1
|
Petrova AV, Poptsov AI, Heise NV, Csuk R, Kazakova OB. Diethoxyphosphoryloxy-oleanolic acid is a nanomolar-inhibitor of butyrylcholinesterase. Chem Biol Drug Des 2024; 103:e14506. [PMID: 38480508 DOI: 10.1111/cbdd.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
A series of new betulin, lupeol, erythrodiol, and oleanolic acid phosphoryloxy- and furoyloxy-derivatives has been synthesized and their structure was confirmed by NMR spectroscopy. Synthesized compounds were subjected to Ellman's assays to determine their ability to inhibit the enzymes AChE and BChE. Among them, diethoxyphosphoryloxy-oleanolic acid inhibited BChE with a value of 99%, thereby acting as a mixed-type inhibitor holding very low Ki values of Ki = 6.59 nM and Ki ' = 1.97 nM, respectively.
Collapse
Affiliation(s)
- Anastasiya V Petrova
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science, Ufa, Russia
| | - Alexandr I Poptsov
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science, Ufa, Russia
| | - Niels V Heise
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Halle (Saale), Germany
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Halle (Saale), Germany
| | - Oxana B Kazakova
- Ufa Institute of Chemistry, Ufa Federal Research Centre, Russian Academy of Science, Ufa, Russia
| |
Collapse
|
2
|
Liu JY, Guo HY, Quan ZS, Shen QK, Cui H, Li X. Research progress of natural products and their derivatives against Alzheimer's disease. J Enzyme Inhib Med Chem 2023; 38:2171026. [PMID: 36803484 PMCID: PMC9946335 DOI: 10.1080/14756366.2023.2171026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Alzheimer's disease (AD), a persistent neurological dysfunction, has an increasing prevalence with the aging of the world and seriously threatens the health of the elderly. Although there is currently no effective treatment for AD, researchers have not given up, and are committed to exploring the pathogenesis of AD and possible therapeutic drugs. Natural products have attracted considerable attention owing to their unique advantages. One molecule can interact with multiple AD-related targets, thus having the potential to be developed in a multi-target drug. In addition, they are amenable to structural modifications to increase interaction and decrease toxicity. Therefore, natural products and their derivatives that ameliorate pathological changes in AD should be intensively and extensively studied. This review mainly presents research on natural products and their derivatives for the treatment of AD.
Collapse
Affiliation(s)
- Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Hong Cui
- Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China,Hong Cui Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China,CONTACT Xiaoting Li Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, China
| |
Collapse
|
3
|
Gad SR, El-Gogary RI, George MY, Hathout RM. Nose-to-brain delivery of 18β-Glycyrrhetinic acid using optimized lipid nanocapsules: A novel alternative treatment for Alzheimer's disease. Int J Pharm 2023; 645:123387. [PMID: 37678474 DOI: 10.1016/j.ijpharm.2023.123387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most relevant form of dementia affecting people worldwide. AD was reported to be associated with increased oxidative stress ending up with neuronal damage. 18β-Glycyrrhetinic acid (GA), triterpenoid aglycone of glycyrrhizin, was reported for its powerful antioxidant activities. However, its high molecular weight and lipophilicity are two major obstacles that limit its use and cause very low brain bioavailability. The aim of the present study was to formulate the GA in lipid nanocapsules (LNCs) for enhanced nose-to-brain delivery, as well as to elucidate its potential neuroprotective effect in AD. The optimized GA-loaded LNCs exhibited nanometric size range, good stability over 6 months, sustained drug release over 24 h and high steady state flux and permeability coefficient across nasal mucosa over 8 h. In-vivo studies were conducted on five groups; control, scopolamine (SCOP)-treated, SCOP + GA-LNCs, SCOP + oral GA suspension, and SCOP + intranasal GA suspension groups. Intranasal administration of GA-LNCs, at a reduced dose of 1 mg/kg, improved scopolamine-induced memory impairment in rats evidenced by behavioral testing, histological examination, and oxidative stress markers; catalase and superoxide dismutase. Collectively, GA-loaded LNCs (with 50 times lower dose) may provide a promising remedy for AD patients worldwide.
Collapse
Affiliation(s)
- Sara R Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Mina Y George
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Rania M Hathout
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
4
|
α-Glucosidase and cholinesterase inhibiting potential of a series of semisynthetic nitrogen triterpenic derivatives. Med Chem Res 2023. [DOI: 10.1007/s00044-023-03014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Silva JG, Borgati TF, Lopes SM, Heise N, Hoenke S, Csuk R, Barbosa LC. New amides derived from sclareolide as anticholinesterase agents. Bioorg Chem 2023; 130:106249. [DOI: 10.1016/j.bioorg.2022.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 11/01/2022] [Indexed: 11/08/2022]
|
6
|
Novel Triterpenic Acid—Benzotriazole Esters Act as Pro-Apoptotic Antimelanoma Agents. Int J Mol Sci 2022; 23:ijms23179992. [PMID: 36077389 PMCID: PMC9456456 DOI: 10.3390/ijms23179992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022] Open
Abstract
Pentacyclic triterpenes, such as betulinic, ursolic, and oleanolic acids are efficient and selective anticancer agents whose underlying mechanisms of action have been widely investigated. The introduction of N-bearing heterocycles (e.g., triazoles) into the structures of natural compounds (particularly pentacyclic triterpenes) has yielded semisynthetic derivatives with increased antiproliferative potential as opposed to unmodified starting compounds. In this work, we report the synthesis and biological assessment of benzotriazole esters of betulinic acid (BA), oleanolic acid (OA), and ursolic acid (UA) (compounds 1–3). The esters were obtained in moderate yields (28–42%). All three compounds showed dose-dependent reductions in cell viability against A375 melanoma cells and no cytotoxic effects against healthy human keratinocytes. The morphology analysis of treated cells showed characteristic apoptotic changes consisting of nuclear shrinkage, condensation, fragmentation, and cellular membrane disruption. rtPCR analysis reinforced the proapoptotic evidence, showing a reduction in anti-apoptotic Bcl-2 expression and upregulation of the pro-apoptotic Bax. High-resolution respirometry studies showed that all three compounds were able to significantly inhibit mitochondrial function. Molecular docking showed that compounds 1–3 showed an increase in binding affinity against Bcl-2 as opposed to BA, OA, and UA and similar binding patterns compared to known Bcl-2 inhibitors.
Collapse
|
7
|
Nguyen TH, Tran PT, Pham NQA, Hoang VH, Hiep DM, Ngo ST. Identifying Possible AChE Inhibitors from Drug-like Molecules via Machine Learning and Experimental Studies. ACS OMEGA 2022; 7:20673-20682. [PMID: 35755364 PMCID: PMC9219098 DOI: 10.1021/acsomega.2c00908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/27/2022] [Indexed: 05/30/2023]
Abstract
Acetylcholinesterase (AChE) is one of the most important drug targets for Alzheimer's disease (AD) treatment. In this work, a machine learning model was trained to rapidly and accurately screen large chemical databases for the potential inhibitors of AChE. The obtained results were then validated via in vitro enzyme assay. Moreover, atomistic simulations including molecular docking and molecular dynamics simulations were then used to understand molecular insights into the binding process of ligands to AChE. In particular, two compounds including benzyl trifluoromethyl ketone and trifluoromethylstyryl ketone were indicated as highly potent inhibitors of AChE because they established IC50 values of 0.51 and 0.33 μM, respectively. The obtained IC50 of two compounds is significantly lower than that of galantamine (2.10 μM). The predicted log(BB) suggests that the compounds may be able to traverse the blood-brain barrier. A good agreement between computational and experimental studies was observed, indicating that the hybrid approach can enhance AD therapy.
Collapse
Affiliation(s)
- Trung Hai Nguyen
- Laboratory
of Theoretical and Computational Biophysics, Advanced Institute of
Materials Science, Ton Duc Thang
University, Ho Chi Minh City, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Phuong-Thao Tran
- Hanoi
University of Pharmacy, 13-15 Le Thanh Tong, Hanoi 008404, Vietnam
| | - Ngoc Quynh Anh Pham
- Faculty
of Chemical Engineering, Ho Chi Minh City
University of Technology (HCMUT), Ho Chi Minh City 700000, Vietnam
| | - Van-Hai Hoang
- Faculty
of Pharmacy, Phenikka University, Hanoi 008404, Vietnam
- Phenikka
Institute for Advanced Study, Phenikka University, Hanoi 008404, Vietnam
| | - Dinh Minh Hiep
- Department
of Agriculture and Rural Development, Ho Chi Minh City 700000, Vietnam
| | - Son Tung Ngo
- Laboratory
of Theoretical and Computational Biophysics, Advanced Institute of
Materials Science, Ton Duc Thang
University, Ho Chi Minh City, Vietnam
- Faculty
of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Jin X, Li L, Peng Q, Gan C, Gao L, He S, Tan S, Pu W, Liu Y, Gong Y, Yao Y, Wang G, Liu X, Gong M, Lei P, Zhang H, Qi S, Xu H, Hu H, Dong B, Peng Y, Su D, Dai L. Glycyrrhetinic acid restricts mitochondrial energy metabolism by targeting SHMT2. iScience 2022; 25:104349. [PMID: 35602963 PMCID: PMC9117551 DOI: 10.1016/j.isci.2022.104349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Glycyrrhetinic acid (GA) is a natural product of licorice with mitochondria targeting properties and shows broad anticancer activities, but its targets and underlying mechanisms remain elusive. Here, we identified the mitochondrial enzyme serine hydroxymethyltransferase 2 (SHMT2) as a target of GA by using chemical proteomics. Binding to and inhibiting the activity of SHMT2 by GA were validated in vitro and in vivo. Knockout of SHMT2 or inhibiting SHMT2 with GA restricts mitochondrial energy supplies by downregulating mitochondrial oxidative phosphorylation (OXPHOS) and fatty acid β-oxidation, and consequently suppresses cancer cell proliferation and tumor growth. Crystal structures of GA derivatives indicate that GA occupies SHMT2 folate-binding pocket and regulates SHMT2 activity. Modifications at GA carboxylic group with diamines significantly improved its anticancer potency, demonstrating GA as a decent structural template for SHMT2 inhibitor development.
Collapse
Affiliation(s)
- Xiuxiu Jin
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Henan Provincial People’s Hospital, Henan Eye Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan 450003, China
| | - Li Li
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qinlu Peng
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chunmei Gan
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Li Gao
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Siyu He
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shuangyan Tan
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenchen Pu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563003, China
| | - Xiaohui Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 88 Keyuan South Road, Hi-Tech Zone, Chengdu 610041, China
| | - Peng Lei
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Huiyuan Zhang
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqian Qi
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heng Xu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongbo Hu
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Biao Dong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Su
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lunzhi Dai
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Liang S, Ma X, Li M, Yi Y, Gao Q, Zhang Y, Zhang L, Zhou D, Xiao S. Novel β-Cyclodextrin-Based Heptavalent Glycyrrhetinic Acid Conjugates: Synthesis, Characterization, and Anti-Influenza Activity. Front Chem 2022; 10:836955. [PMID: 35494649 PMCID: PMC9039011 DOI: 10.3389/fchem.2022.836955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
In our continuing efforts toward the design of novel pentacyclic triterpene derivatives as potential anti-influenza virus entry inhibitors, a series of homogeneous heptavalent glycyrrhetinic acid derivatives based on β-cyclodextrin scaffold were designed and synthesized by click chemistry. The structure was unambiguously characterized by NMR, IR, and MALDI-TOF-MS measurements. Seven conjugates showed sufficient inhibitory activity against influenza virus infection based on the cytopathic effect reduction assay with IC50 values in the micromolar range. The interactions of conjugate 37, the most potent compound (IC50 = 2.86 μM, CC50 > 100 μM), with the influenza virus were investigated using the hemagglutination inhibition assay. Moreover, the surface plasmon resonance assay further confirmed that compound 37 bound to the influenza HA protein specifically with a dissociation constant of 5.15 × 10−7 M. Our results suggest the promising role of β-cyclodextrin as a scaffold for preparing a variety of multivalent compounds as influenza entry inhibitors.
Collapse
Affiliation(s)
- Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Xinyuan Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Man Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yanliang Yi
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qianqian Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yongmin Zhang
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- *Correspondence: Sulong Xiao,
| |
Collapse
|
10
|
Liu Y, Sheng R, Fan J, Guo R. A Mini-Review on Structure-Activity Relationships of Glycyrrhetinic Acid Derivatives with Diverse Bioactivities. Mini Rev Med Chem 2022; 22:2024-2066. [PMID: 35081889 DOI: 10.2174/1389557522666220126093033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/16/2021] [Indexed: 11/22/2022]
Abstract
Pentacyclic triterpenoids, consisting of six isoprene units, are a kind of natural active substance. At present, numerous pentacyclic triterpene have been observed and classified into four subgroups of oleanane, ursane, lupane, and xylene on the basis of the carbon skeleton. Among them, oleanane is the most popular due to its rich backbone and diverse bioactivities. 18β-Glycyrrhetinic acid (GA), an oleanane-type pentacyclic triterpene isolated from licorice roots, possesses diverse bioactivities including antitumor, anti-inflammatory, antiviral, antimicrobial, enzyme inhibitor, hepatoprotective and so on. It has received more attention in medicinal chemistry due to the advantages of easy-to-access and rich bioactivity. Thus, numerous novel lead compounds were synthesized using GA as a scaffold. Herein, we summarize the structure-activity relationship and synthetic methodologies of GA derivatives from 2010 to 2020 as well as the most active GA derivatives. Finally, we anticipate that this review can benefit future research on structural modifications of GA to enhance bioactivity and provide an example for developing pentacyclic triterpene-based novel drugs.
Collapse
Affiliation(s)
- Yuebin Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Ruilong Sheng
- CQM - Centro de Química da Madeira, Campus da Penteada, Universidade da Madeira, 9000-390 Funchal, Portugal
| | - Junting Fan
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruihua Guo
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
- Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
| |
Collapse
|
11
|
Kazakova O, Giniyatullina G, Babkov D, Wimmer Z. From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues. Int J Mol Sci 2022; 23:ijms23031075. [PMID: 35162998 PMCID: PMC8834734 DOI: 10.3390/ijms23031075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
- Correspondence:
| | - Gulnara Giniyatullina
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Denis Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia;
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technicka’ 5, Prague 6, 16628 Prague, Czech Republic;
| |
Collapse
|
12
|
Huang J, Zang X, Yang W, Yin X, Huang J, Wu S, Hong Y. Pentacyclic triterpene carboxylic acids derivatives integrated piperazine-amino acid complexes for α-glucosidase inhibition in vitro. Bioorg Chem 2021; 115:105212. [PMID: 34333423 DOI: 10.1016/j.bioorg.2021.105212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/30/2022]
Abstract
Eighteen derivatives of pentacyclic triterpene carboxylic acids (Maslinic acid, Corosolic acid and Asiatic acid) have been prepared by coupling the piperazine complex of l-amino acids at the C-28 site of the parent compounds. The α-glucosidase inhibitory activities of the pristine derivatives were evaluated in vitro. The results indicated that the inhibitory activity of some compounds (15e IC50 = 591 μM, 16e IC50 = 423 μM) was closed to that of the reference acarbose (IC50 = 347 μM) in ethanol-water system. In addition, compound 16e (IC50 = 380 μM) showed superior inhibitory activity than acarbose (IC50 = 493 μM) in the measurement system with DMSO as solvent. The comparison of two different solvent systems showed that the derivatives had better α-glucosidase inhibitory activity in the DMSO system than that of in ethanol-water system. Regrettably, all of the as-synthesized derivatives exhibited inferior α-glucosidase inhibitory activities than those of the parent compounds in both test solvent systems. Furthermore, the result of enzyme kinetics demonstrated that the inhibition mechanism of compound 16e was noncompetitive inhibition with the inhibition constant Ki = 552 μM.
Collapse
Affiliation(s)
- Jinxiang Huang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xufeng Zang
- Department of Applied Physics, Huzhou University, Huzhou 313000, China
| | - Wuying Yang
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoli Yin
- Library of Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianping Huang
- College of Science, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Shumin Wu
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yanping Hong
- Jiangxi Key Laboratory of Natural Product and Functional Food, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
13
|
Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, Taifa S, Ahmad SB, Arafah A, Sameer AS, Khan R, Qamar W, Rasool S, Ahmad A. Preclinical Evidence for the Pharmacological Actions of Glycyrrhizic Acid: A Comprehensive Review. Curr Drug Metab 2021; 21:436-465. [PMID: 32562521 DOI: 10.2174/1389200221666200620204914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adil Farooq
- RAKCOPS, RAK Medical and Health Sciences University, Ras AL Khaimah, United Arab Emirates
| | - Rayeesa Ali
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sana Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Nazirah Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Samia Majeed
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Syed Taifa
- Division of Animal Nutrition, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aga Syed Sameer
- Department of Basic Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Centre (KAIMRC), Jeddah, Saudi Arabia
| | - Rehan Khan
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Mana pgement, Faculty of Forestry, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anas Ahmad
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| |
Collapse
|
14
|
Trimethoxycinnamates and Their Cholinesterase Inhibitory Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of twelve nature-inspired 3,4,5-trimethoxycinnamates were prepared and characterized. All compounds, including the starting 3,4,5-trimethoxycinnamic acid, were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro; the selectivity index (SI) was also determined. 2-Fluororophenyl (2E)-3-(3,4,5-trimethoxyphenyl)-prop-2-enoate demonstrated the highest SI (1.71) in favor of BChE inhibition. 2-Chlorophenyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate showed the highest AChE-inhibiting (IC50 = 46.18 µM) as well as BChE-inhibiting (IC50 = 32.46 µM) activity with an SI of 1.42. The mechanism of action of the most potent compound was determined by the Lineweaver–Burk plot as a mixed type of inhibition. An in vitro cell viability assay confirmed the insignificant cytotoxicity of the discussed compounds on the two cell lines. Trends between structure, physicochemical properties and activity were discussed.
Collapse
|
15
|
Gonzalez G, Hodoň J, Kazakova A, D'Acunto CW, Kaňovský P, Urban M, Strnad M. Novel pentacyclic triterpenes exhibiting strong neuroprotective activity in SH-SY5Y cells in salsolinol- and glutamate-induced neurodegeneration models. Eur J Med Chem 2021; 213:113168. [PMID: 33508480 DOI: 10.1016/j.ejmech.2021.113168] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Novel triterpene derivatives were prepared and evaluated in salsolinol (SAL)- and glutamate (Glu)-induced models of neurodegeneration in neuron-like SH-SY5Y cells. Among the tested compounds, betulin triazole 4 bearing a tetraacetyl-β-d-glucose substituent showed a highly potent neuroprotective effect. Further studies revealed that removal of tetraacetyl-β-d-glucose part (free triazole derivative 10) resulted in strong neuroprotection in the SAL model at 1 μM, but this derivative suffered from cytotoxicity at higher concentrations. Both compounds modulated oxidative stress and caspase-3,7 activity, but 10 showed a superior effect comparable to the Ac-DEVD-CHO inhibitor. Interestingly, while both 4 and 10 outperformed the positive controls in blocking mitochondrial permeability transition pore opening, only 4 demonstrated potent restoration of the mitochondrial membrane potential (MMP) in the model. Derivatives 4 and 10 also showed neuroprotection in the Glu model, with 10 exhibiting the strongest oxidative stress reducing effect among the tested compounds, while the neuroprotective activity of 4 was probably due recovery of the MMP.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Jiří Hodoň
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Anna Kazakova
- Department of Organic Chemistry, Faculty of Science, Palacky University, 17. Listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Cosimo Walter D'Acunto
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic
| | - Milan Urban
- Department of Medicinal Chemistry, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Hnevotinska 5, 779 00, Olomouc, Czech Republic.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and the Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacký University Olomouc, CZ-775 20, Olomouc, Czech Republic.
| |
Collapse
|
16
|
Guan R, Wang M, Guan Z, Jin CY, Lin W, Ji XJ, Wei Y. Metabolic Engineering for Glycyrrhetinic Acid Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2020; 8:588255. [PMID: 33330420 PMCID: PMC7710550 DOI: 10.3389/fbioe.2020.588255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022] Open
Abstract
Glycyrrhetinic acid (GA) is one of the main bioactive components of licorice, and it is widely used in traditional Chinese medicine due to its hepatoprotective, immunomodulatory, anti-inflammatory and anti-viral functions. Currently, GA is mainly extracted from the roots of cultivated licorice. However, licorice only contains low amounts of GA, and the amount of licorice that can be planted is limited. GA supplies are therefore limited and cannot meet the demands of growing markets. GA has a complex chemical structure, and its chemical synthesis is difficult, therefore, new strategies to produce large amounts of GA are needed. The development of metabolic engineering and emerging synthetic biology provide the opportunity to produce GA using microbial cell factories. In this review, current advances in the metabolic engineering of Saccharomyces cerevisiae for GA biosynthesis and various metabolic engineering strategies that can improve GA production are summarized. Furthermore, the advances and challenges of yeast GA production are also discussed. In summary, GA biosynthesis using metabolically engineered S. cerevisiae serves as one possible strategy for sustainable GA supply and reasonable use of traditional Chinese medical plants.
Collapse
Affiliation(s)
- Ruobing Guan
- State Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengge Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhonghua Guan
- School of Basic Medical Sciences (Zhongjing School), Henan University of Chinese Medicine, Zhengzhou, China
| | - Cheng-Yun Jin
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Lin
- Department of Microbiology and Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Kazakova O, Smirnova I, Lopatina T, Giniyatullina G, Petrova A, Khusnutdinova E, Csuk R, Serbian I, Loesche A. Synthesis and cholinesterase inhibiting potential of A-ring azepano- and 3-amino-3,4-seco-triterpenoids. Bioorg Chem 2020; 101:104001. [PMID: 32683137 DOI: 10.1016/j.bioorg.2020.104001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 05/20/2020] [Accepted: 06/07/2020] [Indexed: 01/07/2023]
Abstract
In this study, a series of A-ring azepano- and 3-amino-3,4-seco-derivatives were synthesized from betulin, oleanolic, ursolic and glycyrrhetinic acids aiming to develop new cholinesterase inhibitors. Azepanobetulin, azepanoerythrodiol and azepanouvaol were modified to give amide and tosyl derivatives, while azepano-anhydrobetulines and azepano-glycyrrhetols were obtained for the first time. Oleanane and ursane type 3-amino-3,4-seco-4(23)-en triterpenic alcohols were synthesized by reducing the corresponding 2-cyano-derivatives accessible from Beckmann type 2 rearrangements. The compounds were screened in colorimetric Ellman's assays to determine their ability to act as inhibitors for the enzymes acetylcholinesterase (AChE, from electric eel) and butyrylcholinesterase (BChE, from equine serum). While most of these compounds were only moderate inhibitors for AChE, several of them were shown to be inhibitors for BChE acting as mixed-type inhibitors. Azepanobetulin 1, its C28-amide derivatives 7 and 8, azepano-11-deoxo-glycyrrhetol 12 and azepanouvaol 18 held inhibition constants Ki ranging between 0.21 ± 0.06 to 0.68 ± 0.19 μM. Thus, they were approximately 4 to 10 times more active than standard galantamine hydrobromide. For all of the compounds reasonably high docking scores for BChE were obtained being in good agreement with the experimental results from the enzymatic studies. As a result, A-ring azepano-triterpenoids were found to be new scaffolds for the development of BChE inhibitors.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation.
| | - Irina Smirnova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation
| | - Tatyana Lopatina
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation
| | | | - Anastasiya Petrova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation
| | - Elmira Khusnutdinova
- Ufa Institute of Chemistry UFRC RAS, pr. Octyabrya 71, 450054 Ufa, Russian Federation
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Immo Serbian
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
18
|
Effect of Glycyrrhizic Acid on Scopolamine-Induced Cognitive Impairment in Mice. Int Neurourol J 2020; 24:S48-55. [PMID: 32482057 PMCID: PMC7285697 DOI: 10.5213/inj.2040154.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/07/2020] [Indexed: 01/24/2023] Open
Abstract
Purpose Cognitive impairment is one of the main symptoms of Alzheimer disease and other dementias. Glycyrrhiza uralensis is a natural product that has a protective effect against cognitive impairment. In this study, we investigated whether glycyrrhizic acid, among the main bioactive components of Glycyrrhiza uralensis, has a neuroprotective effect on scopolamine-induced cognitive impairment. Methods Twenty-week-old male Institute of Cancer Research mice were used in this study. The scopolamine-induced cognitive impairment mice model was used. Glycyrrhizic acid was orally administered to mice once daily for 21 days, while scopolamine (1 mg/kg) treatment was delivered 30 minutes before behavioral tests. Donepezil (2 mg/kg) was used as a positive drug control. To evaluate the effect of glycyrrhizic acid, the following assessments were performed on hippocampal tissue: Y-maze test, acetylcholinesterase activity, antioxidant enzymes’ activity (superoxide dismutase, catalase). Western blotting for phosphor-extracellular signal-regulated kinase, P38, and c-Jun NH2-terminal kinase was conducted. Results We found that glycyrrhizic acid administration significantly improved scopolamine-induced cognitive impairment in the Y-maze test. The acetylcholinesterase activity, superoxide dismutase, and catalase activity in the glycyrrhizic acid-treated group showed a significant reversal of cognitive impairment compared with the scopolamine-treated group. Conclusions Our results suggest that glycyrrhizic acid has a neuroprotective effect on cognitive function in scopolamine-induced cognitive impairment.
Collapse
|
19
|
Cai D, Zhang Z, Chen Y, Zhang Y, Sun Y, Gong Y. Exploring New Structural Features of the 18β-Glycyrrhetinic Acid Scaffold for the Inhibition of Anaplastic Lymphoma Kinase. Molecules 2019; 24:molecules24193631. [PMID: 31597403 PMCID: PMC6803848 DOI: 10.3390/molecules24193631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Novel 18β-glycyrrhetinic acid derivatives possessing a carbamate moiety and structurally similar ester derivatives were developed and evaluated for their efficacy as antitumor inhibitors. In the cellular assays, most of the N-substituted carbamate derivatives at the C3-position exhibited potent activities. The results of SAR investigation revealed that the introduction of the morpholine group at the C30-COOH led to a significant loss of the inhibitory potency. Among the ester derivatives, the ester group at C3-position also determined a noticeable reduction in the efficacy. Compound 3j exhibited the most prominent antiproliferative activity against six human cancer cells (A549, HT29, HepG2, MCF-7, PC-3, and Karpas299). Furthermore, compound 3j exerted a moderate inhibiting effect on the ALK. The results of molecular docking analyses suggested that it could bind well to the active site of the receptor ALK, which was consistent with the biological data. These results might inspire further structural optimization of 18β-glycyrrhetinic acid aiming at the development of potent antitumor agents. The structures 4d, 4g, 4h, 4j, and 4n were studied by X-ray crystallographic analyses.
Collapse
Affiliation(s)
- Dong Cai
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou 121001, China.
| | - ZhiHua Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - Yu Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - YanYan Zhang
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - YuQi Sun
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China.
| | - YiXia Gong
- College of Public Basic Sciences, Jinzhou Medical University, Jinzhou 121001, China.
| |
Collapse
|
20
|
Sun L, Chu XW, Liu CM, Sheng LX, Chen ZX, Cheng KG. Antiproliferative activity of ursolic acid/glycyrrhetinic acid-uracil/thymine hybrids. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02344-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Loesche A, Köwitsch A, Lucas SD, Al-Halabi Z, Sippl W, Al-Harrasi A, Csuk R. Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential. Bioorg Chem 2019; 85:23-32. [PMID: 30599410 DOI: 10.1016/j.bioorg.2018.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023]
Abstract
Triterpenoids are in the focus of scientific interest, and they were evaluated for many pharmacological applications among them their ability to act as inhibitors of cholinesterases. These inhibitors are still of interest as drugs that improve the life quality of patients suffering from age-related dementia illnesses especially of Alzheimer's disease. Herein, we prepared several derivatives of ursolic and oleanolic acid and screened them in Ellman's assays for their ability to inhibit acetylcholinesterase and/or butyrylcholinesterase, and for each of the active compounds the type of inhibition was determined. As a result, several compounds were shown as good inhibitors for acetylcholinesterase and butyrylcholinesterase even in a micromolar range. An ursolic acid derived hydroxyl-propinyl derivative 10 was a competitive inhibitor for butyrylcholinesterase with an inhibition constant of Ki = 4.29 μM, and therefore being twice as active as gold standard galantamine hydrobromide. The best inhibitor for acetylcholinesterase, however, was 2-methyl-3-oxo-methyl-ursoloate (18), acting as a mixed-type inhibitor showing Ki = 1.72 µM and Ki' = 1.28 μM, respectively.
Collapse
Affiliation(s)
- Anne Loesche
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Alexander Köwitsch
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Susana D Lucas
- Universidade de Lisboa, Faculdade de Farmácio, Instituto de Investigacao do Medicamento (iMed.ULisboa), Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Zayan Al-Halabi
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Wolfgang Sippl
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- University of Nizwa, Chair of Oman's Medicinal Plants and Marine Natural Products, PO Box 33, Birkat Al-Mauz, Nizwa, Oman
| | - René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Liang S, Li M, Yu X, Jin H, Zhang Y, Zhang L, Zhou D, Xiao S. Synthesis and structure-activity relationship studies of water-soluble β-cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents. Eur J Med Chem 2019; 166:328-338. [PMID: 30731401 PMCID: PMC7115653 DOI: 10.1016/j.ejmech.2019.01.074] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/24/2022]
Abstract
Glycyrrhetinic acid (GA) is a major constituent of the herb Glycyrrhiza glabra, and many of its derivatives demonstrate a broad spectrum of antiviral activities. In the current study, 18 water-soluble β-cyclodextrin (CD)-GA conjugates, in which GA was covalently coupled to the primary face of β-CD using 1,2,3-triazole moiety along with varying lengths of linker, were synthesized via copper-catalyzed azide-alkyl cycloaddition reaction. Benefited from the attached β-CD moiety, all these conjugates showed lower hydrophobicity (AlogP) compared with their parent compound GA. With the exception of per-O-methylated β-CD-GA conjugate (35), all other conjugates showed no significant cytotoxicity to MDCK cells, and these conjugates were then screened against A/WSN/33 (H1N1) virus using the cytopathic effect assay. The preliminary results indicated that six conjugates showed promising antiviral activity, and the C-3 and C-30 of GA could tolerate some modifications. Our findings suggested that GA could be used as a lead compound for the development of potential anti-influenza virus agents.
Collapse
Affiliation(s)
- Shuobin Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Man Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Xiaojuan Yu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yongmin Zhang
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005, Paris, France
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Demin Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Sulong Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
23
|
Zígolo MA, Salinas M, Alché L, Baldessari A, Liñares GG. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study. Bioorg Chem 2018; 78:210-219. [DOI: 10.1016/j.bioorg.2018.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/09/2018] [Accepted: 03/18/2018] [Indexed: 10/17/2022]
|
24
|
Krátký M, Štěpánková Š, Vorčáková K, Vinšová J. Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase. Bioorg Chem 2018; 80:668-673. [PMID: 30059892 DOI: 10.1016/j.bioorg.2018.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 11/15/2022]
Abstract
Based on the presence of carbamate moiety, twenty salicylanilide N-monosubstituted carbamates concomitantly with their parent salicylanilides and five newly prepared 4-chlorophenyl carbamates obtained from isocyanates were investigated using Ellman's method for their in vitro inhibitory activity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum. The carbamates and salicylanilides exhibited mostly a moderate inhibition of both cholinesterase enzymes with IC50 values ranging from 5 to 235 µM. IC50 values for AChE were in a narrower concentration range when compared to BChE, but many of the compounds produced a balanced inhibition of both cholinesterases. The derivatives were comparable or superior to rivastigmine for AChE inhibition, but only a few of carbamates also for BChE. Several structure-activity relationships were identified, e.g., N-phenethylcarbamates produce clearly favourable BChE inhibition. The compounds also share convenient physicochemical properties for CNS penetration.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Katarína Vorčáková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
25
|
Abdel Bar FM, Elimam DM, Mira AS, El-Senduny FF, Badria FA. Derivatization, molecular docking and in vitro acetylcholinesterase inhibitory activity of glycyrrhizin as a selective anti-Alzheimer agent. Nat Prod Res 2018; 33:2591-2599. [PMID: 29656653 DOI: 10.1080/14786419.2018.1462177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Acetylcholinesterase inhibitors (AChE-Is) increase both level and duration of action of acetylcholine (ACh); thus, alleviate symptoms of Alzheimer's disease (AD). Glycyrrhizin, is the main active compound in liquorice root. Its aglycone, glycyrrhetinic acid, has shown several beneficial pharmacological activities. This study reports the synthesis and screening of a series of glycyrrhetinic acid analogs as AChE-Is. Fourteen derivatives were prepared, of which five derivatives are recorded as new viz., 3-phenyl-carbamoyl-18β-glycyrrhetinic acid (J9), 3-acetyl-18β-glycyrrhetinic-30-anilinamide (J10), 3-acetyl-18β-glycyrrhetinic-30-ethanolamide (J11), 3-acetyl-18β-glycyrrhetinic-30-n-butylamide (J12) and 18β-glycyrrhetinic acid-30-prenyl ester (J14), in addition to nine known derivatives (J1-J8 & J13). Compounds J12, J11, J0 and J3 showed remarkable AChE-I activity with IC50 values of 3.43, 5.39, 6.27 and 8.68 μM, respectively. These results are in full agreement with the docking study. The active compounds were non-cytotoxic to normal cells (WI-38).
Collapse
Affiliation(s)
- Fatma M Abdel Bar
- a Faculty of Pharmacy, Department of Pharmacognosy , Prince Sattam Bin Abdulaziz University , Al-Kharj , Saudi Arabia.,b Faculty of Pharmacy, Department of Pharmacognosy , Mansoura University , Mansoura , Egypt
| | - Diaaeldin M Elimam
- c Faculty of Pharmacy, Department of Pharmacognosy , Kafrelsheikh University , Kafr ElSheikh , Egypt
| | - Amira S Mira
- b Faculty of Pharmacy, Department of Pharmacognosy , Mansoura University , Mansoura , Egypt
| | - Fardous F El-Senduny
- d Faculty of Science, Chemistry Department, Biochemistry Division , Mansoura University , Mansoura , Egypt
| | - Farid A Badria
- b Faculty of Pharmacy, Department of Pharmacognosy , Mansoura University , Mansoura , Egypt
| |
Collapse
|
26
|
Wang W, Zhang Y, Yao G, Wang W, Shang X, Zhang Y, Wang X, Wang S, Song S. Synthesis of new sarsasapogenin derivatives with antiproliferative and apoptotic effects in MCF-7 cells. Steroids 2018; 131:23-31. [PMID: 29337037 DOI: 10.1016/j.steroids.2018.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 12/13/2017] [Accepted: 01/08/2018] [Indexed: 01/08/2023]
Abstract
Sarsasapogenin, a kind of mainly effective component of Anemarrhena asphodeloides Bunge, possesses good antitumor properties. Two series of new sarsasapogenin derivatives were synthesized and evaluated for their cytotoxicities against three human cancer cell lines (HepG2, A549, MCF-7) using the MTT assay. The structure-activity relationship revealed that the N, N-dimethylamino, pyrrolidinyl, and imidazolyl substituted at the C26 position could increase the antitumor efficacy of the 3-oxo sarsasapogenin series of compounds. Compound 4c with pyrrolidinyl substituted at the C26 position exhibited the greatest cytotoxic activity against MCF-7 cell line (IC50 = 10.66 μM), which was 4.3-fold more potent than sarsasapogenin. Action mechanism investigations showed that 4c could inhibit the colony formation and induce the apoptosis of MCF-7 cells. Further researches showed that a decrease in mitochondrial membrane potential and increases in the expression level of cleaved-PARP and the ratio of Bax/Bcl-2 were observed in MCF-7 cells after treatment with 4c, suggesting that the mitochondrial pathway was involved in the 4c-mediated apoptosis. These results show that compound 4c may serve as a lead for further optimization.
Collapse
Affiliation(s)
- Wenbao Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yingying Zhang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Guodong Yao
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Wei Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinyue Shang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yan Zhang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaobo Wang
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Chinese People's Liberation Army 210 Hospital, Dalian 116021, People's Republic of China.
| | - Shaojie Wang
- Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Shaojiang Song
- Department of Natural Products Chemistry, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
27
|
Compound Schisandra-Ginseng-Notoginseng-Lycium Extract Ameliorates Scopolamine-Induced Learning and Memory Disorders in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8632016. [PMID: 28814961 PMCID: PMC5549506 DOI: 10.1155/2017/8632016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/05/2017] [Accepted: 06/07/2017] [Indexed: 12/14/2022]
Abstract
Schisandra, Ginseng, Notoginseng, and Lycium barbarum are traditional Chinese medicinal plants sharing cognitive-enhancing properties. To design a functional food to improve memory, we prepared a compound Schisandra-Ginseng-Notoginseng-Lycium (CSGNL) extract and investigated its effect on scopolamine-induced learning and memory loss in mice. To optimize the dose ratios of the four herbal extracts in CSGNL, orthogonal experiments were performed. Mice were administered CSGNL by gavage once a day for 30 days and then mouse learning and memory were evaluated by Morris water maze and step-through tests. The mechanisms of CSGNL improving learning and memory were investigated by assaying acetylcholine (ACh) levels and choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) activities in the brain tissues of treated mice. The results showed that CSGNL significantly ameliorated scopolamine-induced learning and memory impairment, at least in part, by modulating ACh levels and ChAT and AChE activities in the mouse brain. Our data support the use of CSGNL as a functional food for learning and memory enhancement.
Collapse
|
28
|
Sang Z, Qiang X, Li Y, Xu R, Cao Z, Song Q, Wang T, Zhang X, Liu H, Tan Z, Deng Y. Design, synthesis and evaluation of scutellarein- O -acetamidoalkylbenzylamines as potential multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2017; 135:307-323. [DOI: 10.1016/j.ejmech.2017.04.054] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/27/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
29
|
Aouani I, Sellami B, Lahbib K, Cavalier JF, Touil S. Efficient synthesis of novel dialkyl-3-cyanopropylphosphate derivatives and evaluation of their anticholinesterase activity. Bioorg Chem 2017; 72:301-307. [DOI: 10.1016/j.bioorg.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
30
|
Yang X, Qiang X, Li Y, Luo L, Xu R, Zheng Y, Cao Z, Tan Z, Deng Y. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg Chem 2017; 71:305-314. [DOI: 10.1016/j.bioorg.2017.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/23/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|
31
|
Design, synthesis and biological evaluation of 4′-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer's disease. Bioorg Med Chem 2017; 25:1030-1041. [DOI: 10.1016/j.bmc.2016.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/03/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022]
|
32
|
Horáková E, Drabina P, Brož B, Štěpánková Š, Vorčáková K, Královec K, Havelek R, Sedlák M. Synthesis, characterization and in vitro evaluation of substituted N-(2-phenylcyclopropyl)carbamates as acetyl- and butyrylcholinesterase inhibitors. J Enzyme Inhib Med Chem 2016; 31:173-179. [PMID: 27476673 DOI: 10.1080/14756366.2016.1212193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A serie of O-substituted N-2-phenylcyclopropylcarbamates was prepared and characterized. These carbamates were tested as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). It was found, that these compounds exhibit moderate inhibition activity with values of IC50 in the range of 54.8-94.4 μM (for AChE) and up to 5.8 μM (for BChE). The AChE/BChE selectivity for each carbamate was calculated. These values varied from 0.50 to 9.46, two carbamate derivatives inhibited only AChE selectively. The most promising derivative was prepared in all optically pure forms (four isomers). It was found that individual stereoisomers differed only slightly in the inhibition ability. The cytotoxicity of all carbamates was evaluated using the standard in vitro test with Jurkat cells. With regard to their inhibition activity and cytotoxicity as well as easy preparation, O-substituted N-2-phenylcyclopropylcarbamates can be considered as promising compounds for potential medicinal applications.
Collapse
Affiliation(s)
- Eva Horáková
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| | - Pavel Drabina
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| | - Břetislav Brož
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| | - Šárka Štěpánková
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Katarína Vorčáková
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Karel Královec
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Radim Havelek
- b Department of Biological and Biochemical Sciences , Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic
| | - Miloš Sedlák
- a Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice , Pardubice , Czech Republic and
| |
Collapse
|
33
|
Li L, Chen M, Jiang FC. Design, synthesis, and evaluation of 2-piperidone derivatives for the inhibition of β-amyloid aggregation and inflammation mediated neurotoxicity. Bioorg Med Chem 2016; 24:1853-65. [PMID: 26972922 DOI: 10.1016/j.bmc.2016.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 01/17/2023]
Abstract
A series of novel multipotent 2-piperidone derivatives were designed, synthesized and biologically evaluated as chemical agents for the treatment of Alzheimer's disease (AD). The results showed that most of the target compounds displayed significant potency to inhibit Aβ(1-42) self-aggregation. Among them, compound 7q exhibited the best inhibition of Aβ(1-42) self-aggregation (59.11% at 20 μM) in a concentration-dependent manner. Additionally, the compounds 6b, 7p and 7q as representatives were found to present anti-inflammation properties in lipopolysaccharide (LPS)-induced microglial BV-2 cells. They could effectively suppress the production of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6. Meanwhile, compound 7q could prevent the neuronal cell SH-SY5Y death by LPS-stimulated microglia cell activation mediated neurotoxicity. The molecular modeling studies demonstrated that compounds matched the pharmacophore well and had good predicted physicochemical properties and estimated IC50 values. Moreover, compound 7q exerted a good binding to the active site of myeloid differentiation factor 88 (MyD88) through the docking analysis and could interfere with its homodimerization or heterodimerization. Consequently, these compounds emerged as promising candidates for further development of novel multifunctional agents for AD treatment.
Collapse
Affiliation(s)
- Lei Li
- Department of Medicinal Chemistry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ming Chen
- Department of Medicinal Chemistry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Feng-Chao Jiang
- Department of Medicinal Chemistry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
34
|
Krátký M, Štěpánková Š, Vorčáková K, Švarcová M, Vinšová J. Novel Cholinesterase Inhibitors Based on O-Aromatic N,N-Disubstituted Carbamates and Thiocarbamates. Molecules 2016; 21:molecules21020191. [PMID: 26875979 PMCID: PMC6274279 DOI: 10.3390/molecules21020191] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 01/31/2023] Open
Abstract
Based on the presence of carbamoyl moiety, twenty salicylanilide N,N-disubstituted (thio)carbamates were investigated using Ellman's method for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). O-Aromatic (thio)carbamates exhibited weak to moderate inhibition of both cholinesterases with IC50 values within the range of 1.60 to 311.0 µM. IC50 values for BChE were mostly lower than those obtained for AChE; four derivatives showed distinct selectivity for BChE. All of the (thio)carbamates produced a stronger inhibition of AChE than rivastigmine, and five of them inhibited BChE more effectively than both established drugs rivastigmine and galantamine. In general, 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)-phenyl]benzamide, 2-hydroxy-N-phenylbenzamide as well as N-methyl-N-phenyl carbamate derivatives led to the more potent inhibition. O-{4-Chloro-2-[(4-chlorophenyl)carbamoyl]phenyl} dimethylcarbamothioate was identified as the most effective AChE inhibitor (IC50 = 38.98 µM), while 2-(phenylcarbamoyl)phenyl diphenylcarbamate produced the lowest IC50 value for BChE (1.60 µM). Results from molecular docking studies suggest that carbamate compounds, especially N,N-diphenyl substituted representatives with considerable portion of aromatic moieties may work as non-covalent inhibitors displaying many interactions at peripheral anionic sites of both enzymes. Mild cytotoxicity for HepG2 cells and consequent satisfactory calculated selectivity indexes qualify several derivatives for further optimization.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Katarína Vorčáková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Markéta Švarcová
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
- Faculty of Science, J. E. Purkinje University, České mládeže 8, 400 96 Ústí nad Labem, Czech Republic.
| | - Jarmila Vinšová
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
35
|
Liu JH, Cui M, Lu XY, Zhang ZQ, Xiao B, Fu Y. Unprecedented copper-mediated oxidative demethylation of propionamides via bidentate-chelation assistance. Chem Commun (Camb) 2016; 52:1242-5. [DOI: 10.1039/c5cc08393a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-mediated bidentate-chelation directing group assisted oxidative demethylation of substituted propionamides was developed for the first time.
Collapse
Affiliation(s)
- Jing-Hui Liu
- iChEM
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
| | - Mian Cui
- iChEM
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
| | - Xiao-Yu Lu
- iChEM
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
| | - Zhen-Qi Zhang
- iChEM
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
| | - Bin Xiao
- iChEM
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
| | - Yao Fu
- iChEM
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- Department of Chemistry
- University of Science and Technology of China
| |
Collapse
|
36
|
Garifullin BF, Sharipova RR, Strobykina IY, Andreeva OV, Kravchenko MA, Kataev VE. Synthesis of macrocycles on the basis of diterpenoid isosteviol and trehalose. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1070428015100231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Heller L, Sommerwerk S, Tzschöckell F, Wiemann J, Schwarz S, Siewert B, Al-Harrasi A, Csuk R. First Occurrence of a Furano-glycyrrhetinoate and Its Cytotoxicity. Arch Pharm (Weinheim) 2015; 348:889-96. [DOI: 10.1002/ardp.201500318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/20/2015] [Accepted: 10/21/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Lucie Heller
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Sven Sommerwerk
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Felix Tzschöckell
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Jana Wiemann
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Stefan Schwarz
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Bianka Siewert
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| | - Ahmed Al-Harrasi
- Chair of Oman's Medicinal Plants and Marine Natural Products; University of Nizwa, Birkat Al-Mauz; Nizwa Sultanate of Oman
| | - René Csuk
- Department of Organic Chemistry; Martin-Luther-University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
38
|
Schwarz S, Loesche A, Lucas SD, Sommerwerk S, Serbian I, Siewert B, Pianowski E, Csuk R. Converting maslinic acid into an effective inhibitor of acylcholinesterases. Eur J Med Chem 2015; 103:438-45. [DOI: 10.1016/j.ejmech.2015.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/16/2015] [Accepted: 09/05/2015] [Indexed: 11/17/2022]
|
39
|
Manral A, Saini V, Meena P, Tiwari M. Multifunctional novel Diallyl disulfide (DADS) derivatives with β-amyloid-reducing, cholinergic, antioxidant and metal chelating properties for the treatment of Alzheimer’s disease. Bioorg Med Chem 2015; 23:6389-403. [DOI: 10.1016/j.bmc.2015.08.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
|
40
|
Si W, Zhang T, Zhang L, Mei X, Dong M, Zhang K, Ning J. Design, synthesis and bioactivity of novel phthalimide derivatives as acetylcholinesterase inhibitors. Bioorg Med Chem Lett 2015; 26:2380-2. [PMID: 27017111 DOI: 10.1016/j.bmcl.2015.07.052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/09/2015] [Accepted: 07/18/2015] [Indexed: 11/25/2022]
Abstract
A series of novel phthalimide derivatives related to benzylpiperazine were synthesized and evaluated as cholinesterase inhibitors. The results showed that all compounds were able to inhibit acetylcholinesterase (AChE), with two of them dramatically inhibiting butyrylcholinesterase (BuChE). Most compounds exhibited potent anti-AChE activity in the range of nM concentrations. In particular, compounds 7aIII and 10a showed the most potent activity with the IC50 values of 18.44 nM and 13.58 nM, respectively. To understand the excellent activity of these compounds, the structure-activity relationship was further examined. The protein-ligand docking study demonstrated that the target compounds have special binding modes and these results are in agreement with the kinetic study.
Collapse
Affiliation(s)
- Weijie Si
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Tao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lanxiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Mengya Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Kaixin Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Jun Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| |
Collapse
|
41
|
Sharipova RR, Garifullin BF, Andreeva OV, Strobykina IY, Bazanova OB, Kataev VE. Functionalization of the double bond in the glycoside of the Stevia rebaudiana plant steviolbioside, as a way to macrocyclic glycosides. RUSS J GEN CHEM+ 2015. [DOI: 10.1134/s107036321506016x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Heller L, Schwarz S, Obernauer A, Csuk R. Allobetulin derived seco-oleananedicarboxylates act as inhibitors of acetylcholinesterase. Bioorg Med Chem Lett 2015; 25:2654-6. [PMID: 25980913 DOI: 10.1016/j.bmcl.2015.04.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/17/2022]
Abstract
Ring opening of allobetulone gave either seco-acid 8 or di-acid 4. These acids were converted into esters that were screened by Ellman's assay. A dibutenylester of low cytotoxicity (NIH 3T3 murine embryonic fibroblasts) was shown to be a good mixed-type inhibitor (Ki=3.39, Ki'=2.26μM) for acetylcholinesterase.
Collapse
Affiliation(s)
- Lucie Heller
- Martin-Luther-Universität Halle-Wittenberg, Bereich Organische Chemie, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Stefan Schwarz
- Martin-Luther-Universität Halle-Wittenberg, Bereich Organische Chemie, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Anja Obernauer
- Martin-Luther-Universität Halle-Wittenberg, Bereich Organische Chemie, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - René Csuk
- Martin-Luther-Universität Halle-Wittenberg, Bereich Organische Chemie, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
43
|
Liu Q, Qiang X, Li Y, Sang Z, Li Y, Tan Z, Deng Y. Design, synthesis and evaluation of chromone-2-carboxamido-alkylbenzylamines as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem 2015; 23:911-23. [DOI: 10.1016/j.bmc.2015.01.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 12/11/2022]
|
44
|
Krátký M, Štěpánková Š, Vorčáková K, Vinšová J. Salicylanilide diethyl phosphates as cholinesterases inhibitors. Bioorg Chem 2015; 58:48-52. [DOI: 10.1016/j.bioorg.2014.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/28/2014] [Accepted: 11/06/2014] [Indexed: 01/26/2023]
|