1
|
Yao C, Jiang X, Ye X, Xie T, Bai R. Antidepressant Drug Discovery and Development: Mechanism and Drug Design Based on Small Molecules. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chuansheng Yao
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Xiaoying Jiang
- College of Material, Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University Hangzhou 311121 P.R. China
| | - Xiang‐Yang Ye
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Tian Xie
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| | - Renren Bai
- School of Pharmacy Hangzhou Normal University Hangzhou 311121 PR China
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicine of Zhejiang Province Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province Collaborative Innovation Center of Chinese Medicines from Zhejiang Province Hangzhou Normal University Hangzhou 311121 PR China
| |
Collapse
|
2
|
Santra S, Kortagere S, Vedachalam S, Gogoi S, Antonio T, Reith ME, Dutta AK. Novel Potent Dopamine-Norepinephrine and Triple Reuptake Uptake Inhibitors Based on Asymmetric Pyran Template and Their Molecular Interactions with Monoamine Transporters. ACS Chem Neurosci 2021; 12:1406-1418. [PMID: 33844493 DOI: 10.1021/acschemneuro.1c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We have carried out a structural exploration of (2S,4R,5R)-2-(bis(4-fluorophenyl)methyl)-5-((4-methoxybenzyl)amino)tetrahydro-2H-pyran-4-ol (D-473) to investigate the influence of various functional groups on its aromatic ring, the introduction of heterocyclic aromatic rings, and the alteration of the stereochemistry of functional group on the pyran ring. The novel compounds were tested for their affinities for the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in inhibiting monoamine neurotransmitter uptake. Our studies identified some of the most potent dopamine-norepinephrine reuptake inhibitors known to-date like D-528 and D-529. The studies also led to development of potent triple reuptake inhibitors such as compounds D-544 and D-595. A significant influence from the alteration of the stereochemistry of the hydroxyl group on the pyran ring of D-473 on transporters affinities was observed indicating stereospecific preference for interaction. The inhibitory profiles and structure-activity relationship of lead compounds were further corroborated by molecular docking studies at the primary binding sites of monoamine transporters. The nature of interactions found computationally correlated well with their affinities for the transporters.
Collapse
Affiliation(s)
- Soumava Santra
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, United States
| | - Seenuvasan Vedachalam
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Sanjib Gogoi
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| | - Tamara Antonio
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, United States
| | - Maarten E.A. Reith
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016, United States
| | - Aloke K. Dutta
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
3
|
Dutta AK, Santra S, Harutyunyan A, Das B, Lisieski MJ, Xu L, Antonio T, Reith ME, Perrine SA. D-578, an orally active triple monoamine reuptake inhibitor, displays antidepressant and anti-PTSD like effects in rats. Eur J Pharmacol 2019; 862:172632. [DOI: 10.1016/j.ejphar.2019.172632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 08/05/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022]
|
4
|
Novel serotonin transporter regulators: Natural aristolane- and nardosinane- types of sesquiterpenoids from Nardostachys chinensis Batal. Sci Rep 2017; 7:15114. [PMID: 29118341 PMCID: PMC5678126 DOI: 10.1038/s41598-017-15483-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022] Open
Abstract
Serotonin transporter (SERT) is a classic target of drug discovery for neuropsychiatric and digestive disorders, and against those disorders, plants of Nardostachys genus have been valued for centuries in the systems of Traditional Chinese Medicine, Ayurvedic and Unani. Herein, chemical investigation on the roots and rhizomes of Nardostachys chinensis Batal. led to the isolation of forty sesquiterpenoids including six new aristolane-type sesquiterpenoids and six new nardosinane-type sesquiterprenoids. Their structures were elucidated by extensive spectroscopic methods, combined with analyses of circular dichroism and single-crystal X-ray diffraction data. To explore natural product scaffolds with SERT regulating activity, a high-content assay for measurement of SERT function in vitro was conducted to evaluate the SERT regulating properties of these isolates. In conclusion, eleven compounds could be potential natural product scaffolds for developing drug candidates targeting SERT. Among which, kanshone C of aristolane-type sesquiterpenoid inhibited SERT most strongly, while desoxo-nachinol A of nardosinane-type sesquiterpenoid instead enhanced SERT potently.
Collapse
|
5
|
Wang P, Fu T, Zhang X, Yang F, Zheng G, Xue W, Chen Y, Yao X, Zhu F. Differentiating physicochemical properties between NDRIs and sNRIs clinically important for the treatment of ADHD. Biochim Biophys Acta Gen Subj 2017; 1861:2766-2777. [PMID: 28757337 DOI: 10.1016/j.bbagen.2017.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/23/2017] [Accepted: 07/26/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Drugs available for treating attention-deficit hyperactivity disorder (ADHD) are mainly selective norepinephrine (sNRIs) and dual norepinephrine-dopamine (NDRIs) reuptake inhibitors. The major problem of sNRIs lines in their delayed onset of action and partial- or non-responses, which makes NDRIs distinguished in drug efficacy. Understanding of the differential binding modes of these 2 types of drugs to their corresponding targets can give great insights into the discovery of privileged drug-like scaffolds with improved efficacy. So far, no such study has been carried out. METHODS A combinatorial computational strategy, integrating homology modeling, molecular docking, molecular dynamics (MD) and binding free energy calculation, was employed to analyze the binding modes of 8 clinically important ADHD drugs in their targets. RESULTS Binding modes of 2 types of ADHD drugs (sNRIs and NDRIs) in their targets was identified for the first time by MD simulation, and 15 hot spot residues were discovered as crucial for NDRIs' binding in hNET and hDAT. Comparing to sNRIs, a clear reduction in the hydrophobic property of NDRIs' one functional group was observed, and the depth of drugs' aromatic ring stretched into the pocket of both targets was further identified as key contributors to drugs' selectivity. CONCLUSIONS The hydrophobic property of NDRI ADHD drugs' one functional group contributes to their selectivity when bind hNET and hDAT. GENERAL SIGNIFICANCE These results provide insights into NDRI ADHD drugs' binding mechanisms, which could be utilized as structural blueprints for assessing and discovering more efficacious drugs for ADHD therapy.
Collapse
Affiliation(s)
- Panpan Wang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Xiaoyu Zhang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
| | - Yuzong Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, National University of Singapore, Singapore 117543, Singapore
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
6
|
Tosh DK, Janowsky A, Eshleman AJ, Warnick E, Gao ZG, Chen Z, Gizewski E, Auchampach JA, Salvemini D, Jacobson KA. Scaffold Repurposing of Nucleosides (Adenosine Receptor Agonists): Enhanced Activity at the Human Dopamine and Norepinephrine Sodium Symporters. J Med Chem 2017; 60:3109-3123. [PMID: 28319392 PMCID: PMC5501184 DOI: 10.1021/acs.jmedchem.7b00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have repurposed (N)-methanocarba adenosine derivatives (A3 adenosine receptor (AR) agonists) to enhance radioligand binding allosterically at the human dopamine (DA) transporter (DAT) and inhibit DA uptake. We extended the structure-activity relationship of this series with small N6-alkyl substitution, 5'-esters, deaza modifications of adenine, and ribose restored in place of methanocarba. C2-(5-Halothien-2-yl)-ethynyl 5'-methyl 9 (MRS7292) and 5'-ethyl 10 (MRS7232) esters enhanced binding at DAT (EC50 ∼ 35 nM) and at the norepinephrine transporter (NET). 9 and 10 were selective for DAT compared to A3AR in the mouse but not in humans. At DAT, the binding of two structurally dissimilar radioligands was enhanced; NET binding of only one radioligand was enhanced; SERT radioligand binding was minimally affected. 10 was more potent than cocaine at inhibiting DA uptake (IC50 = 107 nM). Ribose analogues were weaker in DAT interaction than the corresponding bicyclics. Thus, we enhanced the neurotransmitter transporter activity of rigid nucleosides while reducing A3AR affinity.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Aaron Janowsky
- VA Portland Health Care System, Research Service (R&D-22), and Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science Univ., Portland, Oregon 97239 USA
| | - Amy J. Eshleman
- VA Portland Health Care System, Research Service (R&D-22), and Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science Univ., Portland, Oregon 97239 USA
| | - Eugene Warnick
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 USA
| | - Zhoumou Chen
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri USA 63104
| | - Elizabeth Gizewski
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226 USA
| | - John A. Auchampach
- Department of Pharmacology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226 USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri USA 63104
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892 USA
| |
Collapse
|