1
|
Nasr EE, Tawfik SS, Massoud MAM, Mostafa AS. Unveiling new thiazole-clubbed piperazine derivatives as multitarget anti-AD: Design, synthesis, and in silico studies. Arch Pharm (Weinheim) 2024; 357:e2400044. [PMID: 38754070 DOI: 10.1002/ardp.202400044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
New thiazole-clubbed piperazine derivatives were designed, synthesized, evaluated for their inhibitory capabilities against human acetylcholinesterase and butyrylcholinesterase (hAChE and/or hBuChE) and β-amyloid (Aβ) aggregation, and investigated for their metal chelating potential as multitarget agents for the treatment of Alzheimer's disease. Compounds 10, 19-21, and 24 showed the highest hAChE inhibitory activity at submicromolar concentrations, of which compound 10 was the most potent with a half-maximal inhibitory concentration (IC50) value of 0.151 μM. Compounds 10 and 20 showed the best hBuChE inhibitory activities (IC50 values of 0.135 and 0.103 μM, respectively), in addition to remarkable Aβ1-42 aggregation inhibitory activities and metal chelating capabilities. Both compounds were further evaluated against human neuroblastoma SH-SY5Y and PC12 neuronal cells, where they proved noncytotoxic at their active concentrations against hAChE or hBuChE. They also offered a significant neuroprotective effect against Aβ25-35-induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Compound 10 displayed acceptable physicochemical properties and could pass the blood-brain barrier. The molecular docking study revealed the good binding interactions of compound 10 with the key amino acids of both the catalytic active site and the peripheral anionic site of hAChE, explaining its significant potency.
Collapse
Affiliation(s)
- Eman E Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohammed A M Massoud
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amany S Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Pharmacy Center of Scientific Excellence, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Mohamed DM, Kheder NA, Sharaky M, Nafie MS, Dawood KM, Abbas AA. Synthesis of novel piperazine-based bis(thiazole)(1,3,4-thiadiazole) hybrids as anti-cancer agents through caspase-dependent apoptosis. RSC Adv 2024; 14:24992-25006. [PMID: 39131497 PMCID: PMC11310838 DOI: 10.1039/d4ra05091f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024] Open
Abstract
A series of novel piperazine-based bis(thiazoles) 13a-d were synthesized in moderate to good yields via reaction of the bis(thiosemicarbazones) 7a, b with an assortment of C-acetyl-N-aryl-hydrazonoyl chlorides 8a-f. Similar treatment of the bis(thiosemicarbazone) 7a, b with C-aryl-N-phenylhydrazonoyl chlorides 10a, b afforded the expected bis(thiadiazole) based piperazine products 13b-d in reasonable yields. Cyclization of 7a, b with two equivalents of α-haloketones 14a-d led to the production of the corresponding bis(4-arylthiazol)piperazine derivatives 15a-h in good yields. The structures of the synthesized compounds were confirmed from elemental and spectral data (FTIR, MALDI-TOF, 1H, and 13C NMR). The cytotoxicity of the new compounds was screened against hepatoblastoma (HepG2), human colorectal carcinoma (HCT 116), breast cancer (MCF-7), and Human Dermal Fibroblasts (HDF). Interestingly, all compounds showed promising cytotoxicity against most of the cell lines. Interestingly, compounds 7b, 9a, and 9i exhibited IC50 values of 3.5, 12.1, and 1.2 nM, respectively, causing inhibition of 89.7%, 83.7%, and 97.5%, compared to Erlotinib (IC50 = 1.3 nM, 97.8% inhibition). Compound 9i dramatically induced apoptotic cell death by 4.16-fold and necrosis cell death by 4.79-fold. Compound 9i upregulated the apoptosis-related genes and downregulated the Bcl-2 as an anti-apoptotic gene. Accordingly, the most promising EGFR-targeted chemotherapeutic agent to treat colon cancer was found to be compound 9i.
Collapse
Affiliation(s)
- Doaa M Mohamed
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Nabila A Kheder
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University Cairo Egypt
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah P. O. 27272 Sharjah United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University Ismailia 41522 Egypt
| | - Kamal M Dawood
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| | - Ashraf A Abbas
- Department of Chemistry, Faculty of Science, Cairo University Giza 12613 Egypt +202 35727556 +202 35676602
| |
Collapse
|
3
|
Umar M, Rehman Y, Ambreen S, Mumtaz SM, Shaququzzaman M, Alam MM, Ali R. Innovative approaches to Alzheimer's therapy: Harnessing the power of heterocycles, oxidative stress management, and nanomaterial drug delivery system. Ageing Res Rev 2024; 97:102298. [PMID: 38604453 DOI: 10.1016/j.arr.2024.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/10/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Alzheimer's disease (AD) presents a complex pathology involving amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, and cholinergic deficits. Oxidative stress exacerbates AD progression through pathways like macromolecular peroxidation, mitochondrial dysfunction, and metal ion redox potential alteration linked to amyloid-beta (Aβ). Despite limited approved medications, heterocyclic compounds have emerged as promising candidates in AD drug discovery. This review highlights recent advancements in synthetic heterocyclic compounds targeting oxidative stress, mitochondrial dysfunction, and neuroinflammation in AD. Additionally, it explores the potential of nanomaterial-based drug delivery systems to overcome challenges in AD treatment. Nanoparticles with heterocyclic scaffolds, like polysorbate 80-coated PLGA and Resveratrol-loaded nano-selenium, show improved brain transport and efficacy. Micellar CAPE and Melatonin-loaded nano-capsules exhibit enhanced antioxidant properties, while a tetra hydroacridine derivative (CHDA) combined with nano-radiogold particles demonstrates promising acetylcholinesterase inhibition without toxicity. This comprehensive review underscores the potential of nanotechnology-driven drug delivery for optimizing the therapeutic outcomes of novel synthetic heterocyclic compounds in AD management. Furthermore, the inclusion of various promising heterocyclic compounds with detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) data provides valuable insights for planning the development of novel drug delivery treatments for AD.
Collapse
Affiliation(s)
- Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Yasir Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Sayed Md Mumtaz
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohd Shaququzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India.
| |
Collapse
|
4
|
Samarelli F, Purgatorio R, Lopopolo G, Deruvo C, Catto M, Andresini M, Carrieri A, Nicolotti O, De Palma A, Miniero DV, de Candia M, Altomare CD. Novel 6-alkyl-bridged 4-arylalkylpiperazin-1-yl derivatives of azepino[4,3-b]indol-1(2H)-one as potent BChE-selective inhibitors showing protective effects against neurodegenerative insults. Eur J Med Chem 2024; 270:116353. [PMID: 38579622 DOI: 10.1016/j.ejmech.2024.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
Due to the putative role of butyrylcholinesterase (BChE) in regulation of acetylcholine levels and functions in the late stages of the Alzheimer's disease (AD), the potential of selective inhibitors (BChEIs) has been envisaged as an alternative to administration of acetylcholinesterase inhibitors (AChEIs). Starting from our recent findings, herein the synthesis and in vitro evaluation of cholinesterase (ChE) inhibition of a novel series of some twenty 3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one derivatives, bearing at the indole nitrogen diverse alkyl-bridged 4-arylalkylpiperazin-1-yl chains, are reported. The length of the spacers, as well as the type of arylalkyl group affected the enzyme inhibition potency and BChE/AChE selectivity. Two compounds, namely 14c (IC50 = 163 nM) and 14d (IC50 = 65 nM), bearing at the nitrogen atom in position 6 a n-pentyl- or n-heptyl-bridged 4-phenethylpiperazin-1-yl chains, respectively, proved to be highly potent mixed-type inhibitors of both equine and human BChE isoforms, showing more than two order magnitude of selectivity over AChE. The study of binding kinetics through surface plasmon resonance (SPR) highlighted differences in their BChE residence times (8 and 47 s for 14c and 14d, respectively). Moreover, 14c and 14d proved to hit other mechanisms known to trigger neurodegeneration underlying AD and other CNS disorders. Unlike 14c, compound 14d proved also capable of inhibiting by more than 60% the in vitro self-induced aggregation of neurotoxic amyloid-β (Aβ) peptide at 100 μM concentration. On the other hand, 14c was slightly better than 14d in counteracting, at 1 and 10 μM concentration, glutamate excitotoxicity, due to over-excitation of NMDA receptors, and hydrogen peroxide-induced oxidative stress assessed in neuroblastoma cell line SH-SY5Y. This paper is dedicated to Prof. Marcello Ferappi, former dean of the Faculty of Pharmacy of the University of Bari, in the occasion of his 90th birthday.
Collapse
Affiliation(s)
- Francesco Samarelli
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Rosa Purgatorio
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Gianfranco Lopopolo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Caterina Deruvo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Michael Andresini
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Orazio Nicolotti
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Annalisa De Palma
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Cosimo D Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| |
Collapse
|
5
|
Soliman AM, Abd El-Wahab HAA, Akincioglu H, Gülçin İ, Omar FA. Piperazine-2-carboxylic acid derivatives as MTDLs anti-Alzheimer agents: Anticholinesterase activity, mechanistic aspect, and molecular modeling studies. Bioorg Chem 2024; 142:106916. [PMID: 37913584 DOI: 10.1016/j.bioorg.2023.106916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023]
Abstract
Development of Multitarget-Directed Ligands (MTDLs) is a promising approach to combat the complex etiologies of Alzheimer's disease (AD). Herein we report the design, synthesis, and characterization of a new series of 1,4-bisbenzylpiperazine-2-carboxylic acid derivatives 3-5(a-g), 7a-f, 8a-s, and their piperazine-2-yl-1,3,4-oxadiazole analogs 6a-g. In vitro inhibitory effect against Electrophorus electricus acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) from Equine serum was evaluated using modified Ellman's method, considering donepezil and tacrine as reference drugs. Lineweaver-Burk plot analysis of the results proved competitive inhibition of AChE and BChE with Ki values, in low micromolar range. The free carboxylic acid series 4a-g showed enhanced selectivity for AChE. Hence, 4c, 1,4-bis (4-chlorobenzyl)-piperazinyl-2-carboxylic acid), was the most active member of this series (Ki (AChE) = 10.18 ± 1.00 µM) with clear selectivity for AChE (SI ∼ 17.90). However, the hydroxamic acids 7a-f and carboxamides 8a-s congeners were more potent and selective inhibitors of BChE (SI ∼ 5.38 - 21862.5). Extraordinarily, 1,4-bis (2-chlorobenzyl)-piperazinyl-2-hydroxamic acid 7b showed promising inhibitory activity against BChE enzyme (Ki = 1.6 ± 0.08 nM, SI = 21862.5), that was significantly superior to that elicited by donepezil (Ki = 12.5 ± 2.6 µM) and tacrine (Ki = 17.3 ± 2.3 nM). Cytotoxicity assessment of 4c and 7b, on human neuroblastoma (SH-SY5Y) cell lines, revealed lower toxicity than staurosporine and was nearly comparable to that of donepezil. Molecular docking and molecular dynamics simulation afforded unblemished insights into the structure-activity relationships for AChE and BChE inhibition. The results showed stable binding with fair H-bonding, hydrophobic and/or ionic interactions to the catalytic and peripheral anionic sites of the enzymes. In silico predicted ADME and physicochemical properties of conjugates showed good CNS bioavailability and safety parameters. In this regard, compound (7b) might be considered as a promising inhibitor of BChE with an innovative donepezil-based anti-Alzheimer activity. Further assessments of the most potent AChE and BChE inhibitors as potential MTDLs anti-Alzheimer's agents are under investigation with our research group and will be published later.
Collapse
Affiliation(s)
- Aya M Soliman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Hend A A Abd El-Wahab
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Hulya Akincioglu
- Department of Chemistry, Faculty of Science and Arts, Agri-Ibrahim Cecen University, 04100 Agri, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Ataturk University, 25240 Erzurum, Turkey.
| | - Farghaly A Omar
- Department of Medicinal Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt.
| |
Collapse
|
6
|
Liu J, Ha W, Alibekovna EK, Ma R, Shi YP. Ruptured organosilica nanocapsules immobilized acetylcholinesterase coupled with MnO 2 nanozyme for screening inhibitors from Inula macrophylla. NANOSCALE 2023; 15:17464-17472. [PMID: 37860933 DOI: 10.1039/d3nr04025a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Abnormal expression of acetylcholinesterase (AChE) causes Alzheimer's disease (AD). Inhibiting AChE is a common strategy for reducing the degradation of neurotransmitter acetylcholine, in order to treat early-stage AD. Therefore, it is crucial to screen and explore AChE inhibitors which are safer and cause fewer side effects. Our research is focused on establishing a platform of ruptured organosilica nanocapsules (RONs) immobilized AChE coupled with an MnO2-OPD colorimetric assay, which could monitor AChE activity and screen AChE inhibitors. The fabricated RONs immobilized AChE possessed excellent pH and thermal stability. Huperzine A was introduced into the established platform to evaluate the inhibition kinetics of the immobilized AChE, which promoted its application in the screening of AChE inhibitors. The satisfactory results of enzyme inhibition kinetics proved the feasibility and applicability of the established method. Thus, the proposed platform was applied to screen AChE inhibitors from 14 compounds isolated from Inula macrophylla, and β-cyclocostunolide (compound 4) demonstrated the best AChE inhibitory activity among these compounds. This work confirms the existence of chemical components that inhibit AChE activity in Inula macrophylla, and provides a new idea for the application of immobilized enzyme-nanozyme in the field of enzyme inhibitor screening.
Collapse
Affiliation(s)
- Jia Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Eshbakova Komila Alibekovna
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Uzbekistan
| | - Rui Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, P. R. China.
| |
Collapse
|
7
|
Osmaniye D, Ahmad I, Sağlık BN, Levent S, Patel HM, Ozkay Y, Kaplancıklı ZA. Design, synthesis and molecular docking and ADME studies of novel hydrazone derivatives for AChE inhibitory, BBB permeability and antioxidant effects. J Biomol Struct Dyn 2023; 41:9022-9038. [PMID: 36325982 DOI: 10.1080/07391102.2022.2139762] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease that is characterized by memory and cognitive impairments that predominantly affects the elderly and is the most common cause of dementia. As is known, the AChE enzyme consists of two parts. In this work, 10 new hydrazones (3a-3j) were designed and synthesized. Naphthalene, indole, benzofuran and benzothiophene rings were used to interact with the PAS region. 4-fluorophenyl and 4-fluorobenzyl structures were preferred for interaction with the CAS region. In biological activity studies, the AChE and BChE inhibitory potentials of all compounds were evaluated using the in vitro Ellman method. The biological evaluation showed that compounds 3i and 3j displayed significant activity against AChE. The compounds 3i and 3j displayed IC50 values of 0.034 and 0.027 µM against AChE, respectively. The reference drug donepezil (IC50 = 0.021 µM) also displayed a significant inhibition against AChE. In addition, the antioxidant activities of the compounds were also evaluated. Derivatives 3i and 3j, which emerged active from both in vitro activity studies, were subjected to in vitro PAMPA tests to determine BBB permeability. Further docking simulation also revealed that these compounds (3i, 3j and donepezil) interacted with the enzyme active site in a similar manner to donepezil. A few parameters derived from MD simulation trajectories were computed and validated for the protein-ligand complex's stability under the dynamic conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Harun M Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Yusuf Ozkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Central Research Laboratory (MERLAB), Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
8
|
Nguyen HD, Kim MS. Identification of promising inhibitory heterocyclic compounds against acetylcholinesterase using QSAR, ADMET, biological activity, and molecular docking. Comput Biol Chem 2023; 104:107872. [PMID: 37119698 DOI: 10.1016/j.compbiolchem.2023.107872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
Heterocyclic compounds exert diverse functions, especially acetylcholinesterase (AChE) inhibition. Thus, identifying the association between their detailed structures and biological activities is important to the development of novel medications for Alzheimer's disease (AD) treatment. In this study, diverse sets of 120 potent and selective heterocyclic compounds (-log[the half‑maximal inhibitory concentration] (pIC50) values ranged from 8.01 to 12.50) were used to develop quantitative structure-activity relationship (QSAR) models using multiple linear regression (MLR), multiple nonlinear regression (MNLR), Bayesian model average (BMA), and artificial neural network (ANN) models. The models' robustness and stability have been assessed using both internal and external methodology. ANN outperforms MLR, MNLR, and BMA according to external validation. The molecular descriptors incorporated into the model were in satisfactory correlation with the AChE receptor-ligand complex X-ray structures, making the model interpretable and predictive. Three selected compounds exert drug-like characteristics (pIC50 values ranged from 11.01 to 11.17). The binding affinity between the optimal compounds and the AChE receptor (RCSB ID 3LII) ranged from - 7.4 to - 8.8 kcal/mol. Remarkably, the pharmacokinetics, physicochemical properties, and biological activities of compound 25 (C23H32N2O2, PubChem CID 118727071, pIC50 value = 11.17) were found to be consistent with its therapeutic effects in AD due to its cholinergic and non-toxic nature, non-P-glycoprotein, high gastrointestinal absorption, and capability to penetrate the blood-brain barrier.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| | - Min-Sun Kim
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
9
|
Baréa P, Yamazaki DADS, Lima DDS, Seixas FAV, da Costa WF, Gauze GDF, Sarragiotto MH. Design, synthesis, molecular docking and biological evaluation of β-carboline derivatives as cholinesterase inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Anti-Alzheimer's disease potential of traditional chinese medicinal herbs as inhibitors of BACE1 and AChE enzymes. Biomed Pharmacother 2022; 154:113576. [PMID: 36007279 DOI: 10.1016/j.biopha.2022.113576] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that often occurs in the elderly population. At present, most drugs for AD on the market are single-target drugs, which have achieved certain success in the treatment of AD. However, the efficacy and safety of single-target drugs have not achieved the expected results because AD is a multifactorial disease. Multi-targeted drugs act on multiple factors of the disease network to improve efficacy and reduce adverse reactions. Therefore, the search for effective dual-target or even multi-target drugs has become a new research trend. Many of results found that the dual-target inhibitors of the beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) and acetylcholinesterase (AChE) found from traditional Chinese medicine have a good inhibitory effect on AD with fewer side effects. This article reviews sixty-six compounds extracted from Chinese medicinal herbs, which have inhibitory activity on BACE1 and AChE. This provides a theoretical basis for the further development of these compounds as dual-target inhibitors for the treatment of AD.
Collapse
|
11
|
Obaid RJ, Naeem N, Mughal EU, Al-Rooqi MM, Sadiq A, Jassas RS, Moussa Z, Ahmed SA. Inhibitory potential of nitrogen, oxygen and sulfur containing heterocyclic scaffolds against acetylcholinesterase and butyrylcholinesterase. RSC Adv 2022; 12:19764-19855. [PMID: 35919585 PMCID: PMC9275557 DOI: 10.1039/d2ra03081k] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 01/15/2023] Open
Abstract
Heterocycles are the key structures in organic chemistry owing to their immense applications in the biological, chemical, and pharmaceutical fields. Heterocyclic compounds perform various noteworthy functions in nature, medication, innovation etc. Most frequently, pure nitrogen heterocycles or various positional combinations of nitrogen, oxygen, and sulfur atoms in five or six-membered rings can be found. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes is a popular strategy for the management of numerous mental diseases. In this context, cholinesterase inhibitors are utilized to relieve the symptoms of neurological illnesses like dementia and Alzheimer's disease (AD). The present review focuses on various heterocyclic scaffolds and their role in designing and developing new potential AChE and BChE inhibitors to treat AD. Moreover, a detailed structure-activity relationship (SAR) has been established for the future discovery of novel drugs for the treatment of AD. Most of the heterocyclic motifs have been used in the design of new potent cholinesterase inhibitors. In this regard, this review is an endeavor to summarize the biological and chemical studies over the past decade (2010-2022) describing the pursuit of new N, O and S containing heterocycles which can offer a rich supply of promising AChE and BChE inhibitory activities.
Collapse
Affiliation(s)
- Rami J Obaid
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | | | - Munirah M Al-Rooqi
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Rabab S Jassas
- Department of Chemistry, Jamoum University College, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain Abu Dhabi United Arab Emirates
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University Makkah 21955 Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
12
|
Al-Ghorbani M, Gouda MA, Baashen M, Alharbi O, Almalki FA, Ranganatha LV. Piperazine Heterocycles as Potential Anticancer Agents: A Review. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02597-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Design, Molecular Docking, Synthesis and Evaluation of Xanthoxylin Hybrids as Dual Inhibitors of IL-6 and Acetylcholinesterase for Alzheimer's Disease. Bioorg Chem 2022; 121:105670. [DOI: 10.1016/j.bioorg.2022.105670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
|
14
|
Ramrao SP, Verma A, Waiker DK, Tripathi PN, Shrivastava SK. Design, synthesis, and evaluation of some novel biphenyl imidazole derivatives for the treatment of Alzheimer's disease. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Preethy HA, Rajendran K, Mishra A, Karthikeyan A, Chellappan DR, Ramakrishnan V, Krishnan UM. Towards understanding the mechanism of action of a polyherbal formulation using a multi-pronged strategy. Comput Biol Med 2021; 141:104999. [PMID: 34862035 DOI: 10.1016/j.compbiomed.2021.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Herein, we investigate the cognitive effects of a traditional polyherbal formulation, Brahmi Nei (BN) for its effect on cognitive health. Network pharmacological analysis of the bioactives reported in the phytoconstituents of BN was performed by retrieving information from various databases. The in-silico predictions were experimentally validated using in vitro and in vivo models through a combination of biochemical, behavioural and molecular studies. The network pharmacological analysis of the key molecules in BN revealed their ability to modulate molecular targets implicated in memory, cognition, neuronal survival, proliferation, regulation of cellular bioenergetics and oxidative stress. Behavioral studies performed on normal adult rats administered with BN showed a significant improvement in their cognitive performance. Microarray analysis of their brain tissues exhibited an up-regulation of genes involved in oxidative phosphorylation, learning, neuronal differentiation, extension, regeneration and survival while pro-inflammatory and pro-degenerative genes were down-regulated. The oxygen consumption rate in BN-treated hippocampal cells showed a significant improvement in the bioenergetic health index when compared to untreated cells due to the mitochondrial membrane fortifying effect and anti-inflammatory property of the BN constituents. The neuroregenerative potential of BN was manifested in increase in axonal length and neurite outgrowth. Western blots and 2D gel electrophoresis revealed a reduction in pro-apoptotic proteins while increasing Akt and cyclophilin proteins. Taken together, our data reveal that BN, although traditionally used to treat anxiolytic disorders can be explored as a nutraceutical to improve neuronal health as well as a therapeutic option to treat cognitive disorders.
Collapse
Affiliation(s)
- H Agnes Preethy
- Centre for Nanotechnology& Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Kayalvizhi Rajendran
- Centre for Nanotechnology& Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Abhilipsha Mishra
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Akhilasree Karthikeyan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - David Raj Chellappan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Vigneshwar Ramakrishnan
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology& Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India; School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
16
|
Laczkó-Rigó R, Bakos É, Jójárt R, Tömböly C, Mernyák E, Özvegy-Laczka C. Selective antiproliferative effect of C-2 halogenated 13α-estrones on cells expressing Organic anion-transporting polypeptide 2B1 (OATP2B1). Toxicol Appl Pharmacol 2021; 429:115704. [PMID: 34474082 DOI: 10.1016/j.taap.2021.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022]
Abstract
Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific transporter mediating the cellular uptake of steroids and numerous drugs. OATP2B1 is abundantly expressed in the intestine and is also present in various tumors. Increased steroid hormone uptake by OATP2B1 has been suggested to promote progression of hormone dependent tumors. 13α-estrones are effective inhibitors of endogenous estrogen formation and are potential candidates to inhibit proliferation of hormone dependent cancers. Recently, we have identified a variety of 13α/β-estrone-based inhibitors of OATP2B1. However, the nature of this interaction, whether these inhibitors are potential transported substrates of OATP2B1 and hence may be enriched in OATP2B1-overexpressing cells, has not yet been investigated. In the current study we explored the antiproliferative effect of the most effective OATP2B1 inhibitor 13α/β-estrones in control and OATP2B1-overexpressing A431 carcinoma cells. We found an increased antiproliferative effect of 3-O-benzyl 13α/β-estrones in both mock transfected and OATP2B1-overexpressing cells. However, C-2 halogenated 13α-estrones had a selective OATP2B1-mediated cell growth inhibitory effect. In order to demonstrate that increased sensitization can be attributed to OATP2B1-mediated cellular uptake, tritium labeled 2-bromo-13α-estrone was synthesized for direct transport measurements. These experiments revealed increased accumulation of [3H]2-bromo-13α-estrone due to OATP2B1 function. Our results indicate that C-2 halogenated 13α-estrones are good candidates in the design of anti-cancer drugs targeting OATP2B1.
Collapse
Affiliation(s)
- Réka Laczkó-Rigó
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Center, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| | - Éva Bakos
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Center, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Csaba Tömböly
- Laboratory of Chemical Biology, Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Center, Magyar tudósok körútja 2, H-1117 Budapest, Hungary.
| |
Collapse
|
17
|
Dual inhibitors of Interleukin-6 and acetylcholinesterase for treatment of Alzheimer's disease: Design, docking, synthesis and biological evaluation. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zhou S, Huang G. Synthesis and activities of acetylcholinesterase inhibitors. Chem Biol Drug Des 2021; 98:997-1006. [PMID: 34570966 DOI: 10.1111/cbdd.13958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
Cholinesterase (ChE) inhibitors can be divided into two categories: acetylcholinesterase (AChE) inhibitors and butylcholinesterase (BuChE) inhibitors. Therefore, the development of selective inhibition of AChE and BuChE activities is the central content of ChE pharmacochemistry research. In order to clarify the progress of AChE inhibitor-based design, synthesis, and activity studies, we reviewed the pharmacochemical and pharmacological properties of selective AChE inhibitors over the past decade. We hope that this review will make it easier for readers to understand the development of new drug chemistry methods for AChE inhibitors in order to develop more effective and selective AChE inhibitors.
Collapse
Affiliation(s)
- Shiyang Zhou
- Chongqing Chemical Industry Vocational College, Chongqing, China.,Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| | - Gangliang Huang
- Active Carbohydrate Research Institute, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing, China
| |
Collapse
|
19
|
Acetylcholinesterase inhibition, molecular docking and ADME prediction studies of new dihydrofuran-piperazine hybrid compounds. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02788-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Liu Y, Cong L, Han C, Li B, Dai R. Recent Progress in the Drug Development for the Treatment of Alzheimer's Disease Especially on Inhibition of Amyloid-peptide Aggregation. Mini Rev Med Chem 2021; 21:969-990. [PMID: 33245270 DOI: 10.2174/1389557520666201127104539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/25/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
As the world 's population is aging, Alzheimer's disease (AD) has become a big concern since AD has started affecting younger people and the population of AD patients is increasing worldwide. It has been revealed that the neuropathological hallmarks of AD are typically characterized by the presence of neurotoxic extracellular amyloid plaques in the brain, which are surrounded by tangles of neuronal fibers. However, the causes of AD have not been completely understood yet. Currently, there is no drug to effectively prevent AD or to completely reserve the symptoms in the patients. This article reviews the pathological features associated with AD, the recent progress in research on the drug development to treat AD, especially on the discovery of natural product derivatives to inhibit Aβ peptide aggregation as well as the design and synthesis of Aβ peptide aggregation inhibitors to treat AD.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Cong
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| | - Chu Han
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Li
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 10081, China
| |
Collapse
|
21
|
Makhaeva GF, Lushchekina SV, Kovaleva NV, Yu Astakhova T, Boltneva NP, Rudakova EV, Serebryakova OG, Proshin AN, Serkov IV, Trofimova TP, Tafeenko VA, Radchenko EV, Palyulin VA, Fisenko VP, Korábečný J, Soukup O, Richardson RJ. Amiridine-piperazine hybrids as cholinesterase inhibitors and potential multitarget agents for Alzheimer's disease treatment. Bioorg Chem 2021; 112:104974. [PMID: 34029971 DOI: 10.1016/j.bioorg.2021.104974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/24/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
We synthesized eleven new amiridine-piperazine hybrids 5a-j and 7 as potential multifunctional agents for Alzheimer's disease (AD) treatment by reacting N-chloroacetylamiridine with piperazines. The compounds displayed mixed-type reversible inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Conjugates were moderate inhibitors of equine and human BChE with negligible fluctuation in anti-BChE activity, whereas anti-AChE activity was substantially dependent on N4-substitution of the piperazine ring. Compounds with para-substituted aromatic moieties (5g, 5h, and bis-amiridine 7) had the highest anti-AChE activity in the low micromolar range. Top-ranked compound 5h, N-(2,3,5,6,7,8-hexahydro-1H-cyclopenta[b]quinolin-9-yl)-2-[4-(4-nitro-phenyl)-piperazin-1-yl]-acetamide, had an IC50 for AChE = 1.83 ± 0.03 μM (Ki = 1.50 ± 0.12 and αKi = 2.58 ± 0.23 μM). The conjugates possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. In agreement with analysis of inhibition kinetics and molecular modeling studies, the lead compounds were found to bind effectively to the peripheral anionic site of AChE and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation. Similar propidium displacement activity was first shown for amiridine. Two compounds, 5c (R = cyclohexyl) and 5e (R = 2-MeO-Ph), exhibited appreciable antioxidant capability with Trolox equivalent antioxidant capacity values of 0.47 ± 0.03 and 0.39 ± 0.02, respectively. Molecular docking and molecular dynamics simulations provided insights into the structure-activity relationships for AChE and BChE inhibition, including the observation that inhibitory potencies and computed pKa values of hybrids were generally lower than those of the parent molecules. Predicted ADMET and physicochemical properties of conjugates indicated good CNS bioavailability and safety parameters comparable to those of amiridine and therefore acceptable for potential lead compounds at the early stages of anti-AD drug development.
Collapse
Affiliation(s)
- Galina F Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Olga G Serebryakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Alexey N Proshin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Igor V Serkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Tatiana P Trofimova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor A Tafeenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Eugene V Radchenko
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A Palyulin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir P Fisenko
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119881, Russia
| | - Jan Korábečný
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Rudy J Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Neurology, University of Michigan, Ann Arbor, MI 48109 USA; Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|
22
|
Mohamed AM, El-Sayed WA, Ibrahim AA, Abdel-Hafez NA, Ali KAK, Mohamed SF. Recent Trends in the Chemistry of [1,2,4]Triazole[1,5-a]pyrimidines. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2020.1871310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ashraf M. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Wael A. El-Sayed
- Photochemistry Department, National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, College of Science, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Alhussein A. Ibrahim
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Korany A. K. Ali
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
- Center of Excellence, Advanced Materials and Nanotechnology Group, National Research Centre, Dokki, Giza, Egypt
| | - Salwa F. Mohamed
- Applied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
23
|
De Boer D, Nguyen N, Mao J, Moore J, Sorin EJ. A Comprehensive Review of Cholinesterase Modeling and Simulation. Biomolecules 2021; 11:580. [PMID: 33920972 PMCID: PMC8071298 DOI: 10.3390/biom11040580] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 01/18/2023] Open
Abstract
The present article reviews published efforts to study acetylcholinesterase and butyrylcholinesterase structure and function using computer-based modeling and simulation techniques. Structures and models of both enzymes from various organisms, including rays, mice, and humans, are discussed to highlight key structural similarities in the active site gorges of the two enzymes, such as flexibility, binding site location, and function, as well as differences, such as gorge volume and binding site residue composition. Catalytic studies are also described, with an emphasis on the mechanism of acetylcholine hydrolysis by each enzyme and novel mutants that increase catalytic efficiency. The inhibitory activities of myriad compounds have been computationally assessed, primarily through Monte Carlo-based docking calculations and molecular dynamics simulations. Pharmaceutical compounds examined herein include FDA-approved therapeutics and their derivatives, as well as several other prescription drug derivatives. Cholinesterase interactions with both narcotics and organophosphate compounds are discussed, with the latter focusing primarily on molecular recognition studies of potential therapeutic value and on improving our understanding of the reactivation of cholinesterases that are bound to toxins. This review also explores the inhibitory properties of several other organic and biological moieties, as well as advancements in virtual screening methodologies with respect to these enzymes.
Collapse
Affiliation(s)
- Danna De Boer
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| | - Nguyet Nguyen
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jia Mao
- Department of Chemical Engineering, California State University, Long Beach, CA 90840, USA; (N.N.); (J.M.)
| | - Jessica Moore
- Department of Biomedical Engineering, California State University, Long Beach, CA 90840, USA;
| | - Eric J. Sorin
- Department of Chemistry & Biochemistry, California State University, Long Beach, CA 90840, USA;
| |
Collapse
|
24
|
Kumar RR, Sahu B, Pathania S, Singh PK, Akhtar MJ, Kumar B. Piperazine, a Key Substructure for Antidepressants: Its Role in Developments and Structure-Activity Relationships. ChemMedChem 2021; 16:1878-1901. [PMID: 33751807 DOI: 10.1002/cmdc.202100045] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 01/21/2023]
Abstract
Depression is the single largest contributor to global disability with a huge economic and social burden on the world. There are a number of antidepressant drugs on the market, but treatment-resistant depression and relapse of depression in a large number of patients have increased problems for clinicians. One peculiarity observed in most of the marketed antidepressants is the presence of a piperazine substructure. Although piperazine is also used in the optimization of other pharmacological agents, it is almost extensively used for the development of novel antidepressants. One common understanding is that this is due to its favorable CNS pharmacokinetic profile; however, in the case of antidepressants, piperazine plays a much bigger role and is involved in specific binding conformations of these agents. Therefore, in this review, a critical analysis of the significance of the piperazine moiety in the development of antidepressants has been performed. An overview of current developments in the designing and synthesis of piperazine-based antidepressants (2015 onwards) along with SAR studies is also provided. The various piperazine-based therapeutic agents in early- or late-phase human testing for depression are also discussed. The preclinical compounds discussed in this review will help researchers understand how piperazine actually influences the design and development of novel antidepressant compounds. The SAR studies discussed will provide crucial clues about the structural features and optimizations required to enhance the efficacy and potency of piperazine-based antidepressants.
Collapse
Affiliation(s)
- Ravi Ranjan Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhaskar Sahu
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Shelly Pathania
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Pankaj Kumar Singh
- Integrative Physiology and Pharmacology, Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520, Turku, Finland
| | - M Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
25
|
Manzoor S, Prajapati SK, Majumdar S, Raza MK, Gabr MT, Kumar S, Pal K, Rashid H, Kumar S, Krishnamurthy S, Hoda N. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer's action: Design, synthesis, crystal structure and in-vitro biological evaluation. Eur J Med Chem 2021; 215:113224. [PMID: 33582578 DOI: 10.1016/j.ejmech.2021.113224] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is multifactorial, progressive neurodegeneration with impaired behavioural and cognitive functions. The multitarget-directed ligand (MTDL) strategies are promising paradigm in drug development, potentially leading to new possible therapy options for complex AD. Herein, a series of novel MTDLs phenylsulfonyl-pyrimidine carboxylate (BS-1 to BS-24) derivatives were designed and synthesized for AD treatment. All the synthesized compounds were validated by 1HNMR, 13CNMR, HRMS, and BS-19 were structurally validated by X-Ray single diffraction analysis. To evaluate the plausible binding affinity of designed compounds, molecular docking study was performed, and the result revealed their significant interaction with active sites of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The synthesized compounds displayed moderate to excellent in vitro enzyme inhibitory activity against AChE and BuChE at nanomolar (nM) concentration. Among 24 compounds (BS-1 to BS-24), the optimal compounds (BS-10 and BS-22) displayed potential inhibition against AChE; IC50 = 47.33 ± 0.02 nM and 51.36 ± 0.04 nM and moderate inhibition against BuChE; IC50 = 159.43 ± 0.72 nM and 153.3 ± 0.74 nM respectively. In the enzyme kinetics study, the compound BS-10 displayed non-competitive inhibition of AChE with Ki = 8 nM. Respective compounds BS-10 and BS-22 inhibited AChE-induced Aβ1-42 aggregation in thioflavin T-assay at 10 μM and 20 μM, but BS-10 at 10 μM and 20 μM concentrations are found more potent than BS-22. In addition, the aggregation properties were determined by the dynamic light scattering (DLS) and was found that BS-10 and BS-22 could significantly inhibit self-induced as well as AChE-induced Aβ1-42 aggregation. The effect of compounds (BS-10 and BS-22) on the viability of MC65 neuroblastoma cells and their capability to cross the blood-brain barrier (BBB) in PAMPA-BBB were further studied. Further, in silico approach was applied to analyze physicochemical and pharmacokinetics properties of the designed compounds via the SwissADME and PreADMET server. Hence, the novel phenylsulfonyl-pyrimidine carboxylate derivatives can act as promising leads in the development of AChE inhibitors and Aβ disaggregator for the treatment of AD.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P, 221005, India
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P, 221005, India
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Moustafa T Gabr
- Department of Radiology, Stanford University, Stanford, CA, 94305, United States
| | - Shivani Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi, 110078, India
| | - Kavita Pal
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Haroon Rashid
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Suresh Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi, 110078, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, U.P, 221005, India.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
26
|
Sari S, Yilmaz M. Synthesis and characterization of piperazine-substituted dihydrofuran derivatives viaMn(OAc) 3 mediated radical cyclizations. Turk J Chem 2021; 44:1303-1313. [PMID: 33488231 PMCID: PMC7751941 DOI: 10.3906/kim-2003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/01/2022] Open
Abstract
The aim of this study is to synthesize novel piperazine-containing dihydrofuran compounds (3a-n)from radical additions and cyclizations of diacyl and alkyl-acyl piperazine derivatives (1a-h) with 1,3-dicarbonyl compounds (2a-c) mediated by Mn(OAc)
3
for the first time. From the reactions of 1a-c with dimedone (2a);1a, 1c, and 1d with acetylacetone (2b); and 1a with ethylacetoacetate(2c) ,the dihydrofuran-piperazine compounds 3a-c, 3d-f, and 3g were obtained in medium to high yields (31%–81%), respectively. In addition, dihydrofuran-piperazine compounds 3h-j and 3k-n were prepared at low to medium yields (20%–40%) from the reactions of
1e-g
with
2a
and
1e-h
with
2c
, respectively.
Collapse
Affiliation(s)
- Sait Sari
- Department of Chemistry, Faculty of Arts and Sciences, Kocaeli University, 41380 Umuttepe, Kocaeli Turkey
| | - Mehmet Yilmaz
- Department of Chemistry, Faculty of Arts and Sciences, Kocaeli University, 41380 Umuttepe, Kocaeli Turkey
| |
Collapse
|
27
|
Mahomoodally F, Abdallah HH, Suroowan S, Jugreet S, Zhang Y, Hu X. In silico Exploration of Bioactive Phytochemicals Against Neurodegenerative Diseases Via Inhibition of Cholinesterases. Curr Pharm Des 2021; 26:4151-4162. [PMID: 32178608 DOI: 10.2174/1381612826666200316125517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/09/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative disorders are estimated to become the second leading cause of death worldwide by 2040. Despite the widespread use of diverse allopathic drugs, these brain-associated disorders can only be partially addressed and long term treatment is often linked with dependency and other unwanted side effects. Nature, believed to be an arsenal of remedies for any illness, presents an interesting avenue for the development of novel neuroprotective agents. Interestingly, inhibition of cholinesterases, involved in the breakdown of acetylcholine in the synaptic cleft, has been proposed to be neuroprotective. This review therefore aims to provide additional insight via docking studies of previously studied compounds that have shown potent activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro. Indeed, the determination of potent plant-based ligands for this purpose through in silico methods enables the elimination of lengthy and costly traditional methods of drug discovery. Herein, a literature search was conducted to identify active phytochemicals which are cholinesterase inhibitors. Following which in silico docking methods were applied to obtain docking scores. Compound structures were extracted from online ZINC database and optimized using AM1 implemented in gaussian09 software. Noteworthy ligands against AChE highlighted in this study include: 19,20-dihydroervahanine A and 19, 20-dihydrotabernamine. Regarding BChE inhibition, the best ligands were found to be 8-Clavandurylkaempferol, Na-methylepipachysamine D; ebeiedinone; and dictyophlebine. Thus, ligand optimization between such phytochemicals and cholinesterases coupled with in vitro, in vivo studies and randomized clinical trials can lead to the development of novel drugs against neurodegenerative disorders.
Collapse
Affiliation(s)
- Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Hassan H Abdallah
- Chemistry Department, College of Education, Salahaddin University, 44002 Erbil, Iraq
| | - Shanoo Suroowan
- Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| | - Sharmeen Jugreet
- Department of Health Sciences, Faculty of Science, University of Mauritius, Mauritius
| | - Yansheng Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xuebo Hu
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Ladha G, Jeevaratnam K. A novel antibacterial compound produced by Lactobacillus plantarum LJR13 isolated from rumen liquor of goat effectively controls multi-drug resistant human pathogens. Microbiol Res 2020; 241:126563. [DOI: 10.1016/j.micres.2020.126563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 11/16/2022]
|
29
|
Shabbir S, Muslim M, Muthu SA, Pissurlenkar RRS, Fatima S, Ali A, Ahmad A, Ahmad M, Ahmad B. The cocrystal of 3-((4-(3-isocyanobenzyl) piperazine-1-yl) methyl) benzonitrile with 5-hydroxy isophthalic acid prevents protofibril formation of serum albumin. J Biomol Struct Dyn 2020; 40:538-548. [PMID: 32876543 DOI: 10.1080/07391102.2020.1815585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The formation of amyloid-like fibrils is a central problem in biophysical chemistry and medicine. Fibril formation and their deposition in various tissues and organs are associated with many human diseases. Searching for molecules able to prevent the formation of fibrils is, therefore, necessary. In this work, we examined the potential of a cocrystal (SS3) of 3-((4-(3-isocyanobenzyl) piperazine-1-yl) methy) benzonitrile with 5-hydroxy isophthalic acid, to prevent fibrillation of human serum albumin. We found that the cocrystal strongly bound to human serum albumin (HSA) with association constant (Ka) of 5.8 ± 0.7 × 105 M-1. The SS3 binding was found to cause small alterations in both secondary and tertiary structure of the protein. Transmission electron microscopy showed that the cocrystal completely prevented the formation of worm-like protofibrils by HSA at SS3/HSA molar ratio of 1:1. The molecule was found to prevent the aggregation in a concentration dependent manner. It was also observed that most of protein in the presence of SS3 remained in soluble state and the secondary structure contained native-like α-helical structure. Therefore, we conclude that the cocrystal effectively prevented conversion of HSA into worm-like protofibril. These finding suggest that combination of molecules in the form of cocrystal or other stable combination could pave a way for the development of drugs against amyloidosis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sadiya Shabbir
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Mohd Muslim
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Shivani A Muthu
- Protein Assembly Lab, JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Raghuvir R S Pissurlenkar
- (Bio) Molecular Simulations Group, Department of Pharmaceutical Chemistry, Goa College of Pharmacy, Panaji Goa, India
| | - Shaista Fatima
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Arif Ali
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Aiman Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Musheer Ahmad
- Department of Applied Chemistry, ZHCET, Aligarh Muslim University, Aligarh, India
| | - Basir Ahmad
- Protein Assembly Lab, JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
30
|
Yang T, Sui X, Yu B, Shen Y, Cong H. Recent Advances in the Rational Drug Design Based on Multi-target Ligands. Curr Med Chem 2020; 27:4720-4740. [DOI: 10.2174/0929867327666200102120652] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
Multi-target drugs have gained considerable attention in the last decade owing to their
advantages in the treatment of complex diseases and health conditions linked to drug resistance.
Single-target drugs, although highly selective, may not necessarily have better efficacy or fewer
side effects. Therefore, more attention is being paid to developing drugs that work on multiple
targets at the same time, but developing such drugs is a huge challenge for medicinal chemists.
Each target must have sufficient activity and have sufficiently characterized pharmacokinetic parameters.
Multi-target drugs, which have long been known and effectively used in clinical practice,
are briefly discussed in the present article. In addition, in this review, we will discuss the
possible applications of multi-target ligands to guide the repositioning of prospective drugs.
Collapse
Affiliation(s)
- Ting Yang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xin Sui
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
31
|
Ghafary S, Nadri H, Mahdavi M, Moradi A, Akbarzadeh T, Sharifzadeh M, Edraki N, Moghadam FH, Amini M. Anticholinesterase Activity of Cinnamic Acids Derivatives: In Vitro, In Vivo Biological Evaluation, and Docking Study. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817666191224094049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Acetylcholine deficiency in the hippocampus and cortex, aggregation of
amyloid-beta, and beta-secretase overactivity have been introduced as the main reasons in the
formation of Alzheimer’s disease.
Objective:
A new series of cinnamic derived acids linked to 1-benzyl-1,2,3-triazole moiety were
designed, synthesized, and evaluated for their acetylcholinesterase (AChE) and
butyrylcholinesterase (BuChE) inhibitory activities.
Methods:
Colorimetric Ellman’s method was used for the determination of IC50% of AchE and
BuChE inhibitory activity. The kinetic studies, neuroprotective activity, BACE1 inhibitory activity,
evaluation of inhibitory potency on Aβ1-42 self-aggregation induced by AchE, and docking study
were performed for studying the mechanism of action.
Results:
Some of the synthesized compounds, compound 7b-4 ((E)-3-(3,4-dimethoxyphenyl)-N-((1-
(4-fluorobenzyl)-1H-1,2,3-triazole-4-yl) methyl) acrylamide) depicted the most potent
acetylcholinesterase inhibitory activities ( IC50 = 5.27 μM ) and compound 7a-1 (N- ( (1- benzyl-
1H- 1, 2, 3- triazole - 4-yl) methyl) cinnamamide) demonstrated the most potent
butyrylcholinesterase inhibitory activities (IC50 = 1.75 μM). Compound 7b-4 showed
neuroprotective and β-secretase (BACE1) inhibitory activitiy. In vivo studies of compound 7b-4 in
Scopolamine-induced dysfunction confirmed memory improvement.
Conculusion:
It should be noted that molecular modeling (compounds 7b-4 and 7a-1) and kinetic
studies (compounds 7a-1 and 7b-4) showed that these synthesis compounds interacted
simultaneously with both the catalytic site (CS) and peripheral anionic site (PAS) of AChE and
BuChE.
Collapse
Affiliation(s)
- Shahrzad Ghafary
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Science, Tehran, Iran
| | - Alireza Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Farshad Homayouni Moghadam
- Department of Cellular Biotechnology at Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Stavrakov G, Philipova I, Lukarski A, Atanasova M, Zheleva D, Zhivkova ZD, Ivanov S, Atanasova T, Konstantinov S, Doytchinova I. Galantamine-Curcumin Hybrids as Dual-Site Binding Acetylcholinesterase Inhibitors. Molecules 2020; 25:E3341. [PMID: 32717861 PMCID: PMC7435983 DOI: 10.3390/molecules25153341] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
Galantamine (GAL) and curcumin (CU) are alkaloids used to improve symptomatically neurodegenerative conditions like Alzheimer's disease (AD). GAL acts mainly as an inhibitor of the enzyme acetylcholinesterase (AChE). CU binds to amyloid-beta (Aβ) oligomers and inhibits the formation of Aβ plaques. Here, we combine GAL core with CU fragments and design a combinatorial library of GAL-CU hybrids as dual-site binding AChE inhibitors. The designed hybrids are screened for optimal ADME properties and BBB permeability and docked on AChE. The 14 best performing compounds are synthesized and tested in vitro for neurotoxicity and anti-AChE activity. Five of them are less toxic than GAL and CU and show activities between 41 and 186 times higher than GAL.
Collapse
Affiliation(s)
- Georgi Stavrakov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (A.L.); (M.A.); (D.Z.); (Z.D.Z.); (S.I.); (T.A.); (S.K.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Irena Philipova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Atanas Lukarski
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (A.L.); (M.A.); (D.Z.); (Z.D.Z.); (S.I.); (T.A.); (S.K.)
| | - Mariyana Atanasova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (A.L.); (M.A.); (D.Z.); (Z.D.Z.); (S.I.); (T.A.); (S.K.)
| | - Dimitrina Zheleva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (A.L.); (M.A.); (D.Z.); (Z.D.Z.); (S.I.); (T.A.); (S.K.)
| | - Zvetanka D. Zhivkova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (A.L.); (M.A.); (D.Z.); (Z.D.Z.); (S.I.); (T.A.); (S.K.)
| | - Stefan Ivanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (A.L.); (M.A.); (D.Z.); (Z.D.Z.); (S.I.); (T.A.); (S.K.)
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Teodora Atanasova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (A.L.); (M.A.); (D.Z.); (Z.D.Z.); (S.I.); (T.A.); (S.K.)
| | - Spiro Konstantinov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (A.L.); (M.A.); (D.Z.); (Z.D.Z.); (S.I.); (T.A.); (S.K.)
| | - Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (A.L.); (M.A.); (D.Z.); (Z.D.Z.); (S.I.); (T.A.); (S.K.)
| |
Collapse
|
33
|
Sari S, Yilmaz M. Synthesis, characterization, acetylcholinesterase inhibition, and molecular docking studies of new piperazine substituted dihydrofuran compounds. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02599-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
34
|
Chainoglou E, Hadjipavlou-Litina D. Curcumin in Health and Diseases: Alzheimer's Disease and Curcumin Analogues, Derivatives, and Hybrids. Int J Mol Sci 2020; 21:ijms21061975. [PMID: 32183162 PMCID: PMC7139886 DOI: 10.3390/ijms21061975] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022] Open
Abstract
Worldwide, Alzheimer’s disease (AD) is the most common neurodegenerative multifactorial disease influencing the elderly population. Nowadays, several medications, among them curcumin, are used in the treatment of AD. Curcumin, which is the principal component of Curcuma longa, has shown favorable effects forsignificantly preventing or treating AD. During the last decade, the scientific community has focused their research on the optimization of therapeutic properties and on the improvement of pharmacokinetic properties of curcumin. This review summarizes bibliographical data from 2009 to 2019 on curcumin analogues, derivatives, and hybrids, as well as their therapeutic, preventic, and diagnostic applications in AD. Recent advances in the field have revealed that the phenolic hydroxyl group could contribute to the anti-amyloidogenic activity. Phenyl methoxy groups seem to contribute to the suppression of amyloid-β peptide (Aβ42) and to the suppression of amyloid precursor protein (APP) andhydrophobic interactions have also revealed a growing role. Furthermore, flexible moieties, at the linker, are crucial for the inhibition of Aβ aggregation. The inhibitory activity of derivatives is increased with the expansion of the aromatic rings. The promising role of curcumin-based compounds in diagnostic imaging is highlighted. The keto-enol tautomerism seems to be a novel modification for the design of amyloid-binding agents. Molecular docking results, (Q)SAR, as well as in vitro and in vivo tests highlight the structures and chemical moieties that are correlated with specific activity. As a result, the knowledge gained from the existing research should lead to the design and synthesis ofinnovative and multitargetedcurcumin analogues, derivatives, or curcumin hybrids, which would be very useful drug and tools in medicine for both diagnosis and treatment of AD.
Collapse
|
35
|
El-Gammal OA, Fouda AEAS, Nabih DM. Novel Mn2+, Fe3+, Co2+, Ni2+ and Cu2+complexes of potential OS donor thiosemicarbazide: Design, structural elucidation, anticorrosion potential study and antibacterial activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg Chem 2020; 97:103649. [PMID: 32101780 DOI: 10.1016/j.bioorg.2020.103649] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that effects 50 million people worldwide. In this review, AD pathology and the development of novel therapeutic agents targeting AD were fully discussed. In particular, common approaches to prevent Aβ production and/or accumulation in the brain including α-secretase activators, specific γ-secretase modulators and small molecules BACE1 inhibitors were reviewed. Additionally, natural-origin bioactive compounds that provide AD therapeutic advances have been introduced. Considering AD is a multifactorial disease, the therapeutic potential of diverse multi target-directed ligands (MTDLs) that combine the efficacy of cholinesterase (ChE) inhibitors, MAO (monoamine oxidase) inhibitors, BACE1 inhibitors, phosphodiesterase 4D (PDE4D) inhibitors, for the treatment of AD are also reviewed. This article also highlights descriptions on the regulator of serotonin receptor (5-HT), metal chelators, anti-aggregants, antioxidants and neuroprotective agents targeting AD. Finally, current computational methods for evaluating the structure-activity relationships (SAR) and virtual screening (VS) of AD drugs are discussed and evaluated.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
37
|
Berczyński P, Kładna A, Bozdağ Dündar O, Murat HN, Sarı E, Kruk I, Aboul-Enein HY. Preparation and in vitro antioxidant activity of some novel flavone analogues bearing piperazine moiety. Bioorg Chem 2020; 95:103513. [DOI: 10.1016/j.bioorg.2019.103513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/16/2019] [Accepted: 12/16/2019] [Indexed: 01/23/2023]
|
38
|
Cai R, Wang LN, Fan JJ, Geng SQ, Liu YM. New 4-N-phenylaminoquinoline derivatives as antioxidant, metal chelating and cholinesterase inhibitors for Alzheimer’s disease. Bioorg Chem 2019; 93:103328. [DOI: 10.1016/j.bioorg.2019.103328] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
|
39
|
Hydroxypyridinone-Diamine Hybrids as Potential Neuroprotective Agents in the PC12 Cell-Line Model of Alzheimer's Disease. Pharmaceuticals (Basel) 2019; 12:ph12040162. [PMID: 31717866 PMCID: PMC6958408 DOI: 10.3390/ph12040162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/28/2022] Open
Abstract
There is an urgent need to propose effective treatments for Alzheimer’s disease (AD). Although the origin of the disease is poorly understood, several therapeutic options have been proposed. The new therapeutic approaches targeting biometal-mediated neurodegenerative pathways appear to be interesting ones. As a continuation of our preceding studies, two novel series of advanced glycation endproducts (AGE)/advanced lipid peroxidation endproducts (ALE) inhibitors have been developed as multifunctional scavengers. This extended work allowed us to highlight the new hydroxypyridinone-diamine hybrid IIa-3 bearing a C4 alkyl linker between the two pharmacophores. This derivative exhibited preserved potent capacities to trap reactive carbonyl species (vicinal diamine function) as well as reactive oxygen species and transition metals (hydroxypyridinone moiety) in comparison with previously described lead compound 1. In addition, its good predicted absorption, distribution, metabolism and excretion (ADME) properties were correlated with a better efficacy to inhibit in vitro methylglyoxal-induced apoptosis in neuronal-like PC12 cells. This new promising agent revealed improved druglikeness and ability to prevent biometal-mediated oxidative and carbonyl stress amplification involved in AD pathogenesis.
Collapse
|
40
|
Wang N, Qiu P, Cui W, Yan X, Zhang B, He S. Recent Advances in Multi-target Anti-Alzheimer Disease Compounds (2013 Up to the Present). Curr Med Chem 2019; 26:5684-5710. [DOI: 10.2174/0929867326666181203124102] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/03/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
Abstract
:
Since the last century, when scientists proposed the lock-and-key model, the discovery of
drugs has focused on the development of drugs acting on single target. However, single-target drug
therapies are not effective to complex diseases with multi-factorial pathogenesis. Moreover, the
combination of single-target drugs readily causes drug resistance and side effects. In recent years,
multi-target drugs have increasingly been represented among FDA-approved drugs. Alzheimer’s
Disease (AD) is a complex and multi-factorial disease for which the precise molecular mechanisms
are still not fully understood. In recent years, rational multi-target drug design methods, which combine
the pharmacophores of multiple drugs, have been increasingly applied in the development of
anti-AD drugs. In this review, we give a brief description of the pathogenesis of AD and provide
detailed discussions about the recent development of chemical structures of anti-AD agents (2013 up
to present) that have multiple targets, such as amyloid-β peptide, Tau protein, cholinesterases,
monoamine oxidase, β-site amyloid-precursor protein-cleaving enzyme 1, free radicals, metal ions
(Fe2+, Cu2+, Zn2+) and so on. In this paper, we also added some novel targets or possible pathogenesis
which have been reported in recent years for AD therapy. We hope that these findings may provide
new perspectives for the pharmacological treatment of AD.
Collapse
Affiliation(s)
- Ning Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Panpan Qiu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Wei Cui
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Bin Zhang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
41
|
|
42
|
Hassan M, Abbasi MA, Siddiqui SZ, Shahzadi S, Raza H, Hussain G, Shah SAA, Ashraf M, Shahid M, Seo SY, Malik A. Designing of promising medicinal scaffolds for Alzheimer's disease through enzyme inhibition, lead optimization, molecular docking and dynamic simulation approaches. Bioorg Chem 2019; 91:103138. [PMID: 31446329 DOI: 10.1016/j.bioorg.2019.103138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
In the designed research work, a series of 2-furoyl piperazine based sulfonamide derivatives were synthesized as therapeutic agents to target the Alzheimer's disease. The structures of the newly synthesized compounds were characterized through spectral analysis and their inhibitory potential was evaluated against butyrylcholinesterase (BChE). The cytotoxicity of these sulfonamides was also ascertained through hemolysis of bovine red blood cells. Furthermore, compounds were inspected by Lipinki Rule and their binding profiles against BChE were discerned by molecular docking. The protein fluctuations in docking complexes were recognized by dynamic simulation. From our in vitro and in silico results 5c, 5j and 5k were identified as promising lead compounds for the treatment of targeted disease.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Raiwind Road, 55150 Lahore, Pakistan.
| | | | | | - Saba Shahzadi
- Institute of Molecular Science and Bioinformatics, Nisbat Road, Lahore, Pakistan
| | - Hussain Raza
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Ghulam Hussain
- Department of Chemistry, Government College University, Lahore 54000, Pakistan
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Level 9, FF3, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Muhamamd Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Sung-Yum Seo
- College of Natural Science, Department of Biological Sciences, Kongju National University, Gongju 32588, South Korea
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Raiwind Road, 55150 Lahore, Pakistan
| |
Collapse
|
43
|
Jeyakumar M, Sathya S, Gandhi S, Tharra P, Suryanarayanan V, Singh SK, Baire B, Pandima Devi K. α-bisabolol β-D-fucopyranoside as a potential modulator of β-amyloid peptide induced neurotoxicity: An in vitro &in silico study. Bioorg Chem 2019; 88:102935. [PMID: 31030060 DOI: 10.1016/j.bioorg.2019.102935] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative disorder affecting the elderly people. For the AD treatment, there is inefficiency in the existing medication, as these drugs reduce only the symptoms of the disease. Since multiple pathological proteins are involved in the development of AD, searching for a single molecule targeting multiple AD proteins will be a new strategy for the management of AD. In view of this, the present study was designed to synthesize and evaluate the multifunctional neuroprotective ability of the sesquiterpene glycoside α-bisabolol β-D-fucopyranoside (ABFP) against multiple targets like acetylcholinesterase, oxidative stress and β-amyloid peptide aggregation induced cytotoxicity. In silico computational docking and simulation studies of ABFP with acetylcholinesterase (AChE) showed that it can interact with Asp74 and Thr75 residues of the enzyme. The in vitro studies showed that the compound possess significant ability to inhibit the AChE enzyme apart from exhibiting antioxidant, anti-aggregation and disaggregation properties. In addition, molecular dynamics simulation studies proved that the interacting residue between Aβ peptide and ABFP was found to be involved in Leu34 and Ile31. Furthermore, the compound was able to protect the Neuro2 a cells against Aβ25-35 peptide induced toxicity. Overall, the present study evidently proved ABFP as a neuroprotective agent, which might act as a multi-target compound for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Mahalingam Jeyakumar
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sethuraman Sathya
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Soniya Gandhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Prabhakarrao Tharra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Venkatesan Suryanarayanan
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Kasi Pandima Devi
- Department of Biotechnology, Alagappa University, Karaikudi 630003, Tamil Nadu, India.
| |
Collapse
|
44
|
Synthesis and biological evaluation of new pyrazolone Schiff bases as monoamine oxidase and cholinesterase inhibitors. Bioorg Chem 2019; 84:41-50. [DOI: 10.1016/j.bioorg.2018.11.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 01/06/2023]
|
45
|
On the role of synthesized hydroxylated chalcones as dual functional amyloid-β aggregation and ferroptosis inhibitors for potential treatment of Alzheimer's disease. Eur J Med Chem 2019; 166:11-21. [DOI: 10.1016/j.ejmech.2019.01.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/18/2023]
|
46
|
Doytchinova I, Atanasova M, Valkova I, Stavrakov G, Philipova I, Zhivkova Z, Zheleva-Dimitrova D, Konstantinov S, Dimitrov I. Novel hits for acetylcholinesterase inhibition derived by docking-based screening on ZINC database. J Enzyme Inhib Med Chem 2018; 33:768-776. [PMID: 29651876 PMCID: PMC6010092 DOI: 10.1080/14756366.2018.1458031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022] Open
Abstract
The inhibition of the enzyme acetylcholinesterase (AChE) increases the levels of the neurotransmitter acetylcholine and symptomatically improves the affected cognitive function. In the present study, we searched for novel AChE inhibitors by docking-based virtual screening of the standard lead-like set of ZINC database containing more than 6 million small molecules using GOLD software. The top 10 best-scored hits were tested in vitro for AChE affinity, neurotoxicity, GIT and BBB permeability. The main pharmacokinetic parameters like volume of distribution, free fraction in plasma, total clearance, and half-life were predicted by previously derived models. Nine of the compounds bind to the enzyme with affinities from 0.517 to 0.735 µM, eight of them are non-toxic. All hits permeate GIT and BBB and bind extensively to plasma proteins. Most of them are low-clearance compounds. In total, seven of the 10 hits are promising for further lead optimisation. These are structures with ZINC IDs: 00220177, 44455618, 66142300, 71804814, 72065926, 96007907, and 97159977.
Collapse
Affiliation(s)
- Irini Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
- Drug Design and Development Lab, Sofia Tech Park, Sofia, Bulgaria
| | | | - Iva Valkova
- Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
- Drug Design and Development Lab, Sofia Tech Park, Sofia, Bulgaria
| | - Georgi Stavrakov
- Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Irena Philipova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | - Ivan Dimitrov
- Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
47
|
Proteasome mediated degradation of CDC25C and Cyclin B1 in Demethoxycurcumin treated human glioma U87 MG cells to trigger G2/M cell cycle arrest. Toxicol Appl Pharmacol 2018; 356:76-89. [DOI: 10.1016/j.taap.2018.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022]
|
48
|
Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer's disease. Eur J Med Chem 2018; 158:463-477. [PMID: 30243151 DOI: 10.1016/j.ejmech.2018.09.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/03/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in elderly people. Considering the multifactorial nature of AD, the concept of multi-target-directed ligands (MTDLs) has recently emerged as a new strategy for designing therapeutic agents on AD. MTDLs are confirmed to simultaneously affect diverse targets which contribute to etiology of AD. As the most potent approved drug, donepezil affects various events of AD, like inhibiting cholinesterases activities, anti-Aβ aggregation, anti-oxidative stress et al. Modifications of donepezil or hybrids with pharmacophores of donepezil in recent five years are summarized in this article. On the basis of case studies, our concerns and opinions about development of donepezil derivatives, designing of MTDLs, and perspectives for AD treatments are discussed in final part.
Collapse
|
49
|
Uddin I, Taha M, Rahim F, Wadood A. Synthesis and molecular docking study of piperazine derivatives as potent inhibitor of thymidine phosphorylase. Bioorg Chem 2018; 78:324-331. [DOI: 10.1016/j.bioorg.2018.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/29/2022]
|
50
|
Shi DH, Ma XD, Liu YW, Min W, Yin FJ, Tang ZM, Song MQ, Lu C, Song XK, Liu WW, Dong T. Synthesis, Crystal Structure and Biological Evaluation of Novel 2-Phenylthiazole Derivatives as Butyrylcholinesterase Inhibitors. JOURNAL OF CHEMICAL RESEARCH 2018. [DOI: 10.3184/174751918x15314837408346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To find novel butyrylcholinesterase inhibitors, three novel 2-phenylthiazole derivatives were synthesised. The synthesised compounds were characterised by NMR and single-crystal X-ray diffraction analysis. Hirshfeld surface analysis and two-dimensional fingerprint plots of the compounds were used as a theoretical approach to assess the driving force for crystal structure formation via the intermolecular interactions in the crystal lattices of the synthesised compounds. Among the three compounds, N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)-2-(4-methoxyphenyl)thiazole-4-carboxamide showed the best butyrylcholinesterase-inhibition activity with an IC50 value of 75.12 μM. A docking study demonstrated that this compound interacts with the peripheral anionic site of butyrylcholinesterase.
Collapse
Affiliation(s)
- Da-Hua Shi
- Key Laboratory of Marine Pharmaceutical Compound Screening, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, P.R. China
| | - Xiao-Dong Ma
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Yu-Wei Liu
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Wei Min
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Fu-Jun Yin
- Jiangsu Institute of Marine Resources, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Zong-Ming Tang
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Meng-Qiu Song
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Chen Lu
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Xiao-Kai Song
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Wei-Wei Liu
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| | - Tong Dong
- Pharmacy School, Huaihai Institute of Technology, Lianyungang 222005, P.R. China
| |
Collapse
|