on probe BLT-F2 revealed a stepwise mechanism for the release of a fluorotaxoid, which might not be detected by other analytical methods. Probe BLT-S-F6 were very useful to study the stability and reactivity of the drug delivery system in human blood plasma by 19F NMR. The clean analysis of the linker stability and reactivity of drug conjugates in blood plasma by HPLC and 1H NMR is very challenging, but the use of 19F NMR and suitable 19F probes can provide a practical solution to this problem.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, U. S. A.,Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, U. S. A
| |
Collapse
|
38
|
Synthetic Transformations of Higher Terpenoids. XXXV.* Synthesis and Cytotoxicity of Macroheterocyclic Compounds Based on Lambertianic Acid. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-1915-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Haranahalli K, Tong S, Ojima I. Recent advances in the discovery and development of antibacterial agents targeting the cell-division protein FtsZ. Bioorg Med Chem 2016; 24:6354-6369. [PMID: 27189886 PMCID: PMC5157688 DOI: 10.1016/j.bmc.2016.05.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
Abstract
With the emergence of multidrug-resistant bacterial strains, there is a dire need for new drug targets for antibacterial drug discovery and development. Filamentous temperature sensitive protein Z (FtsZ), is a GTP-dependent prokaryotic cell division protein, sharing less than 10% sequence identity with the eukaryotic cell division protein, tubulin. FtsZ forms a dynamic Z-ring in the middle of the cell, leading to septation and subsequent cell division. Inhibition of the Z-ring blocks cell division, thus making FtsZ a highly attractive target. Various groups have been working on natural products and synthetic small molecules as inhibitors of FtsZ. This review summarizes the recent advances in the development of FtsZ inhibitors, focusing on those in the last 5years, but also includes significant findings in previous years.
Collapse
Affiliation(s)
| | - Simon Tong
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Iwao Ojima
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
40
|
He Y, Yan D, Zheng D, Hu Z, Li H, Li J. Cell Division Cycle 6 Promotes Mitotic Slippage and Contributes to Drug Resistance in Paclitaxel-Treated Cancer Cells. PLoS One 2016; 11:e0162633. [PMID: 27611665 PMCID: PMC5017606 DOI: 10.1371/journal.pone.0162633] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022] Open
Abstract
Paclitaxel (PTX) is an antimitotic drug that possesses potent anticancer activity, but its therapeutic potential in the clinic has been hindered by drug resistance. Here, we report a mechanism by which cancer cells can exit from the PTX-induced mitotic arrest, i.e. mitotic slippage, and avoid subsequent death resulting in drug resistance. In cells experiencing mitotic slippage, Cdc6 protein level was significantly upregulated, Cdk1 activity was inhibited, and Cohesin/Rad21 was cleaved as a result. Cdc6 depletion by RNAi or Norcantharidin inhibited PTX-induced Cdc6 up-regulation, maintained Cdk1 activity, and repressed Cohesin/Rad21 cleavage. In all, this resulted in reduced mitotic slippage and reversal of PTX resistance. Moreover, in synchronized cells, the role of Cdc6 in mitotic exit under PTX pressure was also confirmed. This study indicates that Cdc6 may promote mitotic slippage by inactivation of Cdk1. Targeting of Cdc6 may serve as a promising strategy for enhancing the anticancer activity of PTX.
Collapse
Affiliation(s)
- Yue He
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Daoyu Yan
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Dianpeng Zheng
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongwei Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (HL)
| | - Jinlong Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
- * E-mail: (JL); (HL)
| |
Collapse
|
41
|
Staker BL, Buchko GW, Myler PJ. Recent contributions of structure-based drug design to the development of antibacterial compounds. Curr Opin Microbiol 2016; 27:133-8. [PMID: 26458180 DOI: 10.1016/j.mib.2015.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/09/2015] [Accepted: 09/23/2015] [Indexed: 11/28/2022]
Abstract
According to a Pew Research study published in February 2015, there are 37 antibacterial programs currently in clinical trials in the United States. Protein structure-based methods for guiding small molecule design were used in at least 34 of these programs. Typically, this occurred at an early stage (drug discovery and/or lead optimization) prior to an Investigational New Drug (IND) application, although sometimes in retrospective studies to rationalize biological activity. Recognizing that structure-based methods are resource-intensive and often require specialized equipment and training, the NIAID has funded two Structural Genomics Centers to determine structures of infectious disease species proteins with the aim of supporting individual investigators' research programs with structural biology methods.
Collapse
Affiliation(s)
- Bart L Staker
- Seattle Structural Genomics Center for Infectious Disease, United States; Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States.
| | - Garry W Buchko
- Seattle Structural Genomics Center for Infectious Disease, United States; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, United States; Center for Infectious Disease Research (formerly Seattle Biomedical Research Institute), 307 Westlake Ave N, Suite 500, Seattle, WA 98109, United States; Department of Global Health, University of Washington, Seattle, WA 98195, United States; Department of Biomedical Informatics and Health Education, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
42
|
Duggirala S, Napoleon JV, Nankar RP, Senu Adeeba V, Manheri MK, Doble M. FtsZ inhibition and redox modulation with one chemical scaffold: Potential use of dihydroquinolines against mycobacteria. Eur J Med Chem 2016; 123:557-567. [PMID: 27517804 DOI: 10.1016/j.ejmech.2016.07.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/20/2016] [Accepted: 07/23/2016] [Indexed: 12/15/2022]
Abstract
The dual effect of FtsZ inhibition and oxidative stress by a group of 1,2-dihydroquinolines that culminate in bactericidal effect on mycobacterium strains is demonstrated. They inhibited the non-pathogenic Mycobacterium smegmatis mc(2) 155 with MIC as low as 0.9 μg/mL and induced filamentation. Detailed studies revealed their ability to inhibit polymerization and GTPase activity of MtbFtsZ (Mycobacterial filamentous temperature sensitive Z) with an IC50 value of ∼40 μM. In addition to such target specific effects, these compounds exerted a global cellular effect by causing redox-imbalance that was evident from overproduction of ROS in treated cells. Such multi-targeting effect with one chemical scaffold has considerable significance in this era of emerging drug resistance and could offer promise in the development of new therapeutic agents against tuberculosis.
Collapse
Affiliation(s)
- Sridevi Duggirala
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - John Victor Napoleon
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - Rakesh P Nankar
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India
| | - V Senu Adeeba
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, India
| | | | - Mukesh Doble
- Bioengineering and Drug Design Lab, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600 036, India.
| |
Collapse
|
43
|
Abstract
Filamenting temperature-sensitive mutant Z (FtsZ), an essential cell division protein in bacteria, has recently emerged as an important and exploitable antibacterial target. Cytokinesis in bacteria is regulated by the assembly dynamics of this protein, which is ubiquitously present in eubacteria. The perturbation of FtsZ assembly has been found to have a deleterious effect on the cytokinetic machinery and, in turn, upon cell survival. FtsZ is highly conserved among prokaryotes, offering the possibility of broad-spectrum antibacterial agents, while its limited sequence homology with tubulin (an essential protein in eukaryotic mitosis) offers the possibility of selective toxicity. This review aims to summarize current knowledge regarding the mechanism of action of FtsZ, and to highlight existing attempts toward the development of clinically useful inhibitors.
Collapse
|
44
|
Haeusser DP, Margolin W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol 2016; 14:305-19. [PMID: 27040757 DOI: 10.1038/nrmicro.2016.26] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bacteria must divide to increase in number and colonize their niche. Binary fission is the most widespread means of bacterial cell division, but even this relatively simple mechanism has many variations on a theme. In most bacteria, the tubulin homologue FtsZ assembles into a ring structure, termed the Z ring, at the site of cytokinesis and recruits additional proteins to form a large protein machine - the divisome - that spans the membrane. In this Review, we discuss current insights into the regulation of the assembly of the Z ring and how the divisome drives membrane invagination and septal cell wall growth while flexibly responding to various cellular inputs.
Collapse
Affiliation(s)
- Daniel P Haeusser
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA.,Biology Department, Canisius College, 2001 Main Street, Buffalo, New York 14208, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin Street, Houston, Texas 77030, USA
| |
Collapse
|
45
|
Kharitonov YV, Shakirov MM, Shults EE. Synthesis and spectroscopic studies of chiral macrocyclic furanolabdanoids connected on the 16,17-positions by 1,2,3-triazole rings with methylene or oxamethylene units. J INCL PHENOM MACRO 2016. [DOI: 10.1007/s10847-016-0596-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
46
|
Hurley KA, Santos TMA, Nepomuceno GM, Huynh V, Shaw JT, Weibel DB. Targeting the Bacterial Division Protein FtsZ. J Med Chem 2016; 59:6975-98. [DOI: 10.1021/acs.jmedchem.5b01098] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katherine A. Hurley
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Thiago M. A. Santos
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
| | - Gabriella M. Nepomuceno
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Valerie Huynh
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jared T. Shaw
- Department of Chemistry, University of California—Davis, One Shields Avenue, Davis, California 95616, United States
| | - Douglas B. Weibel
- Department
of Biochemistry, University of Wisconsin—Madison, 440 Henry Mall, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Department of Biomedical Engineering, University of Wisconsin—Madison, 1550 Engineering Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
47
|
Yi JM, Zhang XF, Huan XJ, Song SS, Wang W, Tian QT, Sun YM, Chen Y, Ding J, Wang YQ, Yang CH, Miao ZH. Dual targeting of microtubule and topoisomerase II by α-carboline derivative YCH337 for tumor proliferation and growth inhibition. Oncotarget 2016; 6:8960-73. [PMID: 25840421 PMCID: PMC4496195 DOI: 10.18632/oncotarget.3264] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Accepted: 01/31/2015] [Indexed: 12/21/2022] Open
Abstract
Both microtubule and topoisomerase II (Top2) are important anticancer targets and their respective inhibitors are widely used in combination for cancer therapy. However, some combinations could be mutually antagonistic and drug resistance further limits their therapeutic efficacy. Here we report YCH337, a novel α-carboline derivative that targets both microtubule and Top2, eliciting tumor proliferation and growth inhibition and overcoming drug resistance. YCH337 inhibited microtubule polymerization by binding to the colchicine site and subsequently led to mitotic arrest. It also suppressed Top2 and caused DNA double-strand breaks. It disrupted microtubule more potently than Top2. YCH337 induced reversible mitotic arrest at low concentrations but persistent DNA damage. YCH337 caused intrinsic and extrinsic apoptosis and decreased MCL-1, cIAP1 and XIAP proteins. In this aspect, YCH337 behaved differently from the combination of vincristine and etoposide. YCH337 inhibited proliferation of tumor cells with an averaged IC50 of 0.3 μM. It significantly suppressed the growth of HT-29 xenografts in nude mice too. Importantly, YCH337 nearly equally killed different-mechanism-mediated resistant tumor cells and corresponding parent cells. Together with the novelty of its chemical structure, YCH337 could serve as a promising lead for drug development and a prototype for a dual microtubule/Top2 targeting strategy for cancer therapy.
Collapse
Affiliation(s)
- Jun-Mei Yi
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xiao-Fei Zhang
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Xia-Juan Huan
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Shan-Shan Song
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Wei Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Qian-Ting Tian
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yi-Ming Sun
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Yi Chen
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Jian Ding
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Chun-Hao Yang
- Division of Medicinal Chemistry, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Ze-Hong Miao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| |
Collapse
|
48
|
Abstract
Microtubule-stabilizing agents (MSAs) have been highly successful in the treatment of cancer in the past 20years. To date, three classes of MSAs have entered the clinical trial stage or have been approved for clinical anticancer chemotherapy, and more than 10 classes of novel structural MSAs have been derived from natural resources. The microtubule typically contains two MSA-binding sites: the taxoid site and the laulimalide/peloruside site. All defined MSAs are known to bind at either of these sites, with subtle but significant differences. MSAs with different binding sites may produce a synergistic effect. Although having been extensively applied in the clinical setting, paclitaxel and other approved MSAs still pose many challenges such as multidrug resistance, low bioavailability, poor solubility, high toxicity, and low passage through the blood-brain barrier. A variety of studies focus on the structure-activity relationship in order to improve the pharmaceutical properties of these agents. Here, the mechanisms of action, advancements in pharmacological research, and clinical developments of defined MSAs during the past decade are discussed. The latest discovered MSAs are also briefly introduced in this review. The increasing number of natural MSAs indicates the potential discovery of more novel, natural MSAs with different structural bases, which will further promote the development of anticancer chemotherapy.
Collapse
|
49
|
Chandrasekera NS, Alling T, Bailey MA, Files M, Early JV, Ollinger J, Ovechkina Y, Masquelin T, Desai PV, Cramer JW, Hipskind PA, Odingo JO, Parish T. Identification of Phenoxyalkylbenzimidazoles with Antitubercular Activity. J Med Chem 2015; 58:7273-85. [DOI: 10.1021/acs.jmedchem.5b00546] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- N. Susantha Chandrasekera
- Infectious Disease
Research Institute, 1616 Eastlake Avenue
East, Seattle, Washington 98102, United States
| | - Torey Alling
- Infectious Disease
Research Institute, 1616 Eastlake Avenue
East, Seattle, Washington 98102, United States
| | - Mai A. Bailey
- Infectious Disease
Research Institute, 1616 Eastlake Avenue
East, Seattle, Washington 98102, United States
| | - Megan Files
- Infectious Disease
Research Institute, 1616 Eastlake Avenue
East, Seattle, Washington 98102, United States
| | - Julie V. Early
- Infectious Disease
Research Institute, 1616 Eastlake Avenue
East, Seattle, Washington 98102, United States
| | - Juliane Ollinger
- Infectious Disease
Research Institute, 1616 Eastlake Avenue
East, Seattle, Washington 98102, United States
| | - Yulia Ovechkina
- Infectious Disease
Research Institute, 1616 Eastlake Avenue
East, Seattle, Washington 98102, United States
| | - Thierry Masquelin
- Lilly Research
Laboratories, Indianapolis, Indiana 46285, United States
| | - Prashant V. Desai
- Lilly Research
Laboratories, Indianapolis, Indiana 46285, United States
| | - Jeffrey W. Cramer
- Lilly Research
Laboratories, Indianapolis, Indiana 46285, United States
| | | | - Joshua O. Odingo
- Infectious Disease
Research Institute, 1616 Eastlake Avenue
East, Seattle, Washington 98102, United States
| | - Tanya Parish
- Infectious Disease
Research Institute, 1616 Eastlake Avenue
East, Seattle, Washington 98102, United States
| |
Collapse
|
50
|
Doxorubicin inhibits E. coli division by interacting at a novel site in FtsZ. Biochem J 2015; 471:335-46. [PMID: 26285656 DOI: 10.1042/bj20150467] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/18/2015] [Indexed: 12/20/2022]
Abstract
The increase in antibiotic resistance has become a major health concern in recent times. It is therefore essential to identify novel antibacterial targets as well as discover and develop new antibacterial agents. FtsZ, a highly conserved bacterial protein, is responsible for the initiation of cell division in bacteria. The functions of FtsZ inside cells are tightly regulated and any perturbation in its functions leads to inhibition of bacterial division. Recent reports indicate that small molecules targeting the functions of FtsZ may be used as leads to develop new antibacterial agents. To identify small molecules targeting FtsZ and inhibiting bacterial division, we screened a U.S. FDA (Food and Drug Administration)-approved drug library of 800 molecules using an independent computational, biochemical and microbial approach. From this screen, we identified doxorubicin, an anthracycline molecule that inhibits Escherichia coli division and forms filamentous cells. A fluorescence-binding assay shows that doxorubicin interacts strongly with FtsZ. A detailed biochemical analysis demonstrated that doxorubicin inhibits FtsZ assembly and its GTPase activity through binding to a site other than the GTP-binding site. Furthermore, using molecular docking, we identified a probable doxorubicin-binding site in FtsZ. A number of single amino acid mutations at the identified binding site in FtsZ resulted in a severalfold decrease in the affinity of FtsZ for doxorubicin, indicating the importance of this site for doxorubicin interaction. The present study suggests the presence of a novel binding site in FtsZ that interacts with the small molecules and can be targeted for the screening and development of new antibacterial agents.
Collapse
|