1
|
Li M, Cheng X. Aggregation-induced C-C bond formation on an electrode driven by the surface tension of water. Nat Commun 2024; 15:7540. [PMID: 39215021 PMCID: PMC11364745 DOI: 10.1038/s41467-024-52042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Electrochemical organic synthesis is typically conducted in organic media. The solvent and related supporting electrolytes negatively affect the greenness of electrosynthesis. In this work, with 100% water used as the solvent, we realize aggregation-driven electrochemical radical cross coupling of unsaturated compounds driven by water tension. A key finding is that aggregation of the substrate at the electrode confined the radical intermediate and prevented side reactions, thus providing a way to regulate radical reactions in addition to their native properties. The reaction provides up to 90% yields with almost quantitative chemoselectivity. The pure water system readily yields the products via cold filtration, and the solvent is recycled repeatedly. In particular, the life span of the radical species generated in the reaction increase significantly because of the confined environment in the aggregation state. The greenness of this protocol is further enhanced with readily separation of product from media using cooling and filtration.
Collapse
Affiliation(s)
- Mengfan Li
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Xu Cheng
- State Key Laboratory of Coordination Chemistry, Institute of Chemistry and Biomedical Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Liu R, Yuan T, Wang R, Gong D, Wang S, Du G, Fang L. Insights into Endothelin Receptors in Pulmonary Hypertension. Int J Mol Sci 2023; 24:10206. [PMID: 37373355 DOI: 10.3390/ijms241210206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a disease which affects the cardiopulmonary system; it is defined as a mean pulmonary artery pressure (mPAP) > 20 mmHg as measured by right heart catheterization at rest, and is caused by complex and diverse mechanisms. In response to stimuli such as hypoxia and ischemia, the expression and synthesis of endothelin (ET) increase, leading to the activation of various signaling pathways downstream of it and producing effects such as the induction of abnormal vascular proliferation during the development of the disease. This paper reviews the regulation of endothelin receptors and their pathways in normal physiological processes and disease processes, and describes the mechanistic roles of ET receptor antagonists that are currently approved and used in clinical studies. Current clinical researches on ET are focused on the development of multi-target combinations and novel delivery methods to improve efficacy and patient compliance while reducing side effects. In this review, future research directions and trends of ET targets are described, including monotherapy and precision medicine.
Collapse
Affiliation(s)
- Ruiqi Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianyi Yuan
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ranran Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Difei Gong
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shoubao Wang
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Chen R, Wang Y, Wang ZY, Ma X, Xu C, Wang KK, Sun A. Cobalt-catalyzed decarboxylative oxyalkylation of styrenes with α-cyanoacid: access to γ‑ketonitriles. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Bai J, Li M, Zhou C, Sha Y, Cheng J, Sun J, Sun S. Visible-Light Photoredox-Catalyzed Dicarbofunctionalization of Styrenes with Oxime Esters and CO 2: Multicomponent Reactions toward Cyanocarboxylic Acids and γ-Keto Acids. Org Lett 2021; 23:9654-9658. [PMID: 34851115 DOI: 10.1021/acs.orglett.1c03938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A photoredox-catalyzed dicarbofunctionalization of styrenes with oxime esters and CO2 has been achieved. Notably, a series of four-, five-, or six-membered cyclic ketone oximes worked well to furnish a wide range of ε-, ζ-, and η-cyanocarboxylic acids in good yields. Furthermore, a series of γ-keto acids also could be obtained by employing acyclic ketone oxime esters as the carbonyl radical precursor. It provides convergent access to diverse biologically important cyanocarboxylic and γ-keto acids.
Collapse
Affiliation(s)
- Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Cong Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yu Sha
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiang Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Rai VK, Verma F, Bhardiya SR, Sheshma H, Rai A, Singh M. Facile Synthesis of γ‐Ketonitriles in Water via C(sp
2
)–H Activation of Aromatic Aldehydes over Cu@g‐C
3
N
4
under Visible‐Light. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vijai K. Rai
- Department of Chemistry Guru Ghasidas Vishwavidyalaya 495 009 Bilaspur C. G. India
| | - Fooleswar Verma
- Department of Chemistry Guru Ghasidas Vishwavidyalaya 495 009 Bilaspur C. G. India
| | - Smita R. Bhardiya
- Department of Chemistry Guru Ghasidas Vishwavidyalaya 495 009 Bilaspur C. G. India
| | - Harendra Sheshma
- School of Physical Sciences Jawaharlal Nehru University 110 067 New Delhi India
| | - Ankita Rai
- School of Physical Sciences Jawaharlal Nehru University 110 067 New Delhi India
| | - Manorama Singh
- Department of Chemistry Guru Ghasidas Vishwavidyalaya 495 009 Bilaspur C. G. India
| |
Collapse
|
6
|
Li Y, Shang JQ, Wang XX, Xia WJ, Yang T, Xin Y, Li YM. Copper-Catalyzed Decarboxylative Oxyalkylation of Alkynyl Carboxylic Acids: Synthesis of γ-Diketones and γ-Ketonitriles. Org Lett 2019; 21:2227-2230. [DOI: 10.1021/acs.orglett.9b00520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Jia-Qi Shang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Xiang-Xiang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Wen-Jin Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Tao Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| | - Yangchun Xin
- Katzin Diagnostic & Research PET/MR Center, Nemours/Alfred I. DuPont Hospital for Children, Wilmington, Delaware 19803, United States
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P.R. China
| |
Collapse
|
7
|
Niu XL, Yang H. Crystal structure of tetramethylammonium bis(acetato-κ 1
O)-tetrakis(μ 3-3-((hydroxyimino)methyl)-5-methoxy-2-oxidobenzoate-κ 5
O, O′: O′, N: O′′)tetrazinc(II) — N, N′-dimethylformamide — water (1/2/2), C 62H 96Zn 4N 10O 28. Z KRIST-NEW CRYST ST 2018. [DOI: 10.1515/ncrs-2018-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C62H96Zn4N10O28, monoclinic, P21/c, a = 12.1072(11) Å, b = 27.878(3) Å, c = 11.4494(9) Å, β = 102.011(2)°, V = 3779.8(6) Å3, Z = 2, R
gt(F) = 0.0448, wR
ref(F
2) = 0.1092, T = 298(2) K.
Collapse
Affiliation(s)
- Xue L. Niu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry and Chemical Engineering, Liaocheng University , Shandong 252059 , China
- Jincheng Institute of technology , Shanxi 048026 , China
| | - Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Department of Chemistry and Chemical Engineering, Liaocheng University , Shandong 252059 , China
| |
Collapse
|
8
|
|
9
|
Lin T, Mi J, Song L, Gan J, Luo P, Mao J, Walsh PJ. Nickel-Catalyzed Desymmetrizing Cross-Electrophile Coupling of Cyclic Meso-Anhydrides. Org Lett 2018; 20:1191-1194. [DOI: 10.1021/acs.orglett.8b00114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tingzhi Lin
- Institute
of Advanced Synthesis, School of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Jianjun Mi
- Institute
of Advanced Synthesis, School of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Lichao Song
- Institute
of Advanced Synthesis, School of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Jiamin Gan
- Institute
of Advanced Synthesis, School of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Pan Luo
- Institute
of Advanced Synthesis, School of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Jianyou Mao
- Institute
of Advanced Synthesis, School of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Patrick J. Walsh
- Institute
of Advanced Synthesis, School of Chemistry and Molecular Engineering,
Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
- Roy
and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
10
|
Wu Q, Li Y, Wang C, Zhang J, Huang M, Kim JK, Wu Y. 1,4-Refunctionalization of β-diketones to γ-keto nitriles via C–C single bond cleavage. Org Chem Front 2018. [DOI: 10.1039/c8qo00556g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 1,4-refunctionalization of β-diketones to γ-keto nitriles was realized via an Fe-catalyzed cascade radical process.
Collapse
Affiliation(s)
- Qi Wu
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yabo Li
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Chenyang Wang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Jianye Zhang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Mengmeng Huang
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Jung Keun Kim
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| | - Yangjie Wu
- College of Chemistry and Molecular Engineering
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
| |
Collapse
|
11
|
Sriram R, Sapthagiri R, Ilavarasan L, Ravi A. Retracted
: Microwave Assisted Synthesis of Trifluoro Substituted 2-Aminobenzimidazole Derivatives via
Iodoacetic Acid Mediated One-pot Condensation. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- R. Sriram
- PG & Research Department of Chemistry, Government Arts College; Thiruvalluvar University; Tiruvannamalai 606603 Vellore Tamil Nadu India
| | - R. Sapthagiri
- PG & Research Department of Chemistry, Government Arts College; Thiruvalluvar University; Tiruvannamalai 606603 Vellore Tamil Nadu India
| | - L. Ilavarasan
- PG & Research Department of Chemistry, Government Arts College; Thiruvalluvar University; Tiruvannamalai 606603 Vellore Tamil Nadu India
| | - A. Ravi
- PG & Research Department of Chemistry, Government Arts College; Thiruvalluvar University; Tiruvannamalai 606603 Vellore Tamil Nadu India
| |
Collapse
|
12
|
Russo D, Di Somma I, Marotta R, Tomaiuolo G, Andreozzi R, Guido S, Lapkin AA. Intensification of Nitrobenzaldehydes Synthesis from Benzyl Alcohol in a Microreactor. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.6b00426] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Danilo Russo
- Dipartimento
di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio, 80−80125 Napoli, Italy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Ilaria Di Somma
- Istituto di Ricerche sulla Combustione (CNR), p.le V. Tecchio, 80−80125 Napoli, Italy
| | - Raffaele Marotta
- Dipartimento
di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio, 80−80125 Napoli, Italy
| | - Giovanna Tomaiuolo
- Dipartimento
di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio, 80−80125 Napoli, Italy
| | - Roberto Andreozzi
- Dipartimento
di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio, 80−80125 Napoli, Italy
| | - Stefano Guido
- Dipartimento
di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, p.le V. Tecchio, 80−80125 Napoli, Italy
| | - Alexei A. Lapkin
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
13
|
Feng YS, Shu YJ, Cao P, Xu T, Xu HJ. Copper(i)-catalyzed ring-opening cyanation of cyclopropanols. Org Biomol Chem 2017; 15:3590-3593. [DOI: 10.1039/c7ob00627f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A copper(i)-catalyzed ring-opening cyanation of cyclopropanols is developed. The reaction provides an efficient protocol to synthesize β-cyano ketones.
Collapse
Affiliation(s)
- Yi-Si Feng
- School of Chemistry and Chemical Engineering
- School of Biological and Medical Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Yong-Jin Shu
- School of Chemistry and Chemical Engineering
- School of Biological and Medical Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Ping Cao
- School of Chemistry and Chemical Engineering
- School of Biological and Medical Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Tao Xu
- School of Chemistry and Chemical Engineering
- School of Biological and Medical Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering
- School of Biological and Medical Engineering
- Hefei University of Technology
- Hefei 230009
- P. R. China
| |
Collapse
|
14
|
Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016; 68:357-418. [PMID: 26956245 PMCID: PMC4815360 DOI: 10.1124/pr.115.011833] [Citation(s) in RCA: 502] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The endothelins comprise three structurally similar 21-amino acid peptides. Endothelin-1 and -2 activate two G-protein coupled receptors, ETA and ETB, with equal affinity, whereas endothelin-3 has a lower affinity for the ETA subtype. Genes encoding the peptides are present only among vertebrates. The ligand-receptor signaling pathway is a vertebrate innovation and may reflect the evolution of endothelin-1 as the most potent vasoconstrictor in the human cardiovascular system with remarkably long lasting action. Highly selective peptide ETA and ETB antagonists and ETB agonists together with radiolabeled analogs have accurately delineated endothelin pharmacology in humans and animal models, although surprisingly no ETA agonist has been discovered. ET antagonists (bosentan, ambrisentan) have revolutionized the treatment of pulmonary arterial hypertension, with the next generation of antagonists exhibiting improved efficacy (macitentan). Clinical trials continue to explore new applications, particularly in renal failure and for reducing proteinuria in diabetic nephropathy. Translational studies suggest a potential benefit of ETB agonists in chemotherapy and neuroprotection. However, demonstrating clinical efficacy of combined inhibitors of the endothelin converting enzyme and neutral endopeptidase has proved elusive. Over 28 genetic modifications have been made to the ET system in mice through global or cell-specific knockouts, knock ins, or alterations in gene expression of endothelin ligands or their target receptors. These studies have identified key roles for the endothelin isoforms and new therapeutic targets in development, fluid-electrolyte homeostasis, and cardiovascular and neuronal function. For the future, novel pharmacological strategies are emerging via small molecule epigenetic modulators, biologicals such as ETB monoclonal antibodies and the potential of signaling pathway biased agonists and antagonists.
Collapse
Affiliation(s)
- Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Kelly A Hyndman
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Neeraj Dhaun
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Christopher Southan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Donald E Kohan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Jennifer S Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David M Pollock
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - David J Webb
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Cambridge, United Kingdom (A.P.D., J.J.M.); IUPHAR/BPS Guide to PHARMACOLOGY, Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, Edinburgh, United Kingdom (C.S.); Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah (D.E.K.); Cardio-Renal Physiology & Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama (K.A.H., J.S.P., D.M.P.); and Department of Renal Medicine, Royal Infirmary of Edinburgh (N.D.) and University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute (D.J.W.N.D.), Edinburgh, Scotland, United Kingdom
| |
Collapse
|
15
|
Discovery of Dual ETA/ETB Receptor Antagonists from Traditional Chinese Herbs through in Silico and in Vitro Screening. Int J Mol Sci 2016; 17:389. [PMID: 26999111 PMCID: PMC4813245 DOI: 10.3390/ijms17030389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/25/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022] Open
Abstract
Endothelin-1 receptors (ETAR and ETBR) act as a pivotal regulator in the biological effects of ET-1 and represent a potential drug target for the treatment of multiple cardiovascular diseases. The purpose of the study is to discover dual ETA/ETB receptor antagonists from traditional Chinese herbs. Ligand- and structure-based virtual screening was performed to screen an in-house database of traditional Chinese herbs, followed by a series of in vitro bioassay evaluation. Aristolochic acid A (AAA) was first confirmed to be a dual ETA/ETB receptor antagonist based intracellular calcium influx assay and impedance-based assay. Dose-response curves showed that AAA can block both ETAR and ETBR with IC50 of 7.91 and 7.40 μM, respectively. Target specificity and cytotoxicity bioassay proved that AAA is a selective dual ETA/ETB receptor antagonist and has no significant cytotoxicity on HEK293/ETAR and HEK293/ETBR cells within 24 h. It is a feasible and effective approach to discover bioactive compounds from traditional Chinese herbs using in silico screening combined with in vitro bioassay evaluation. The structural characteristic of AAA for its activity was especially interpreted, which could provide valuable reference for the further structural modification of AAA.
Collapse
|