1
|
Ito CNA, dos Santos Procopio E, Balsalobre NDM, Machado LL, Silva-Filho SE, Pedroso TF, de Lourenço CC, Oliveira RJ, Arena AC, Salvador MJ, Kassuya CAL. Analgesic and Anti-Arthritic Potential of Methanolic Extract and Palmatine Obtained from Annona squamosa Leaves. Pharmaceuticals (Basel) 2024; 17:1331. [PMID: 39458972 PMCID: PMC11510468 DOI: 10.3390/ph17101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Annona squamosa is used in folk medicine to treat pain and arthritis. Palmatine is an alkaloid isolated from several plants, including A. squamosa leaves. The aim of the present study was to investigate the analgesic, anti-arthritic, and anti-inflammatory potential of the methanolic extract of A. squamosa (EMAS) and palmatine. Methods: The chemical profile of EMAS was evaluated by ultra high-performance liquid chromatography with electrospray ionization coupled to mass spectrometry (UHPLC-ESI/MS). EMAS and palmatine were evaluated in carrageenan-induced pleurisy, zymosan-induced joint inflammation, formalin-induced nociception, and tumor necrosis factor (TNF)-induced mechanical hyperalgesia in experimental models in mice. A cytotoxicity test of EMAS and palmatine was performed using a methylthiazolidiphenyl-tetrazolium (MTT) bromide assay. Results: The analysis of the chemical profile of the extract showed the presence of palmatine, liriodenine, and anonaine. Oral administration of EMAS and palmatine significantly reduced leukocyte migration and oxide nitric production in the carrageenan-induced pleurisy model. EMAS and palmatine reduced mechanical hyperalgesia, leukocyte migration, and edema formation in the joint inflammation induced by zymosan. In the formalin test, palmatine was effective against the second-phase nociceptive response, mechanical hyperalgesia, and cold allodynia. In addition, palmatine reduced mechanical hyperalgesia induced by TNF. EMAS and palmatine did not demonstrate cytotoxicity. Conclusions: The present study showed that A. squamosa and palmatine are analgesic and anti-inflammatory agents, and that the anti-hyperalgesic properties of palmatine may involve the TNF pathway. Palmatine may be one of the compounds responsible for the anti-hyperalgesic and/or anti-arthritic properties of this medicinal plant.
Collapse
Affiliation(s)
- Caren Naomi Aguero Ito
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Elisangela dos Santos Procopio
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Natália de Matos Balsalobre
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| | - Lucas Luiz Machado
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Saulo Euclides Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Taíse Fonseca Pedroso
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Caroline Caramano de Lourenço
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Rodrigo Juliano Oliveira
- Stem Cell, Cell Therapy and Toxicological Genetics Research Centre (CeTroGen), Medical School, Federal University of Mato Grosso do Sul (UFMS), Campo Grande 79070-900, MS, Brazil;
| | - Arielle Cristina Arena
- Institute of Biosciences of Botucatu, Department of Structural and Functional Biology, São Paulo State University (UNESP), Botucatu 18618-970, SP, Brazil;
| | - Marcos José Salvador
- Institute of Biology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil; (T.F.P.); (C.C.d.L.); (M.J.S.)
| | - Cândida Aparecida Leite Kassuya
- Health Sciences College, Federal University of Grande Dourados (UFGD), Dourados 79804-970, MS, Brazil; (C.N.A.I.); (E.d.S.P.); (N.d.M.B.)
| |
Collapse
|
2
|
Oladeji OS, Odelade KA, Mahal A, Obaidullah AJ, Zainul R. Systematic appraisals of naturally occurring alkaloids from medicinal plants. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7439-7471. [PMID: 38767672 DOI: 10.1007/s00210-024-03126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024]
Abstract
Alkaloids are a complex class of biologically active compounds with a broad spectrum of health-related applications. Particularly the alkaloids of indole, steroidal, terpenoids, isoquinoline, and bisbenzylisoquinoline have been extensively investigated. Ultimately, substantial advancement has been highlighted in the investigation of chemical constituents and the therapeutic benefits of plant alkaloids, particularly during the last ten years. A total of 386 alkaloids have been isolated from over 40 families, including Apocynaceae, Annonaceae, Rubiaceae, Menispermaceae, Ranunculaceae, Buxaceae, Papaveraceae, Magnoliaceae, Rutaceae and Phyllanthaceae. This paper will investigate several alkaloids that have been isolated from botanical medicines as well as offer an in-depth analysis of their cytotoxic properties.
Collapse
Affiliation(s)
- Oluwole Solomon Oladeji
- Natural Products Research Unit, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, Omu-Aran, PMB 1001, Nigeria
- Landmark University Sustainable Development Goals III (SDG 3), Good Health and Well-Being, Landmark University, Omu-Aran, PMB 1001, Nigeria
| | | | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059, Rostock, Germany
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, 11451, Riyadh, Saudi Arabia
| | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMBIOTICS), Universitas Negeri Padang, Padang, Indonesia.
| |
Collapse
|
3
|
Li C, Liu H, Qin M, Tan YJ, Ou XL, Chen XY, Wei Y, Zhang ZJ, Lei M. RNA editing events and expression profiles of mitochondrial protein-coding genes in the endemic and endangered medicinal plant, Corydalis saxicola. FRONTIERS IN PLANT SCIENCE 2024; 15:1332460. [PMID: 38379941 PMCID: PMC10876856 DOI: 10.3389/fpls.2024.1332460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Corydalis saxicola, an endangered medicinal plant endemic to karst habitats, is widely used in Traditional Chinese Medicine to treat hepatitis, abdominal pain, bleeding hemorrhoids and other conditions. However, to date, the mitochondrial (mt) genome of C. saxicola has not been reported, which limits our understanding of the genetic and biological mechanisms of C. saxicola. Here, the mt genome of C. saxicola was assembled by combining the Nanopore and Illumina reads. The mt genome of C. saxicola is represented by a circular chromosome which is 587,939 bp in length, with an overall GC content of 46.50%. 40 unique protein-coding genes (PCGs), 22 tRNA genes and three rRNA genes were identified. Codon usage of the PCGs was investigated and 167 simple sequence repeats were identified. Twelve homologous fragments were identified between the mt and ct genomes of C. saxicola, accounting for 1.04% of the entire mt genome. Phylogenetic examination of the mt genomes of C. saxicola and 30 other taxa provided an understanding of their evolutionary relationships. We also predicted 779 RNA editing sites in 40 C. saxicola mt PCGs and successfully validated 506 (65%) of these using PCR amplification and Sanger sequencing. In addition, we transcriptionally profiled 24 core mt PCGs in C. saxicola roots treated with different concentrations of CaCl2, as well as in other organs. These investigations will be useful for effective utilization and molecular breeding, and will also provide a reference for further studies of the genus Corydalis.
Collapse
Affiliation(s)
- Cui Li
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Han Liu
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Mei Qin
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yao-jing Tan
- School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Xia-lian Ou
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xiao-ying Chen
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Wei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Zhan-jiang Zhang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory for High-Quality Formation and Utilization of Dao-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ming Lei
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of Traditional Chinese Medicine (TCM) Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
4
|
Zhao X, Wang L, Zhou Y, Wang Q, Wang F, Li Y. Integrating Full-Length and Second-Generation Transcriptomics to Reveal Differentially Expressed Genes Associated with the Development of Corydalis yanhusuo Tuber. Life (Basel) 2023; 13:2207. [PMID: 38004347 PMCID: PMC10672666 DOI: 10.3390/life13112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Corydalis yanhusuo is a medicinal herb in China that has been widely used to treat various kinds of pain. The tuber is the main organ of C. yanhusuo used for medicinal purposes, but changes in related genes during the development of the tuber have rarely been reported. To identify the differentially expressed genes during tuber development, C. yanhusuo full-length transcriptomic sequencing was performed using single-molecule real-time technology, and tubers at three development stages were selected for comparative transcriptome analysis. A total of 90,496 full-length non-chimeric transcripts were obtained, and 19,341 transcripts were annotated in at least one public database. A total of 9221 differentially expressed genes were identified during the swelling process of C. yanhusuo tuber. A Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis revealed that differentially expressed genes associated with a "starch and sucrose metabolism pathway", "phenylpropanoid biosynthesis pathway", "isoquinoline alkaloid biosynthesis pathway", "zeatin biosynthesis pathway", and "brassinosteroid biosynthesis pathway" were predominantly enriched. In addition, the genes involved in cell wall metabolism were potentially associated with tuber swelling. These processes regulated and were involved in C. yanhusuo tuber development. The results provide a foundation for further research on tuber formation in medicinal plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Li
- Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an Botanical Garden of Shaanxi Province (Institute of Botany of Shaanxi Province), Xi’an 710061, China (L.W.); (Y.Z.); (Q.W.); (F.W.)
| |
Collapse
|
5
|
Son YG, Kim JY, Park JY, Kim KD, Park KH, Kim JY. Inhibitory Potential of Quercetin Derivatives Isolated from the Aerial Parts of Siegesbeckia pubescens Makino against Bacterial Neuraminidase. Molecules 2023; 28:5365. [PMID: 37513238 PMCID: PMC10386613 DOI: 10.3390/molecules28145365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
This study aimed to isolate bacterial neuraminidase (BNA) inhibitory O-methylated quercetin derivatives from the aerial parts of S. pubescens. All the isolated compounds were identified as O-methylated quercetin (1-4), which were exhibited to be noncompetitive inhibitors against BNA, with IC50 ranging from 14.0 to 84.1 μM. The responsible compounds (1-4) showed a significant correlation between BNA inhibitory effects and the number of O-methyl groups on quercetin; mono (1, IC50 = 14.0 μM) > di (2 and 3, IC50 = 24.3 and 25.8 μM) > tri (4, IC50 = 84.1 μM). In addition, the binding affinities between BNA and inhibitors (1-4) were also examined by fluorescence quenching effect with the related constants (KSV, KA, and n). The most active inhibitor 1 possessed a KSV with 0.0252 × 105 L mol-1. Furthermore, the relative distribution of BNA inhibitory O-methylated quercetins (1-4) in S. pubescens extract was evaluated using LC-Q-TOF/MS analysis.
Collapse
Affiliation(s)
- Yun Gon Son
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Ju Yeon Kim
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Jae Yeon Park
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science (IALS), Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ki Hun Park
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Science (IALS), Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jeong Yoon Kim
- Department of Pharmaceutical Engineering, Institute of Agricultural and Life Science (IALS), Anti-Aging Bio Cell Factory Regional Leading Research Center (ABC-RLRC), Gyeongsang National University, Jinju 52725, Republic of Korea
| |
Collapse
|
6
|
Utami AR, Maksum IP, Deawati Y. Berberine and Its Study as an Antidiabetic Compound. BIOLOGY 2023; 12:973. [PMID: 37508403 PMCID: PMC10376565 DOI: 10.3390/biology12070973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes hyperglycemia conditions and leads to various chronic complications that causes death. The prevalence of diabetes is predicted to continue to increase, and with the high toxicity levels of current diabetes drugs, the exploration of natural compounds as alternative diabetes treatment has been widely carried out, one of which is berberine. Berberine and several other alkaloid compounds, including some of its derivatives, have shown many bioactivities, such as neuraminidase and hepatoprotective activity. Berberine also exhibits antidiabetic activity. As an antidiabetic compound, berberine is known to reduce blood glucose levels, increase insulin secretion, and weaken glucose tolerance and insulin resistance by activating the AMPK pathway. Apart from being an antidiabetic compound, berberine also exhibits various other activities such as being anti-adipogenic, anti-hyperlipidemic, anti-inflammatory, and antioxidant. Many studies have been conducted on berberine, but its exact mechanism still needs to be clarified and requires further investigation. This review will discuss berberine and its mechanism as a natural compound with various activities, mainly as an antidiabetic.
Collapse
Affiliation(s)
- Ayudiah Rizki Utami
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Yusi Deawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
7
|
Toledo-González K, Riley-Saldaña C, Salas-Lizana R, De-la-Cruz-Chacón I, González-Esquinca A. Alkaloidal variation in seedlings of Annona purpurea Moc. & Sessé ex Dunal infected with Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. BIOCHEM SYST ECOL 2023. [DOI: 10.1016/j.bse.2023.104611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Raza S, Miller M, Hamberger B, Vermaas JV. Plant Terpenoid Permeability through Biological Membranes Explored via Molecular Simulations. J Phys Chem B 2023; 127:1144-1157. [PMID: 36717085 PMCID: PMC9923751 DOI: 10.1021/acs.jpcb.2c07209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Plants synthesize small molecule diterpenes composed of 20 carbons from precursor isopentenyl diphosphate and dimethylallyl disphosphate, manufacturing diverse compounds used for defense, signaling, and other functions. Industrially, diterpenes are used as natural aromas and flavoring, as pharmaceuticals, and as natural insecticides or repellents. Despite diterpene ubiquity in plant systems, it remains unknown how plants control diterpene localization and transport. For many other small molecules, plant cells maintain transport proteins that control compound compartmentalization. However, for most diterpene compounds, specific transport proteins have not been identified, and so it has been hypothesized that diterpenes may cross biological membranes passively. Through molecular simulation, we study membrane transport for three complex diterpenes from among the many made by members of the Lamiaceae family to determine their permeability coefficient across plasma membrane models. To facilitate accurate simulation, the intermolecular interactions for leubethanol, abietic acid, and sclareol were parametrized through the standard CHARMM methodology for incorporation into molecular simulations. To evaluate the effect of membrane composition on permeability, we simulate the three diterpenes in two membrane models derived from sorghum and yeast lipidomics data. We track permeation events within our unbiased simulations, and compare implied permeation coefficients with those calculated from Replica Exchange Umbrella Sampling calculations using the inhomogeneous solubility diffusion model. The diterpenes are observed to permeate freely through these membranes, indicating that a transport protein may not be needed to export these small molecules from plant cells. Moreover, the permeability is observed to be greater for plant-like membrane compositions when compared against animal-like membrane models. Increased permeability for diterpene molecules in plant membranes suggest that plants have tailored their membranes to facilitate low-energy transport processes for signaling molecules.
Collapse
Affiliation(s)
- Saad Raza
- Plant
Research Laboratory, College of Natural Science, Michigan State University, East LansingMichigan48824, United States
| | - Mykayla Miller
- Department
of Chemistry and Biochemistry, California
State University, Fullerton, Fullerton, California92831, United States
| | - Björn Hamberger
- Department
Of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East LansingMichigan48824, United States
| | - Josh V. Vermaas
- Plant
Research Laboratory, College of Natural Science, Michigan State University, East LansingMichigan48824, United States,Department
Of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East LansingMichigan48824, United States,E-mail: . Phone: +1 (517) 884-6937
| |
Collapse
|
9
|
Nitulescu G, Mihai DP, Zanfirescu A, Stan MS, Gradinaru D, Nitulescu GM. Discovery of New Microbial Collagenase Inhibitors. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122114. [PMID: 36556479 PMCID: PMC9781087 DOI: 10.3390/life12122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial virulence factors are mediating bacterial pathogenesis and infectivity. Collagenases are virulence factors secreted by several bacterial stains, such as Clostridium, Bacillus, Vibrio and Pseudomonas. These enzymes are among the most efficient degraders of collagen, playing a crucial role in host colonization. Thus, they are an important target for developing new anti-infective agents because of their pivotal roles in the infection process. A primary screening using a fluorescence resonance energy-transfer assay was used to experimentally evaluate the inhibitory activity of 77 compounds on collagenase A. Based on their inhibitory activity and chemical diversity, a small number of compounds was selected to determine the corresponding half maximal inhibitory con-centration (IC50). Additionally, we used molecular docking to get a better understanding of the enzyme-compound interaction. Several natural compounds (capsaicin, 4',5-dihydroxyflavone, curcumin, dihydrorobinetin, palmatine chloride, biochanin A, 2'-hydroxychalcone, and juglone) were identified as promising candidates for further development into useful anti-infective agents against infections caused by multi-drug-resistant bacterial pathogens which include collagenase A in their enzymatic set.
Collapse
Affiliation(s)
- Georgiana Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
- Correspondence:
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Daniela Gradinaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
10
|
Validation of the Anticolitis Efficacy of the Jian-Wei-Yu-Yang Formula. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9110704. [PMID: 36091591 PMCID: PMC9451982 DOI: 10.1155/2022/9110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Background Inflammatory bowel disease (IBD) is a major cause of morbidity and mortality due to its repetitive remission and relapse. The Jian-Wei-Yu-Yang (JW) formula has a historical application in the clinic to combat gastrointestinal disorders. The investigation aimed to explore the molecular and cellular mechanisms of JW. Methods 2% dextran sodium sulfate (DSS) was diluted in drinking water and given to mice for 5 days to establish murine models of experimental colitis, and different doses of JW solution were administered for 14 days. Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) were utilized to predict the therapeutic role of JW against experimental colitis and colitis-associated colorectal cancer (CAC). 16S rRNA sequencing and untargeted metabolomics were conducted using murine feces. Western blotting, immunocytochemistry, and wound healing experiments were performed to confirm the molecular mechanisms. Results (1) Liquid chromatography with mass spectrometry was utilized to confirm the validity of the JW formula. The high dose of JW treatment markedly attenuated DSS-induced experimental colitis progression, and the targets were enriched in inflammation, infection, and tumorigenesis. (2) The JW targets were related to the survival probability in patients with colorectal cancer, underlying a potential therapeutic value in CRC intervention. (3) Moreover, the JW therapy successfully rescued the decreased richness and diversity of microbiota, suppressed the potentially pathogenic phenotype of the gut microorganisms, and increased cytochrome P450 activity in murine colitis models. (4) Our in vitro experiments confirmed that the JW treatment suppressed caspase3-dependent pyroptosis, hypoxia-inducible factor 1α (HIF1α), and interleukin-1b (IL-1b) in the colon; facilitated the alternative activation of macrophages (Mφs); and inhibited tumor necrosis factor-α (TNFα)-induced reactive oxygen species (ROS) level in intestinal organoids (IOs). Conclusion The JW capsule attenuated the progression of murine colitis by a prompt resolution of inflammation and bloody stool and by re-establishing a microbiome profile that favors re-epithelization and prevents carcinogenesis.
Collapse
|
11
|
Chen W, Yi X, Qu H, Chen Y, Tang P, Chen F. Concise syntheses of 13-methylprotoberberine and 13-methyltetrahydroprotoberberine alkaloids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Xia GY, Fang DJ, Wang LY, Xia H, Wang YN, Shang HC, Lin S. 13,13a-seco-protoberberines from the tubers of Corydalis yanhusuo and their anti-inflammatory activity. PHYTOCHEMISTRY 2022; 194:113023. [PMID: 34839130 DOI: 10.1016/j.phytochem.2021.113023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Six undescribed protoberberine derivatives including two pairs of enantiomers, named yanhusanines G-L, along with fifteen reported protoberberine alkaloids, were isolated from the tubers of Corydalis yanhusuo. Among them, yanhusanines H-L feature a unique 13,13a-seco skeleton which is rare in nature. Their structural elucidations were achieved by extensive spectroscopic analysis and quantum chemistry calculations. A biogenetic route for yanhusanines H-L was proposed. Bioassay results showed that yanhusanine J exhibited potent inhibitory effect against the nitric oxide (NO) production in lipopolysaccharide (LPS) induced RAW 264.7 cells (IC50 = 2.25 ± 1.32 μM). Western blot analysis demonstrated that yanhusanine J exerted its anti-inflammatory effect via suppressing the nuclear factor kappa B (NF-κB) pathway, together with the decrease of the inflammatory factors TNF-α, IL-6 and IL-1β. Furthermore, molecular simulation docking indicated that yanhusanine J had strong interaction with the active site of the inducible nitric oxide synthase (iNOS) protein.
Collapse
Affiliation(s)
- Gui-Yang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Dong-Jie Fang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ling-Yan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Ya-Nan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hong-Cai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
13
|
Zhong F, Chen Y, Chen J, Liao H, Li Y, Ma Y. Jatrorrhizine: A Review of Sources, Pharmacology, Pharmacokinetics and Toxicity. Front Pharmacol 2022; 12:783127. [PMID: 35095493 PMCID: PMC8793695 DOI: 10.3389/fphar.2021.783127] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Jatrorrhizine, an isoquinoline alkaloid, is a bioactive metabolite in common medicinal plants, such as Berberis vernae Schneid., Tinospora sagittata (Oliv.) Gagnep. and Coptis chinensis Franch. These plants have been used for centuries in traditional medicine for their wide-ranging pharmacological properties. This review emphasizes the latest and comprehensive information on the sources, pharmacology, pharmacokinetics and toxicity of jatrorrhizine. Studies on this alkaloid were collected from scientific internet databases, including the Web of Science, PubMed, ScienceDirect, Google Scholar, Elsevier, Springer, Wiley Online Library and Europe PMC and CNKI, using a combination of keywords involving “jatrorrhizine”, “sources”, “pharmacology,” “pharmacokinetics,” and “toxicology”. Jatrorrhizine exhibits anti-diabetic, antimicrobial, antiprotozoal, anticancer, anti-obesity and hypolipidemic properties, along with central nervous system activities and other beneficial activity. Studies of jatrorrhizine have laid the foundation for its application to the treatment of various diseases, but some issues still exist. Further investigations might emphasize 1) specific curative mechanisms of jatrorrhizine and clinical utility, 2) application prospect in the treatment of metabolic disorders, 3) comprehensive investigations of the toxicity mechanisms and 4) interactions of jatrorrhizine with other pharmaceuticals and development of derivatives.
Collapse
Affiliation(s)
- Furong Zhong
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yang Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hailang Liao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yirou Li
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuntong Ma
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
Yan J, Yu W, Lu C, Liu C, Wang G, Jiang L, Jiang Z, Qin Z. The Pharmacological Mechanism of Guchangzhixie Capsule Against Experimental Colitis. Front Pharmacol 2021; 12:762603. [PMID: 34867387 PMCID: PMC8637769 DOI: 10.3389/fphar.2021.762603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Ulcerative colitis (UC) is the major type of inflammatory bowel disease (IBD) characterized by an overactive immune response and destruction of colorectal epithelium with intricate pathological factors. Guchangzhixie (GCZX) capsule, included in the Chinese Pharmacopoeia 2020, has been widely utilized against UC. However, the underlying molecular mechanisms have not been elucidated. In the present study, a murine model of experimental colitis was established by orally feeding 4% dextran sodium sulfate (DSS) for 5 days and subsequently subjecting to GCZX treatment for another 15 days. Network pharmacology analysis was performed to predict the pertinent mechanisms of GCZX capsule. Cellular experiments examining the functional changes of intestinal organoids (IOs), macrophages (Mφs), and human colon epithelial cell cells (NCM460 cell line) after GCZX therapy were performed. Sequencing of 16S rRNA was conducted on the stools from the mouse model. Liquid chromatography-mass spectrometry (LC–MS) was utilized to detect serum metabolites. As a result, DSS induced experimental colitis, and this induction was alleviated by GCZX treatment, as evidenced by rescued pathological symptoms in UC mouse models, such as rectal bleeding stopping, decreased levels of albumin, interleukin-17, as well as chemokine (C-X-C motif) ligand 1 (CXCL1), and reduction in colon length. Network pharmacology analysis showed that GCZX-target genes were enriched in pathogen-induced infections, inflammatory pathways, as well as neoplastic processes. DSS treatment decreased microbial diversity and led to the accumulation of pathological bacterial, which was reversed by GCZX capsule. PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) based on profiles of microbiota composition demonstrated a decreased incidence of infectious disease and cancers after GCZX therapy. In full accordance with these data, GCZX administration suppressed Mφ transition to pro-inflammatory phenotype, alleviated tumor necrosis factor-α (TNFα)-compromised IOs functions, and decreased the recruitment of Mφs by epithelial cells. We conclude that GCZX capsule is an effective drug for UC and its pharmacological mechanisms involve re-establishing an anti-inflammatory milieu and favoring mucosal healing.
Collapse
Affiliation(s)
- Jing Yan
- Department of Physiology, Jining Medical University, Jining, China
| | - Wei Yu
- Department of Physiology, Jining Medical University, Jining, China
| | - Chang Lu
- Department of Physiology, Jining Medical University, Jining, China
| | - Chen Liu
- Department of Physiology, Jining Medical University, Jining, China
| | - Guoliang Wang
- Department of Physiology, Jining Medical University, Jining, China
| | - Lu Jiang
- Department of Physiology, Jining Medical University, Jining, China
| | - Zizheng Jiang
- Department of Physiology, Jining Medical University, Jining, China
| | | |
Collapse
|
15
|
Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur J Med Chem 2021; 226:113839. [PMID: 34536668 DOI: 10.1016/j.ejmech.2021.113839] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023]
Abstract
Alkaloids are one of the most important classes of plant bioactives. Among these isoquinoline alkaloids possess varied structures and exhibit numerous biological activities. Basically these are biosynthetically produced via phenylpropanoid pathway. However, occasionally some mixed pathways may also occur to provide structural divergence. Among the various biological activities anticancer, antidiabetic, antiinflammatory, and antimicrobial are important. A few notable bioactive isoquinoline alkaloids are antidiabetic berberine, anti-tussive codeine, analgesic morphine, and muscle relaxant papaverine etc. Berberine is one of the most discussed bioactives from this class possessing broad-spectrum pharmacological activities. Present review aims at recent updates of isoquinoline alkaloids with major emphasis on berberine, its detailed chemistry, important biological activities, structure activity relationship and implementation in future research.
Collapse
|
16
|
Pharmacokinetics, tissue distribution and plasma protein binding rate of palmatine following intragastric and intravenous administration in rats using liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2021; 203:114226. [PMID: 34182412 DOI: 10.1016/j.jpba.2021.114226] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Palmatine is a natural isoquinoline alkaloid widely found in traditional Chinese medicines. In this study, a simple, sensitive and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the quantification of palmatine in the plasma and tissue samples in rats. Sample preparation involved a simple protein precipitation extraction technique using acetonitrile as the precipitating solvent. Chromatographic separation was accomplished on an ACQUITY UPLC BEH C18 column with a mobile phase of acetonitrile-5 mM ammonium acetate solution (70:30, v/v) at a flow rate of 0.3 mL/min. Coptisine was selected as the internal standard. The protonated analytes were determined with MRM in the positive ion mode. The assay exhibited a linear dynamic range of 1.0-1000 ng/mL for palmatine in each biological matrix and the low limit of quantification was 1.0 ng/mL. Non-compartmental pharmacokinetic parameters indicated that there is a significant difference in the apparent distribution volume and half-life between intragastric and intravenous administration modes. Palmatine could be detected in different tissues and the content in liver and kidney is relatively high, suggesting that liver and kidney might be the targeting organs of palmatine. The plasma protein binding rate test showed that the percent binding of palmatine is medium, and was found to be higher in human than in rats.
Collapse
|
17
|
Effect of Protoberberine-Rich Fraction of Chelidonium majus L. on Endometriosis Regression. Pharmaceutics 2021; 13:pharmaceutics13070931. [PMID: 34201532 PMCID: PMC8309065 DOI: 10.3390/pharmaceutics13070931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/19/2022] Open
Abstract
Endometriosis is a gynecological disease defined by the presence of endometrial tissue outside the uterus. To date, the effective treatment of this disease is still based on invasive surgery or laparoscopy. Chelidonium majus L. (Papaveraceae) belongs to medicinal, latex-bearing plants. Extracts from the plant are a rich source of pharmacologically active agents. Protoberberine compounds derived from C. majus possess anticancer and antiproliferative activities. In the present study of a rat model of endometriosis, we investigated the influence of the plant protoberberine-rich fraction (BBR) obtained from the medicinal plant C. majus on the development of endometriosis. To understand of BBR therapeutic potential for endometriosis, metabolomics has been applied to study. BBR was prepared from an ethanolic extract of dry plants C. majus. Rats (n = 16) with confirmed endometriosis were treated with BBR administered orally (1 g/kg) for 14 days. Blood serum samples were collected from all of the animals and metabolites were studied using the NMR method. The metabolomic pattern was compared before and after the protoberberine treatment. The performed analysis showed significant changes in the concentrations of metabolites that are involved in energy homeostasis, including glucose, glutamine, and lactate. Histopathological studies showed no recurrence of endometriosis loci after treatment with BBR. The results of the study found that BBR treatment prevents the recurrence of endometriosis in rats. Moreover, metabolomics profiling can be applied to better understand the mechanisms of action of these protoberberine secondary plant metabolites. Our findings provide new insights into the pharmaceutical activity of natural protoberberine plant compounds.
Collapse
|
18
|
Daley SK, Cordell GA. Alkaloids in Contemporary Drug Discovery to Meet Global Disease Needs. Molecules 2021; 26:molecules26133800. [PMID: 34206470 PMCID: PMC8270272 DOI: 10.3390/molecules26133800] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
An overview is presented of the well-established role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs. The necessity for a new international paradigm for natural product discovery and development for the treatment of multidrug resistant organisms, and rare and neglected tropical diseases in the era of the Fourth Industrial Revolution and the Quintuple Helix is discussed.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA;
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
19
|
Kim HY, Kim JH, Jeong HG, Jin CH. Anti-diabetic effect of the lupinalbin A compound isolated from Apios americana: In vitro analysis and molecular docking study. Biomed Rep 2021; 14:39. [PMID: 33692902 PMCID: PMC7938295 DOI: 10.3892/br.2021.1415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/03/2021] [Indexed: 12/29/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP4) and α-glucosidase inhibitors have been developed as anti-diabetic agents for the treatment of diabetes mellitus. In the present study, the anti-diabetic effects of the lupinalbin A compound isolated from Apios americana was investigated by measuring its inhibitory activity against DPP4 and α-glucosidase. To detect the inhibitory effect of lupinalbin A, DPP4 and α-glucosidase assays were performed in vitro. Molecular docking analysis was performed using AutoDock 4.2. The IC50 values of lupinalbin A against DPP4 and α-glucosidase were 45.2 and 53.4 µM, respectively. Analysis of the enzyme kinetics revealed that lupinalbin A interacted with the active site of DPP4 in a competitive manner, with an inhibition constant (Ki) value of 35.1±2.0 µM, whereas the lupinalbin A interaction with α-glucosidase was non-competitive, with a Ki value of 45.0 µM. Molecular docking analysis revealed a binding pose between the DPP4 enzyme and lupinalbin A. Taken together, these data suggest lupinalbin A is more effective against DPP4 than α-glucosidase, with regard to its anti-diabetic effects.
Collapse
Affiliation(s)
- Hyo-Young Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Jang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Chungcheongnam-do 34134, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| |
Collapse
|
20
|
Deng AP, Zhang Y, Zhou L, Kang CZ, Lv CG, Kang LP, Nan TG, Zhan ZL, Guo LP, Huang LQ. Systematic review of the alkaloid constituents in several important medicinal plants of the Genus Corydalis. PHYTOCHEMISTRY 2021; 183:112644. [PMID: 33429352 DOI: 10.1016/j.phytochem.2020.112644] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The genus Corydalis is a botanical source of various pharmaceutically active components. Its member species have been widely used in traditional medicine systems in Southeast Asia, especially in China for thousands of years. They have been administered to treat the common cold, hypertension, hepatitis, hemorrhage, edema, gastritis, cardiovascular and cerebrovascular diseases, and neurological disorders. Analgesia is the most important effect of Corydalis products, which are relatively non-addictive and associated with low tolerance compared with other analgesics. Certain Corydalis species are rich in alkaloids, which have strong biological activity, and also contain coumarins, flavonoids, steroids, organic acids and other chemical components. These constituents have pharmacological efficacy against diseases of the nervous, cardiovascular and digestive systems. Numerous investigations have been performed on these plants and their components. Here, we systemically summarized the chemical constituents of important medicinal member species of Corydalis that have been reported since 1962. A total 381 alkaloids were enumerated, including 117 quaternary isoquinoline type, 60 Benzophenanthridine type, 37 aporphine type, 10 protopine type, 59 phthalide isoquinoline type, 52 simple isoquinoline-type, 25 lignin amides and 21 other alkaloids. Thus, we have provided a basis for further explorations into the pharmacologically active constituents of Corydalissp.(Papaveraceae) to develop medicines that exert strong effects, are relatively non-addictive, and result in few side effects.
Collapse
Affiliation(s)
- Ai-Ping Deng
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yue Zhang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chuan-Zhi Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Chao-Gen Lv
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Li-Ping Kang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tie-Gui Nan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Zhi-Lai Zhan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lan-Ping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lu-Qi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Joint Laboratory of Infinitus Quality Study of Chinese Herbal Medicine and National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
21
|
Tian B, Tian M, Huang SM. Advances in phytochemical and modern pharmacological research of Rhizoma Corydalis. PHARMACEUTICAL BIOLOGY 2020; 58:265-275. [PMID: 32223481 PMCID: PMC7170387 DOI: 10.1080/13880209.2020.1741651] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
ABSRACTContext: Rhizoma Corydalis (RC) is the dried tubers of Corydalis yanhusuo (Y. H. Chou and Chun C. Hsu) W. T. Wang ex Z. Y. Su and C. Y. Wu (Papaveraceae). Traditionally, RC is used to alleviate pain such as headache, abdominal pain, and epigastric pain. Modern medicine shows that it has analgesic, anti-arrhythmia, and other effects.Objective: We provided an overview of the phytochemical and pharmacological properties of RC as a foundation for its clinical application and further research and development of new drugs.Methods: We collected data of various phytochemical and pharmacological effects of RC from 1982 to 2019. To correlate with existing scientific evidence, we used Google Scholar and the journal databases Scopus, PubMed, and CNKI. 'Rhizoma Corydalis', 'phytochemistry', and 'pharmacological effects' were used as key words.Results: Currently, more than 100 chemical components have been isolated and identified from RC, among which alkaloid is the pimary active component of RC. Based on prior research, RC has antinociceptive, sedative, anti-epileptic, antidepressive and anti-anxiety, acetylcholinesterase inhibitory effect, drug abstinence, anti-arrhythmic, antimyocardial infarction, dilated coronary artery, cerebral ischaemia reperfusion (I/R) injury protection, antihypertensive, antithrombotic, antigastrointestinal ulcer, liver protection, antimicrobial, anti-inflammation, antiviral, and anticancer effects.Conclusions: RC is reported to be effective in treating a variety of diseases. Current pharmacological studies on RC mainly focus on the nervous, circulatory, digestive, and endocrine systems, as well as drug withdrawal. Although experimental data support the beneficial effects of this drug, its physiological activity remains a concern. Nonetheless, this review provides a foundation for future research.
Collapse
Affiliation(s)
- Bing Tian
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming Tian
- Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
- Ming Tian Experimental Training Center, Heilongjiang University of Chinese Medicine, Harbin150040, China
| | - Shu-Ming Huang
- Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- CONTACT Shu-Ming Huang Department of Neuroscience, Institute for Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin150040, China
| |
Collapse
|
22
|
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev 2020; 40:2212-2289. [PMID: 32729169 PMCID: PMC7554109 DOI: 10.1002/med.21703] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, 251 Ningda Road, Xining 810016, P.R. China
| | - Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
23
|
Zhang J, He S, Wang J, Wang C, Wu J, Wang W, Li F, Li S, Zhao C, Li F. A Review of the Traditional Uses, Botany, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicology of Corydalis yanhusuo. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20957752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Corydalis yanhusuo W. T. Wang (Papaveraceae) is a traditional Chinese herbal medicine that has long been used to treat several conditions and is widely distributed in Asian countries. This review focuses on the traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology of C. yanhusuo. The literature on C. yanhusuo was reviewed using several resources, including classic books on Chinese herbal medicine and scientific databases, namely, PubMed, Springer, Web of Science, Science Direct, and China National Knowledge Infrastructure. Based on information from these databases regarding the chemical components of C. yanhusuo, we evaluated the underlying interaction network between chemical components, biological targets, and associated diseases using Cytoscape software. To date, more than 160 compounds have been isolated and identified from C. yanhusuo, including alkaloids, organic acids, volatile oils, amino acids, nucleosides, alcohols, and sugars. The crude extracts and purified compounds of this plant have analgesic, antiarrhythmic, and antipeptic ulcer properties, along with hypnotic effects. However, studies on the pharmacokinetics of C. yanhusuo extracts remain limited. C. yanhusuo has therapeutic potential in diseases such as cancer and depression, probably due to glaucine and corydaline. Our network pharmacology analysis revealed interactions between 20 compounds, 54 corresponding targets, and 4 health conditions. We found that leonticine, tetrahydroberberine, and corydalmine may regulate the expression of PTGS2, PTGS1, KCNH2, SCN5A, RXRA, CAMKK2, NCOA2, and ESR1, representing a potential treatment strategy against pain, gastric ulcers, inflammation, and cardiac arrhythmias. Additionally, this article discusses the future directions of research on C. yanhusuo.
Collapse
Affiliation(s)
- Jingxia Zhang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
- College of Pharmacy, Engineering Technology Research Center of Shaanxi Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Surong He
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
- College of Pharmacy, Engineering Technology Research Center of Shaanxi Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Jing Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Changli Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
- College of Pharmacy, Engineering Technology Research Center of Shaanxi Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Jianhua Wu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Weifeng Wang
- Institute of Tradition Chinese Medicine, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi’an, P. R. China
| | - Fan Li
- Institute of Tradition Chinese Medicine, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi’an, P. R. China
| | - Shasha Li
- Institute of Tradition Chinese Medicine, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi’an, P. R. China
| | - Chongbo Zhao
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
- College of Pharmacy, Engineering Technology Research Center of Shaanxi Administration of Chinese Herbal Pieces, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
| | - Fang Li
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P. R. China
- Institute of Tradition Chinese Medicine, Shaanxi Provincial Academy of Traditional Chinese Medicine, Xi’an, P. R. China
| |
Collapse
|
24
|
Li HX, Heo M, Go Y, Kim YS, Kim YH, Yang SY, Li W. Coumarin and Moracin Derivatives from Mulberry Leaves ( Morus alba L.) with Soluble Epoxide Hydrolase Inhibitory Activity. Molecules 2020; 25:molecules25173967. [PMID: 32878149 PMCID: PMC7504814 DOI: 10.3390/molecules25173967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022] Open
Abstract
This study identified three coumarins (1-3), and six moracin derivatives (4-9). The structures of these natural compounds were determined by the spectroscopic methods, including 1D and 2D NMR methods, and comparison with previous reported data. All of the isolated compounds were assessed for the effects on the soluble epoxide hydrolase (sEH) inhibitory activity. Among them, compounds 1-7 exhibited significant inhibitory effect with 100% inhibitory, with IC50 values of 6.9, 0.2, 15.9, 1.1, 1.2, 9.9, and 7.7 µM, respectively. A kinetic study revealed that compounds 1-4, and 6 were competitive types of inhibitors, compounds 5 and 7 were mixed types of inhibitors. These results suggest that moracin and coumarin derivatives from mulberry leaves are significant sEH inhibitors.
Collapse
Affiliation(s)
- Hong Xu Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Myungsook Heo
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (M.H.); (Y.H.K.)
| | - Younghoon Go
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; (Y.G.); (Y.S.K.)
| | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; (Y.G.); (Y.S.K.)
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (M.H.); (Y.H.K.)
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (M.H.); (Y.H.K.)
- Correspondence: (S.Y.Y.); (W.L.); Tel.: +82-42-821-5933 (S.Y.Y.); +82-53-940-3874 (W.L.)
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea; (Y.G.); (Y.S.K.)
- Correspondence: (S.Y.Y.); (W.L.); Tel.: +82-42-821-5933 (S.Y.Y.); +82-53-940-3874 (W.L.)
| |
Collapse
|
25
|
Qi Y, Zhang Q, Zhu H. Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations. Chin Med 2019; 14:57. [PMID: 31867052 PMCID: PMC6918586 DOI: 10.1186/s13020-019-0277-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD), a famous traditional Chinese prescription constituted by Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gradeniae, has notable characteristics of dissipating heat and detoxification, interfering with tumors, hepatic diseases, metabolic disorders, inflammatory or allergic processes, cerebral diseases and microbial infections. Based on the wide clinical applications, accumulating investigations about HLJDD focused on several aspects: (1) chemical analysis to explore the underlying substrates responsible for the therapeutic effects; (2) further determination of pharmacological actions and the possible mechanisms of the whole prescription and of those representative ingredients to provide scientific evidence for traditional clinical applications and to demonstrate the intriguing molecular targets for specific pathological processes; (3) pharmacokinetic feature studies of single or all components of HLJDD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological and pharmacokinetic profiles of HLJDD and its herbal or pharmacologically active chemicals, as well as our understanding which further reveals the significance of HLJDD clinically.
Collapse
Affiliation(s)
- Yiyu Qi
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China.,4Department of Pharmacology, Pharmacy College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaxu Zhu
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
26
|
Li HX, Yang SY, Kim YS, Jang HD, Kim YH, Li W. Nitro derivatives and other compounds from sugar apple (Annona squamosa L.) leaves exhibit soluble epoxide hydrolase inhibitory activity. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02425-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Tarabasz D, Kukula-Koch W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother Res 2019; 34:33-50. [PMID: 31496018 DOI: 10.1002/ptr.6504] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The aim of this review is to collect together the results of the numerous studies over the last two decades on the pharmacological properties of palmatine published in scientific databases like Scopus and PubMed, which are scattered across different publications. Palmatine, an isoquinoline alkaloid from the class of protoberberines, is a yellow compound present in the extracts from different representatives of Berberidaceae, Papaveraceae, Ranunculaceae, and Menispermaceae. It has been extensively used in traditional medicine of Asia in the treatment of jaundice, liver-related diseases, hypertension, inflammation, and dysentery. New findings describe its possible applications in the treatment of civilization diseases like central nervous system-related problems. This review intends to let this alkaloid come out from the shade of a more frequently described alkaloid: berberine. The toxicity, pharmacokinetics, and biological activities of this protoberberine alkaloid will be developed in this work.
Collapse
Affiliation(s)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
28
|
Establishment of a rapid and sensitive UPLC-MS/MS method for pharmacokinetic determination of nine alkaloids of crude and processed Corydalis turtschaninovii Besser aqueous extracts in rat plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1124:218-225. [DOI: 10.1016/j.jchromb.2019.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/24/2019] [Accepted: 06/15/2019] [Indexed: 01/19/2023]
|
29
|
Huang C, Wang JH, Qiao J, Fan XW, Chen B, Tung CH, Wu LZ. Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis. J Org Chem 2019; 84:12904-12912. [DOI: 10.1021/acs.joc.9b01603] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cheng Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Science, Beijing 100049, P.R. China
| | - Jing-Hao Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Science, Beijing 100049, P.R. China
| | - Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Science, Beijing 100049, P.R. China
| | - Xiu-Wei Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Science, Beijing 100049, P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Science, Beijing 100049, P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Science, Beijing 100049, P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, the Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Science, Beijing 100049, P.R. China
| |
Collapse
|
30
|
Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie 2019; 162:176-184. [DOI: 10.1016/j.biochi.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
31
|
Affiliation(s)
- Luan Zhou
- Graduate School of Science; Chiba University, Yayoi-cho 1-33; Inage-ku 263-8522 Chiba Japan
| | - Hideo Togo
- Graduate School of Science; Chiba University, Yayoi-cho 1-33; Inage-ku 263-8522 Chiba Japan
| |
Collapse
|
32
|
Chen J, Lin X, Park KJ, Lee KR, Park HJ. Identification of protoberberine alkaloids as novel histone methyltransferase G9a inhibitors by structure-based virtual screening. J Comput Aided Mol Des 2018; 32:917-928. [DOI: 10.1007/s10822-018-0156-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
33
|
Zhao YM, Wang LH, Luo SF, Wang QQ, Moaddel R, Zhang TT, Jiang ZJ. Magnetic beads-based neuraminidase enzyme microreactor as a drug discovery tool for screening inhibitors from compound libraries and fishing ligands from natural products. J Chromatogr A 2018; 1568:123-130. [PMID: 30005943 DOI: 10.1016/j.chroma.2018.07.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/30/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
Neuraminidase (NA) is a glycoside hydrolase that has been proposed as a potential therapeutic target for influenza. Thus, the identification of compounds that modulate NA activity could be of great therapeutic importance. The aim of this study is to develop a drug discovery tool for the identification of novel modulators of NA from both compound libraries and natural plant extracts. NA was immobilized onto the surface of magnetic beads and the inherent catalytic activity of NA-functionalized magnetic beads was characterized. Based on the enzymatic activity (hydrolysis ratio), the inhibitory activities of 12 compounds from plant secondary metabolites were screened, and the desired anti-NA activities of flavonoids were certified. Ligand fishing with the immobilized enzyme was optimized using an artificial test mixture consisting of oseltamivir, lycorine and matrine prior to carrying out the proof-of-concept experiment with the crude extract of Flos Lonicerae. The combination of ligand fishing and HPLC-MS/MS identified luteolin-7-O-β-D-glucoside, luteolin, 3,5-di-O-caffeoylquinic acid and 3,4-di-O-caffeoylquinic acid as neuraminidase inhibitory ligands in Flos Lonicerae. This is the first report on the use of neuraminidase functionalized magnetic beads for the identification of active ligands from a botanical matrix, and it sets the basis for the de novo identification of NA modulators from complex biological mixtures.
Collapse
Affiliation(s)
- Yu-Mei Zhao
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Lv-Huan Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Si-Fan Luo
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Qi-Qin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, United States
| | - Ting-Ting Zhang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zheng-Jin Jiang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, China; Department of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
34
|
Study on the discrimination between Corydalis Rhizoma and its adulterants based on HPLC-DAD-Q-TOF-MS associated with chemometric analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1090:110-121. [DOI: 10.1016/j.jchromb.2017.10.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 11/22/2022]
|
35
|
Chemical Constituents from Apios americana and Their Inhibitory Activity on Tyrosinase. Molecules 2018; 23:molecules23010232. [PMID: 29361770 PMCID: PMC6017567 DOI: 10.3390/molecules23010232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/02/2018] [Accepted: 01/06/2018] [Indexed: 11/17/2022] Open
Abstract
The goal of this study was to identify phytochemicals with inhibitory activity against tyrosinase. Nine compounds 1–9 were isolated from the tubers of Apios americana. This is the first report of aromadendrin 5-methyl ether (1) being isolated from the Apios species. Among them, compounds 2 and 8 showed inhibitory activity toward tyrosinase. Based on a Dixon plot, the potential Ki values of competitive inhibitors 2 and 8 were calculated as 10.3 ± 0.8 µM and 44.2 ± 1.7 µM, respectively. An IC50 value of 13.2 ± 1.0 µM was calculated for the slow-binding inhibitor 2 after preincubation with tyrosinase. Additionally, the predicted binding sites between the receptor and ligand, as well as secondary structure changes, in the presence of 2 were examined by molecular simulation.
Collapse
|
36
|
Chai L, Donkor PO, Wang K, Sun Y, Oppong MB, Wang K, Ding L, Qiu F. Metabolic profiles of corydaline in rats by ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. Xenobiotica 2017; 49:80-89. [PMID: 29235899 DOI: 10.1080/00498254.2017.1416207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Corydaline, an isoquinoline alkaloid obtained from the rhizomes of Corydalis yanhusuo, exhibits anti-acetylcholinesterase, anti-angiogenic, anti-allergic and gastric-emptying activities. In this study, a rapid and reliable ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) method was developed and employed for the comprehensive study of the metabolites of corydaline in rats. 2. Altogether, 43 metabolites were identified in the plasma (11), bile (9), urine (34) and feces (21) of rats after oral administration of corydaline at a dose of 4.5mg/kg. 3. It was demonstrated that demethylation, hydroxylation, sulfation and glucuronidation were the major metabolic transformation pathways. Among these, two metabolites were identified as tetrahydropalmatine and isocorybulbine, and 33 phase I and phase II products were inferred to be new metabolites arising from the in vivo metabolism of corydaline. 4. Importantly, this research provides scientific and reliable support for full understanding of the metabolic profiles of corydaline and the results could help to elucidate its safety and efficacy.
Collapse
Affiliation(s)
- Liwei Chai
- a School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,b Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Paul Owusu Donkor
- a School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,b Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,c School of Pharmacy , University of Health and Allied Sciences , Ho , Ghana , and
| | - Kun Wang
- a School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,b Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Yingjie Sun
- a School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,b Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Mahmood Brobbey Oppong
- a School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,d Department of Pharmaceutical Chemistry, School of Pharmacy , College of Health Sciences, University of Ghana , Legon , Ghana
| | - Kai Wang
- a School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Liqin Ding
- b Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| | - Feng Qiu
- a School of Chinese Materia Medica , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China.,b Tianjin State Key Laboratory of Modern Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin , P.R. China
| |
Collapse
|
37
|
Zhou X, Li H, Shi Z, Gao S, Wei S, Li K, Wang J, Li J, Wang R, Gong M, Zhao Y, Xiao X. Inhibition activity of a traditional Chinese herbal formula Huang-Lian-Jie-Du-Tang and its major components found in its plasma profile on neuraminidase-1. Sci Rep 2017; 7:15549. [PMID: 29138445 PMCID: PMC5686190 DOI: 10.1038/s41598-017-15733-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/31/2017] [Indexed: 12/25/2022] Open
Abstract
Huang-Lian-Jie-Du-Tang (HLJDT), a traditional formula with four TCM herbs, has been used for hundred years for different diseases. The current study aimed to assess the inhibitory activity of HLJDT against H1N1 neuraminidase (NA-1), and identify potent NA-1 inhibitors from its plasma profile. The in vitro NA-1 study has shown that the water extract of HLJDT potently inhibited NA-1 (IC50 = 112.6 μg/ml; Ki = 55.6 μg/ml) in a competitive mode. The IC50 values of the water extracts of its four herbs were as follows: Coptidis Rhizoma, 96.1 μg/ml; Phellodendri Chinensis Cortex, 108.6 μg/ml; Scutellariae Radix, 303.5 μg/ml; Gardeniae Fructus, 285.0 μg/ml. Thirteen compounds found in the plasma profile of HLJDT were also identified as potent NA-1 inhibitors, which included jatrorrhizine, palmatine, epiberberine, geniposide, oroxylin A, berberine, coptisine, baicalein, wogonoside, phellodendrine, wogonin, oroxylin A-7-O-glucuronide and baicalin (sorted in ascending order by their IC50 values). Their inhibitory activities were consistent with molecular docking analysis when considering crystallographic water molecules in the ligand-binding pocket of NA-1. Our current findings suggested that HLJDT can be used as a complementary medicine for H1N1 infection and its potent active compounds can be developed as NA-1 inhibitors.
Collapse
Affiliation(s)
- Xuelin Zhou
- Department of Pharmacy, 302 Military Hospital of China, Beijing, People's Republic of China
| | - Haotian Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, People's Republic of China
| | - Zhilong Shi
- China Military Institute of Chinese Medicine, 302 Military Hospital of China, Beijing, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Sijia Gao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Shizhang Wei
- Department of Pharmacy, 302 Military Hospital of China, Beijing, People's Republic of China
| | - Kun Li
- Department of Pharmacy, 302 Military Hospital of China, Beijing, People's Republic of China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital of China, Beijing, People's Republic of China
- Integrative Medical Center, 302 Military Hospital of China, Beijing, People's Republic of China
| | - Jianyu Li
- Integrative Medical Center, 302 Military Hospital of China, Beijing, People's Republic of China
| | - Ruilin Wang
- Integrative Medical Center, 302 Military Hospital of China, Beijing, People's Republic of China
| | - Man Gong
- Integrative Medical Center, 302 Military Hospital of China, Beijing, People's Republic of China
| | - Yanling Zhao
- Department of Pharmacy, 302 Military Hospital of China, Beijing, People's Republic of China.
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital of China, Beijing, People's Republic of China
- Integrative Medical Center, 302 Military Hospital of China, Beijing, People's Republic of China
| |
Collapse
|
38
|
Wang Y, Li T, Meng X, Bao Y, Wang S, Chang X, Yang G, Bo T. Metabolomics and genomics: revealing the mechanism of corydalis alkaloid on anti-inflammation in vivo and in vitro. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
39
|
Leem HH, Lee GY, Lee JS, Lee H, Kim JH, Kim YH. Soluble epoxide hydrolase inhibitory activity of components from Leonurus japonicus. Int J Biol Macromol 2017; 103:451-457. [DOI: 10.1016/j.ijbiomac.2017.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/23/2016] [Accepted: 05/08/2017] [Indexed: 12/31/2022]
|
40
|
Kim JH, Kim HY, Kang SY, Kim YH, Jin CH. Soluble Epoxide Hydrolase Inhibitory Activity of Components Isolated from Apios americana Medik. Molecules 2017; 22:molecules22091432. [PMID: 28867792 PMCID: PMC6151598 DOI: 10.3390/molecules22091432] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 11/24/2022] Open
Abstract
A new compound 1, 5-methoxy-2,5,7,4′-tetrahydroxy-coumaronochromone, along with seven known compounds (2–8), were isolated from Apios americana using open column chromatography. Their structures were established based on an analysis of 1D and 2D NMR, and MS spectra. Among these, two compounds 1 and 2 showed inhibitory activity on soluble epoxide hydrolase (sEH) at a concentration below 50 μM. The respective competitive (1) and mixed (2) inhibitors were revealed to have Ki values of 21.0 ± 0.8 and 14.5 ± 1.5 μM, based on the Dixon plot. The potential inhibitor (2) was visually presented in a predicted binding pose in the receptor by molecular docking. Additionally, molecular dynamics were performed for a detailed understanding of their complex by Gromacs 4.6.5 package.
Collapse
Affiliation(s)
- Jang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeoungeup, Jeollabuk-do 56212, Korea.
| | - Hyo Young Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeoungeup, Jeollabuk-do 56212, Korea.
| | - Si Yong Kang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeoungeup, Jeollabuk-do 56212, Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeoungeup, Jeollabuk-do 56212, Korea.
| |
Collapse
|
41
|
Kim JH, Yoon JY, Yang SY, Choi SK, Kwon SJ, Cho IS, Jeong MH, Ho Kim Y, Choi GS. Tyrosinase inhibitory components from Aloe vera and their antiviral activity. J Enzyme Inhib Med Chem 2016; 32:78-83. [PMID: 27778516 PMCID: PMC6010052 DOI: 10.1080/14756366.2016.1235568] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.
Collapse
Affiliation(s)
- Jang Hoon Kim
- a Department of Horticultural and Crop Environment , National Institute of Horticultural and Herbal Science, RDA , Wanju , Republic of Korea
| | - Ju-Yeon Yoon
- a Department of Horticultural and Crop Environment , National Institute of Horticultural and Herbal Science, RDA , Wanju , Republic of Korea
| | - Seo Young Yang
- b College of Pharmacy, Chungnam National University , Daejeon , Republic of Korea
| | - Seung-Kook Choi
- a Department of Horticultural and Crop Environment , National Institute of Horticultural and Herbal Science, RDA , Wanju , Republic of Korea
| | - Sun Jung Kwon
- a Department of Horticultural and Crop Environment , National Institute of Horticultural and Herbal Science, RDA , Wanju , Republic of Korea
| | - In Sook Cho
- a Department of Horticultural and Crop Environment , National Institute of Horticultural and Herbal Science, RDA , Wanju , Republic of Korea
| | - Min Hee Jeong
- b College of Pharmacy, Chungnam National University , Daejeon , Republic of Korea
| | - Young Ho Kim
- b College of Pharmacy, Chungnam National University , Daejeon , Republic of Korea
| | - Gug Seoun Choi
- a Department of Horticultural and Crop Environment , National Institute of Horticultural and Herbal Science, RDA , Wanju , Republic of Korea
| |
Collapse
|
42
|
Jo AR, Kim JH, Yan XT, Yang SY, Kim YH. Soluble epoxide hydrolase inhibitory components from Rheum undulatum and in silico approach. J Enzyme Inhib Med Chem 2016; 31:70-78. [DOI: 10.1080/14756366.2016.1189421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ah Reum Jo
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea,
| | - Jang Hoon Kim
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-Gun, Republic of Korea, and
| | - Xi-Tao Yan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Science, Northwest A & F University, Yangling, Shaanxi, China
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea,
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea,
| |
Collapse
|
43
|
Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 2016; 116:9162-236. [PMID: 27437994 DOI: 10.1021/acs.chemrev.6b00184] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas.
Collapse
Affiliation(s)
- Laura Nunes Silva
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| | - Karine Rigon Zimmer
- Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre , Porto Alegre, Rio Grande do Sul 90050-170, Brazil
| | - Alexandre José Macedo
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil.,Instituto Nacional do Semiárido , Campina Grande, Paraı́ba 58429-970, Brazil
| | - Danielle Silva Trentin
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 90610-000, Brazil.,Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul , Porto Alegre, Rio Grande do Sul 91501-970, Brazil
| |
Collapse
|
44
|
Kim JH, Lee SH, Lee HW, Sun YN, Jang WH, Yang SY, Jang HD, Kim YH. (-)-Epicatechin derivate from Orostachys japonicus as potential inhibitor of the human butyrylcholinesterase. Int J Biol Macromol 2016; 91:1033-9. [PMID: 27341781 DOI: 10.1016/j.ijbiomac.2016.06.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
Cholinesterase inhibitors block the bioconversion of neurotransmitters by cholinesterase in the nervous system. Epicatechin derivatives (1, 3 and 5), polyphenols (6 and 7) from Orostachys japonicus, and catechin derivatives (2 and 4) from our in-house library were evaluated for their inhibitory activity on cholinesterase. Compound 5 exhibited IC50 values of 58.3±2.4 and 17.8±3.8μg/mL on AChE and BuChE, respectively. Compound 5 inhibited BuChE more strongly than AChE through a competitive behavior. In silico binding positions of 5 in the active site were predicted using Autodock 4.2 and processed in a 10000-ps molecular dynamics simulation to assess the stability of compound 5 binding.
Collapse
Affiliation(s)
- Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea; Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun, Jeollabuk-do 595-890, Republic of Korea
| | - Sang-Hyun Lee
- Department of Food and Nutrition, Hannam University, Daejeon 305-811, Republic of Korea
| | - Hyun Woo Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Ya Nan Sun
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Won-Hee Jang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Seo-Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Hae-Dong Jang
- Department of Food and Nutrition, Hannam University, Daejeon 305-811, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
45
|
Thao NP, Luyen BTT, Kim JH, Jo AR, Dat NT, Kiem PV, Minh CV, Kim YH. Identification, characterization, kinetics, and molecular docking of flavonoid constituents from Archidendron clypearia (Jack.) Nielsen leaves and twigs. Bioorg Med Chem 2016; 24:3125-32. [PMID: 27246857 DOI: 10.1016/j.bmc.2016.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 01/29/2023]
Abstract
In our search for natural soluble epoxide hydrolase (sEH) inhibitors from plants, we found that the methanolic extract of the leaves and twigs of Archidendron clypearia (Jack.) Nielsen (Fabaceae) significantly inhibits sEH in vitro. In a phytochemical investigation of the water layer of A. clypearia, we isolated two new chalcones, clypesides A-B (1-2), 13 flavonoid derivatives (3-15) and established their structures based on an extensive 1D and 2D NMR, CD data, and MS analysis. All of the flavonoid derivatives inhibited sEH enzymatic activity in a dose-dependent manner, with IC50 values ranging from 10.0±0.4 to 30.1±2.1μM. A kinetic analysis of compounds 4, 8-10, 12, 13, and 15 revealed that the compounds 8-10 were non-competitive, 4, 13, and 15 were mixed-type, and 12 was competitive inhibitors. Additionally, molecular docking increased our understanding of their receptor-ligand binding. These results demonstrated that flavonoid derivatives from A. clypearia are potential sEH inhibitors.
Collapse
Affiliation(s)
- Nguyen Phuong Thao
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea; Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Bui Thi Thuy Luyen
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jang Hoon Kim
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun 440-310, Republic of Korea
| | - Ah Reum Jo
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Nguyen Tien Dat
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Phan Van Kiem
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Chau Van Minh
- Institute of Marine Biochemistry (IMBC), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Viet Nam
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
46
|
Deng L, Xu T, Li H, Dong G. Enantioselective Rh-Catalyzed Carboacylation of C═N Bonds via C-C Activation of Benzocyclobutenones. J Am Chem Soc 2016; 138:369-74. [PMID: 26674855 PMCID: PMC4884656 DOI: 10.1021/jacs.5b11120] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein we describe the first enantioselective Rh-catalyzed carboacylation of oximes (imines) via C-C activation. In this transformation, the benzocyclobutenone C1-C2 bond is selectively activated by a low valent rhodium catalyst and subsequently the resulting two Rh-C bonds add across a C═N bond, which provides a unique approach to access chiral lactams. A range of polycyclic nitrogen-containing scaffolds were obtained in good yields with excellent enantioselectivity. Further derivatization of the lactam products led to a rapid entry to various novel fused heterocycles.
Collapse
Affiliation(s)
- Lin Deng
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Tao Xu
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Key Laboratory of Marine Drugs, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hongbo Li
- West Deptford, NJ 08086, United States
| | - Guangbin Dong
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
47
|
Du GH, Yuan TY, Du LD, Zhang YX. The Potential of Traditional Chinese Medicine in the Treatment and Modulation of Pain. PHARMACOLOGICAL MECHANISMS AND THE MODULATION OF PAIN 2016; 75:325-61. [DOI: 10.1016/bs.apha.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
48
|
Song P, Xia J, Rezeng C, Tong L, Tang W. Traditional, complementary, and alternative medicine: Focusing on research into traditional Tibetan medicine in China. Biosci Trends 2016; 10:163-70. [PMID: 27301588 DOI: 10.5582/bst.2016.01105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peipei Song
- Graduate School of Frontier Sciences, The University of Tokyo
| | - Jufeng Xia
- Graduate School of Medicine, The University of Tokyo
| | - Caidan Rezeng
- The Research Center of Chinese and Tibetan Medicine, Medicine College, Qinghai University
| | - Li Tong
- The Research Center of Chinese and Tibetan Medicine, Medicine College, Qinghai University
| | - Wei Tang
- Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
49
|
Kim JH, Cho CW, Tai BH, Yang SY, Choi GS, Kang JS, Kim YH. Soluble Epoxide Hydrolase Inhibitory Activity of Selaginellin Derivatives from Selaginella tamariscina. Molecules 2015; 20:21405-14. [PMID: 26633335 PMCID: PMC6331899 DOI: 10.3390/molecules201219774] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 11/22/2022] Open
Abstract
Selaginellin derivatives 1–3 isolated from Selaginellatamariscina were evaluated for their inhibition of soluble epoxide hydrolase (sEH) to demonstrate their potential for the treatment of cardiovascular disease. All selaginellin derivatives (1–3) inhibited sEH enzymatic activity and PHOME hydrolysis, in a dose-dependent manner, with IC50 values of 3.1 ± 0.1, 8.2 ± 2.2, and 4.2 ± 0.2 μM, respectively. We further determined that the derivatives function as non-competitive inhibitors. Moreover, the predicted that binding sites and interaction between 1–3 and sEH were solved by docking simulations. According to quantitative analysis, 1–3 were confirmed to have high content in the roots of S. tamariscina; among them, selaginellin 3 exhibited the highest content of 189.3 ± 0.0 μg/g.
Collapse
Affiliation(s)
- Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun, Jeollabuk-do 595-890, Korea.
| | - Chong Woon Cho
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Bui Huu Tai
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Caugiay, Hanoi 364-545, Vietnam.
| | - Seo Young Yang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Gug-Seoun Choi
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju-gun, Jeollabuk-do 595-890, Korea.
| | - Jong Seong Kang
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea.
| |
Collapse
|
50
|
Lee GY, Kim JH, Choi SK, Kim YH. Constituents of the seeds of Cassia tora with inhibitory activity on soluble expoxide hydrolease. Bioorg Med Chem Lett 2015; 25:5097-101. [PMID: 26483136 DOI: 10.1016/j.bmcl.2015.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 09/17/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
Efforts to extract soluble epoxide hydrolase (sEH) inhibitors from food sources through bioactivity-guided fractionation of Cassia tora seed extracts led to the isolation of one new compound, 1, and 15 known compounds, 2-16. Structural elucidations were performed using 1D/2D NMR spectroscopy and mass spectrometry. Compounds 1, 3, 4, 6, 10, 11, and 13-16 exhibited inhibitory activities on sEH with IC50 values of 2.2±2.1-40.6±3.4 μM. Compound 13 was particularly active and exhibited a reversible-uncompetitive behavior in enzyme kinetic studies. A binding site on the enzyme for compound 13 was also predicted by Autodock 4.2 simulations.
Collapse
Affiliation(s)
- Ga Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Jang Hoon Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea; Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 565-852, Republic of Korea
| | - Seung-Kook Choi
- Department of Horticultural Environment, National Institute of Horticultural and Herbal Science, RDA, Wanju 565-852, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|