1
|
Azevedo PHRDA, Camargo PG, Constant LEC, Costa SDS, Silva CS, Rosa AS, Souza DDC, Tucci AR, Ferreira VNS, Oliveira TKF, Borba NRR, Rodrigues CR, Albuquerque MG, Dias LRS, Garrett R, Miranda MD, Allonso D, Lima CHDS, Muri EMF. Statine-based peptidomimetic compounds as inhibitors for SARS-CoV-2 main protease (SARS-CoV‑2 Mpro). Sci Rep 2024; 14:8991. [PMID: 38637583 PMCID: PMC11026380 DOI: 10.1038/s41598-024-59442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
COVID-19 is a multisystemic disease caused by the SARS-CoV-2 airborne virus, a member of the Coronaviridae family. It has a positive sense single-stranded RNA genome and encodes two non-structural proteins through viral cysteine-proteases processing. Blocking this step is crucial to control virus replication. In this work, we reported the synthesis of 23 statine-based peptidomimetics to determine their ability to inhibit the main protease (Mpro) activity of SARS-CoV-2. Among the 23 peptidomimetics, 15 compounds effectively inhibited Mpro activity by 50% or more, while three compounds (7d, 8e, and 9g) exhibited maximum inhibition above 70% and IC50 < 1 µM. Compounds 7d, 8e, and 9g inhibited roughly 80% of SARS-CoV-2 replication and proved no cytotoxicity. Molecular docking simulations show putative hydrogen bond and hydrophobic interactions between specific amino acids and these inhibitors. Molecular dynamics simulations further confirmed the stability and persisting interactions in Mpro's subsites, exhibiting favorable free energy binding (ΔGbind) values. These findings suggest the statine-based peptidomimetics as potential therapeutic agents against SARS-CoV-2 by targeting Mpro.
Collapse
Affiliation(s)
- Pedro Henrique R de A Azevedo
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Priscila G Camargo
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Larissa E C Constant
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Stephany da S Costa
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Celimar Sinézia Silva
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Alice S Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Daniel D C Souza
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Amanda R Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Vivian N S Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Thamara Kelcya F Oliveira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Nathalia R R Borba
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Carlos R Rodrigues
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Magaly G Albuquerque
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Luiza R S Dias
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil
| | - Rafael Garrett
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Milene D Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Diego Allonso
- Laboratório de Biotecnologia e Bioengenharia Tecidual, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil
| | - Camilo Henrique da S Lima
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-853, Brazil.
| | - Estela Maris F Muri
- Laboratório de Química Medicinal, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, 24241-000, Brazil.
| |
Collapse
|
2
|
Song X, Bai S, Li Y, Yi T, Long X, Pu Q, Dang T, Ma M, Ren Q, Qin X. Expedient and divergent synthesis of unnatural peptides through cobalt-catalyzed diastereoselective umpolung hydrogenation. SCIENCE ADVANCES 2023; 9:eadk4950. [PMID: 38117889 PMCID: PMC10732522 DOI: 10.1126/sciadv.adk4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
The development of a reliable method for asymmetric synthesis of unnatural peptides is highly desirable and particularly challenging. In this study, we present a versatile and efficient approach that uses cobalt-catalyzed diastereoselective umpolung hydrogenation to access noncanonical aryl alanine peptides. This protocol demonstrates good tolerance toward various functional groups, amino acid sequences, and peptide lengths. Moreover, the versatility of this reaction is illustrated by its successful application in the late-stage functionalization and formal synthesis of various representative chiral natural products and pharmaceutical scaffolds. This strategy eliminates the need for synthesizing chiral noncanonical aryl alanines before peptide formation, and the hydrogenation reaction does not result in racemization or epimerization. The underlying mechanism was extensively explored through deuterium labeling, control experiments, HRMS identification, and UV-Vis spectroscopy, which supported a reasonable CoI/CoIII catalytic cycle. Notably, acetic acid and methanol serve as safe and cost-effective hydrogen sources, while indium powder acts as the terminal electron source.
Collapse
Affiliation(s)
- Xinjian Song
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Shuangyi Bai
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Yuan Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Tong Yi
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xinyu Long
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qinghua Pu
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Ting Dang
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Mengjie Ma
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qiao Ren
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xurong Qin
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, No. 94 Wei Jin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Ramos V, Reis M, Ferreira L, Silva AM, Ferraz R, Vieira M, Vasconcelos V, Martins R. Stalling the Course of Neurodegenerative Diseases: Could Cyanobacteria Constitute a New Approach toward Therapy? Biomolecules 2023; 13:1444. [PMID: 37892126 PMCID: PMC10604708 DOI: 10.3390/biom13101444] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by progressive and irreversible neuronal loss, accompanied by a range of pathological pathways, including aberrant protein aggregation, altered energy metabolism, excitotoxicity, inflammation, and oxidative stress. Some of the most common NDs include Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and Huntington's Disease (HD). There are currently no available cures; there are only therapeutic approaches that ameliorate the progression of symptoms, which makes the search for new drugs and therapeutic targets a constant battle. Cyanobacteria are ancient prokaryotic oxygenic phototrophs whose long evolutionary history has resulted in the production of a plethora of biomedically relevant compounds with anti-inflammatory, antioxidant, immunomodulatory, and neuroprotective properties, that can be valuable in this field. This review summarizes the major NDs and their pathophysiology, with a focus on the anti-neurodegenerative properties of cyanobacterial compounds and their main effects.
Collapse
Affiliation(s)
- Vitória Ramos
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
| | - Mariana Reis
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| | - Leonor Ferreira
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Ana Margarida Silva
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
| | - Ricardo Ferraz
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
- Associated Laboratory for Green Chemistry—Network of Chemistry and Technology (LAQV-REQUIMTE), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Mónica Vieira
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
- Center for Translational Health and Medical Biotechnology Research (TBIO/ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal
| | - Vitor Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
- Department of Biology, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Rosário Martins
- School of Health, Polytechnic Institute of Porto (ESS/P.PORTO), Rua Dr. António Bernardino de Almeida 400, 4200-072 Porto, Portugal; (V.R.); (A.M.S.); (R.F.); (M.V.)
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; (M.R.); (L.F.); (V.V.)
| |
Collapse
|
4
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
5
|
Wang Y, Han H, Zhu K, Xu S, Han C, Jiang Y, Wei S, Qin Q. Functional Analysis of the Cathepsin D Gene Response to SGIV Infection in the Orange-Spotted Grouper, Epinephelus coioides. Viruses 2022; 14:v14081680. [PMID: 36016302 PMCID: PMC9413388 DOI: 10.3390/v14081680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Lysosomal aspartic protease Cathepsin D (CD) is a key regulator and signaling molecule in various biological processes including activation and degradation of intracellular proteins, the antigen process and programmed cell death. However, the function of fish CD in virus infection remains largely unknown. (2) Methods: The functions of the CD gene response to SGIV infection was determined with light microscopy, reverse transcription quantitative PCR, Western blot and flow cytometry. (3) Results: In this study, Ec-Cathepsin D (Ec-CD) was cloned and identified from the orange-spotted grouper, Epinephelus coioides. The open reading frame (ORF) of Ec-CD consisted of 1191 nucleotides encoding a 396 amino acid protein with a predicted molecular mass of 43.17 kDa. Ec-CD possessed typical CD structural features including an N-terminal signal peptide, a propeptide region and a mature domain including two glycosylation sites and two active sites, which were conserved in other CD sequences. Ec-CD was predominantly expressed in the spleen and kidneys of healthy groupers. A subcellular localization assay indicated that Ec-CD was mainly distributed in the cytoplasm. Ec-CD expression was suppressed by SGIV stimulation and Ec-CD-overexpressing inhibited SGIV replication, SGIV-induced apoptosis, caspase 3/8/9 activity and the activation of reporter gene p53 and activating protein-1 (AP-1) in vitro. Simultaneously, Ec-CD overexpression obviously restrained the activated mitogen-activated protein kinase (MAPK) pathways, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). In addition, Ec-CD overexpression negatively regulated the transcription level of pro-inflammatory cytokines and activation of the NF-κB promotor. (4) Conclusions: Our findings revealed that the Ec-CD possibly served a function during SGIV infection.
Collapse
Affiliation(s)
- Yuexuan Wang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Honglin Han
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Kecheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China;
| | - Suifeng Xu
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Chengzong Han
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Yunxiang Jiang
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
| | - Shina Wei
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
- Correspondence: (S.W.); (Q.Q.); Tel.: +86-20-87577692 (Q.Q.); Fax: +86-20-87577692 (Q.Q.)
| | - Qiwei Qin
- Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (H.H.); (S.X.); (C.H.); (Y.J.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 528478, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence: (S.W.); (Q.Q.); Tel.: +86-20-87577692 (Q.Q.); Fax: +86-20-87577692 (Q.Q.)
| |
Collapse
|
6
|
Cathepsin D inhibitors based on tasiamide B derivatives with cell membrane permeability. Bioorg Med Chem 2022; 57:116646. [DOI: 10.1016/j.bmc.2022.116646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
|
7
|
Bridging Cyanobacteria to Neurodegenerative Diseases: A New Potential Source of Bioactive Compounds against Alzheimer's Disease. Mar Drugs 2021; 19:md19060343. [PMID: 34208482 PMCID: PMC8235772 DOI: 10.3390/md19060343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 02/02/2023] Open
Abstract
Neurodegenerative diseases (NDs) represent a drawback in society given the ageing population. Dementias are the most prevalent NDs, with Alzheimer’s disease (AD) representing around 70% of all cases. The current pharmaceuticals for AD are symptomatic and with no effects on the progression of the disease. Thus, research on molecules with therapeutic relevance has become a major focus for the scientific community. Cyanobacteria are a group of photosynthetic prokaryotes rich in biomolecules with confirmed activity in pathologies such as cancer, and with feasible potential in NDs such as AD. In this review, we aimed to compile the research works focused in the anti-AD potential of cyanobacteria, namely regarding the inhibition of the enzyme β-secretase (BACE1) as a fundamental enzyme in the generation of β-amyloid (Aβ), the inhibition of the enzyme acetylcholinesterase (AChE) lead to an increase in the availability of the neurotransmitter acetylcholine in the synaptic cleft and the antioxidant and anti-inflammatory effects, as phenomena associated with neurodegeneration mechanisms.
Collapse
|
8
|
Sambaiah M, Thota P, Kottawar SS, Yennam S, Shiva Kumar K, Behera M. Synthesis of New Lansiumamide A/Alatamide (cis‐Isomer) Based Unnatural α‐Amino Acid Derivatives via the Suzuki‐Miyaura Cross Coupling as Key Step. ChemistrySelect 2021. [DOI: 10.1002/slct.202101093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M. Sambaiah
- Medicinal Chemistry Laboratory (Synthesis) GVK Biosciences Pvt. Ltd 125 & 126, IDA Mallapur Hyderabad Telangana India 500 076
- Department of Chemistry GITAM (DEEMED TO BE UNIVERSITY) GITAM School of Science Hyderabad campus Vill: Rudraram, Mdl: Patancheru, Dist: Sangareddy Telangana India 502329
| | - PradeepKumar Thota
- Medicinal Chemistry Laboratory (Synthesis) GVK Biosciences Pvt. Ltd 125 & 126, IDA Mallapur Hyderabad Telangana India 500 076
| | - Shrinivas S. Kottawar
- Medicinal Chemistry Laboratory (Synthesis) GVK Biosciences Pvt. Ltd 125 & 126, IDA Mallapur Hyderabad Telangana India 500 076
| | - Satyanarayana Yennam
- Medicinal Chemistry Laboratory (Synthesis) GVK Biosciences Pvt. Ltd 125 & 126, IDA Mallapur Hyderabad Telangana India 500 076
| | - K. Shiva Kumar
- Department of Chemistry GITAM (DEEMED TO BE UNIVERSITY) GITAM School of Science Hyderabad campus Vill: Rudraram, Mdl: Patancheru, Dist: Sangareddy Telangana India 502329
| | - Manoranjan Behera
- Medicinal Chemistry Laboratory (Synthesis) GVK Biosciences Pvt. Ltd 125 & 126, IDA Mallapur Hyderabad Telangana India 500 076
| |
Collapse
|
9
|
Chopra B, Dhingra AK. Natural products: A lead for drug discovery and development. Phytother Res 2021; 35:4660-4702. [PMID: 33847440 DOI: 10.1002/ptr.7099] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Natural products are used since ancient times in folklore for the treatment of various ailments. Plant-derived products have been recognized for many years as a source of therapeutic agents and structural diversity. A literature survey has been carried out to determine the utility of natural molecules and their modified analogs or derivatives as pharmacological active entities. This review presents a study on the importance of natural products in terms of drug discovery and development. It describes how the natural components can be utilized after small modifications in new perspectives. Various new modifications in structure offer a unique opportunity to establish a new molecular entity with better pharmacological potential. It was concluded that in this current era, new attempts are taken to utilize the compounds derived from natural sources as novel drug candidates, with a focus to find and discover new effective molecules that were referred to as "new entities of natural product drug discovery."
Collapse
Affiliation(s)
- Bhawna Chopra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| |
Collapse
|
10
|
Diversity, molecular mechanisms and structure-activity relationships of marine protease inhibitors-A review. Pharmacol Res 2021; 166:105521. [PMID: 33662574 DOI: 10.1016/j.phrs.2021.105521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 11/23/2022]
Abstract
Marine habitats are well-known for their diverse life forms that are potential sources of novel bioactive compounds. Evidence from existing studies suggests that these compounds contribute significantly to the field of pharmaceuticals, nutraceuticals, and cosmeceuticals. The isolation of natural compounds from a marine environment with protease inhibitory activity has gained importance due to drug discovery potential. Despite the increasing research endeavours focusing on protease inhibitors' design and characterization, many of these compounds have failed to reach final phases of clinical trials. As a result, the search for new sources for the development of protease inhibitors remains pertinent. This review focuses on the diverse marine protease inhibitors and their structure-activity relationships. Furthermore, the potential of marine protease inhibitors in drug discovery and molecular mechanism inhibitor binding are critically discussed.
Collapse
|
11
|
Panda SS, Jhanji N. Natural Products as Potential Anti-Alzheimer Agents. Curr Med Chem 2021; 27:5887-5917. [PMID: 31215372 DOI: 10.2174/0929867326666190618113613] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/20/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Medicinal plants have curative properties due to the presence of various complex chemical substances of different composition, which are found as secondary metabolites in one or more parts of the plant. The diverse secondary metabolites play an important role in the prevention and cure of various diseases including neurodegenerative diseases like Alzheimer's disease. Naturally occurring compounds such as flavonoids, polyphenols, alkaloids, and glycosides found in various parts of the plant and/or marine sources may potentially protect neurodegeneration as well as improve memory and cognitive function. Many natural compounds show anti-Alzheimer activity through specific pharmacological mechanisms like targeting β-amyloid, Beta-secretase 1 and Acetylcholinesterase. In this review, we have compiled more than 130 natural products with a broad diversity in the class of compounds, which were isolated from different sources showing anti- Alzheimer properties.
Collapse
Affiliation(s)
- Siva S Panda
- Department of Chemistry & Physics, Augusta University, Augusta, Georgia 30912, United States
| | - Nancy Jhanji
- Department of Chemistry & Physics, Augusta University, Augusta, Georgia 30912, United States
| |
Collapse
|
12
|
Goyal S, Patel KV, Nagare Y, Raykar DB, Raikar SS, Dolas A, Khurana P, Cyriac R, Sarak S, Gangar M, Agarwal AK, Kulkarni A. Identification and structure-activity relationship studies of small molecule inhibitors of the human cathepsin D. Bioorg Med Chem 2020; 29:115879. [PMID: 33271453 DOI: 10.1016/j.bmc.2020.115879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023]
Abstract
Cathepsin D, an aspartyl protease, is an attractive therapeutic target for various diseases, primarily cancer and osteoarthritis. However, despite several small molecule cathepsin D inhibitors being developed, that are highly potent, most of them show poor microsomal stability, which in turn limits their clinical translation. Herein, we describe the design, optimization and evaluation of a series of novel non-peptidic acylguanidine based small molecule inhibitors of cathepsin D. Optimization of our hit compound 1a (IC50 = 29 nM) led to the highly potent mono sulphonamide analogue 4b (IC50 = 4 nM), however with poor microsomal stability (HLM: 177 and MLM: 177 μl/min/mg). To further improve the microsomal stability while retaining the potency, we carried out an extensive structure-activity relationship screen which led to the identification of our optimised lead 24e (IC50 = 45 nM), with an improved microsomal stability (HLM: 59.1 and MLM: 86.8 μl/min/mg). Our efforts reveal that 24e could be a good starting point or potential candidate for further preclinical studies against diseases where Cathepsin D plays an important role.
Collapse
Affiliation(s)
| | | | - Yadav Nagare
- Aten Porus Lifesciences, Bangalore 560068, India
| | | | | | - Atul Dolas
- Aten Porus Lifesciences, Bangalore 560068, India
| | | | | | - Sharad Sarak
- Aten Porus Lifesciences, Bangalore 560068, India
| | | | - Anil K Agarwal
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, Karnataka, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences, Bangalore 560068, India; Avaliv Therapeutics, Naples, FL, USA.
| |
Collapse
|
13
|
Saha S, Paul D, Goswami RK. Cyclodepsipeptide alveolaride C: total synthesis and structural assignment. Chem Sci 2020; 11:11259-11265. [PMID: 34094366 PMCID: PMC8162944 DOI: 10.1039/d0sc04478d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
First stereoselective total synthesis of naturally occurring bioactive cyclodepsipeptide alveolaride C has been achieved using a convergent approach. This synthetic study enabled us to establish unambiguously the stereochemistry of three unassigned chiral centres embedded in the nonpeptidic segment as well as revised the stereochemistry of the proposed β-phenylalanine counterpart of the molecule. The key strategic features of this synthesis include Sharpless asymmetric dihydroxylation for installing the vicinal diol moiety, Julia–Kocienski olefination for constructing the aliphatic side chain, the Shiina protocol for intermolecular esterification, amide coupling and macrolactamization for the ring formation. First total synthesis of natural cyclodepsipeptide alveolaride C has been accomplished with an unambiguous solution to its structural riddle.![]()
Collapse
Affiliation(s)
- Sanu Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Debobrata Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science Jadavpur Kolkata-700032 India
| |
Collapse
|
14
|
Hu Y, Zhou G, Zhang C, Zhang M, Chen Q, Zheng L, Niu B. Identify Compounds' Target Against Alzheimer's Disease Based on In-Silico Approach. Curr Alzheimer Res 2020; 16:193-208. [PMID: 30605059 DOI: 10.2174/1567205016666190103154855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/20/2018] [Accepted: 01/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Alzheimer's disease swept every corner of the globe and the number of patients worldwide has been rising. At present, there are as many as 30 million people with Alzheimer's disease in the world, and it is expected to exceed 80 million people by 2050. Consequently, the study of Alzheimer's drugs has become one of the most popular medical topics. METHODS In this study, in order to build a predicting model for Alzheimer's drugs and targets, the attribute discriminators CfsSubsetEval, ConsistencySubsetEval and FilteredSubsetEval are combined with search methods such as BestFirst, GeneticSearch and Greedystepwise to filter the molecular descriptors. Then the machine learning algorithms such as BayesNet, SVM, KNN and C4.5 are used to construct the 2D-Structure Activity Relationship(2D-SAR) model. Its modeling results are utilized for Receiver Operating Characteristic curve(ROC) analysis. RESULTS The prediction rates of correctness using Randomforest for AChE, BChE, MAO-B, BACE1, Tau protein and Non-inhibitor are 77.0%, 79.1%, 100.0%, 94.2%, 93.2% and 94.9%, respectively, which are overwhelming as compared to those of BayesNet, BP, SVM, KNN, AdaBoost and C4.5. CONCLUSION In this paper, we conclude that Random Forest is the best learner model for the prediction of Alzheimer's drugs and targets. Besides, we set up an online server to predict whether a small molecule is the inhibitor of Alzheimer's target at http://47.106.158.30:8080/AD/. Furthermore, it can distinguish the target protein of a small molecule.
Collapse
Affiliation(s)
- Yan Hu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Guangya Zhou
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Chi Zhang
- Huaxia Eye Hospital of Foshan, Huaxia Eye Hospital Group, Foshan, Guangdong, China
| | - Mengying Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Qin Chen
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China.,Department of Radiology, Shanghai First People's Hospital, Baoshan Branch, Shanghai 200940, China
| | - Bing Niu
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
15
|
Tan LT, Phyo MY. Marine Cyanobacteria: A Source of Lead Compounds and their Clinically-Relevant Molecular Targets. Molecules 2020; 25:E2197. [PMID: 32397127 PMCID: PMC7249205 DOI: 10.3390/molecules25092197] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023] Open
Abstract
The prokaryotic filamentous marine cyanobacteria are photosynthetic microbes that are found in diverse marine habitats, ranging from epiphytic to endolithic communities. Their successful colonization in nature is largely attributed to genetic diversity as well as the production of ecologically important natural products. These cyanobacterial natural products are also a source of potential drug leads for the development of therapeutic agents used in the treatment of diseases, such as cancer, parasitic infections and inflammation. Major sources of these biomedically important natural compounds are found predominately from marine cyanobacterial orders Oscillatoriales, Nostocales, Chroococcales and Synechococcales. Moreover, technological advances in genomic and metabolomics approaches, such as mass spectrometry and NMR spectroscopy, revealed that marine cyanobacteria are a treasure trove of structurally unique natural products. The high potency of a number of natural products are due to their specific interference with validated drug targets, such as proteasomes, proteases, histone deacetylases, microtubules, actin filaments and membrane receptors/channels. In this review, the chemistry and biology of selected potent cyanobacterial compounds as well as their synthetic analogues are presented based on their molecular targets. These molecules are discussed to reflect current research trends in drug discovery from marine cyanobacterial natural products.
Collapse
Affiliation(s)
- Lik Tong Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore;
| | | |
Collapse
|
16
|
Mondal J, Sarkar R, Sen P, Goswami RK. Total Synthesis and Stereochemical Assignment of Sunshinamide and Its Anticancer Activity. Org Lett 2020; 22:1188-1192. [DOI: 10.1021/acs.orglett.0c00070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MDC. Natural Compounds for Alzheimer's Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int J Mol Sci 2019; 20:E2313. [PMID: 31083327 PMCID: PMC6539304 DOI: 10.3390/ijms20092313] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder related with the increase of age and it is the main cause of dementia in the world. AD affects cognitive functions, such as memory, with an intensity that leads to several functional losses. The continuous increase of AD incidence demands for an urgent development of effective therapeutic strategies. Despite the extensive research on this disease, only a few drugs able to delay the progression of the disease are currently available. In the last years, several compounds with pharmacological activities isolated from plants, animals and microorganisms, revealed to have beneficial effects for the treatment of AD, targeting different pathological mechanisms. Thus, a wide range of natural compounds may play a relevant role in the prevention of AD and have proven to be efficient in different preclinical and clinical studies. This work aims to review the natural compounds that until this date were described as having significant benefits for this neurological disease, focusing on studies that present clinical trials.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Joana Angélica Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.
| |
Collapse
|
18
|
Hu H, Chen Z, Xu X, Xu Y. Structure-Based Survey of the Binding Modes of BACE1 Inhibitors. ACS Chem Neurosci 2019; 10:880-889. [PMID: 30540177 DOI: 10.1021/acschemneuro.8b00420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACE1 is a key aspartic protease that cleaves the amyloid precursor protein to generate of the amyloid peptide that is believed to be responsible for the Alzheimer's disease amyloid cascade. It is thus recognized as a promising therapeutic target for Alzheimer's disease treatment, and large efforts have been made in the discovery of novel BACE1 inhibitors. This Review presents a systematic mining of BACE1 inhibitors based on 354 crystal structures of the BACE1 catalytic domain in complex with ligands in the Protein Data Bank. A thorough exploration on the frequency as well as the patterns of residue-ligand interactions enables us to subdivide the ligand binding pocket into 10 subsites and then identify favorable substructures of ligands for each subsite. In addition, it is found that the assembly of subsites with an 8-like shape is responsible to bind all inhibitors and four major ligand binding modes are revealed. Thus, such a systematic survey deepens our understanding of the structural requirements for establishment of BACE1-ligand interactions that determine the affinity of a ligand to BACE1, which is pivotal for structure-based lead optimization and design of novel inhibitors.
Collapse
Affiliation(s)
- Hangchen Hu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqiang Chen
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Liang X, Luo D, Yan JL, Rezaei MA, Salvador-Reyes LA, Gunasekera SP, Li C, Ye T, Paul VJ, Luesch H. Discovery of Amantamide, a Selective CXCR7 Agonist from Marine Cyanobacteria. Org Lett 2019; 21:1622-1626. [PMID: 30779584 DOI: 10.1021/acs.orglett.9b00163] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CXCR7 plays an emerging role in several physiological processes. A linear peptide, amantamide (1), was isolated from marine cyanobacteria, and the structure was determined by NMR and mass spectrometry. The total synthesis was achieved by solid-phase method. After screening two biological target libraries, 1 was identified as a selective CXCR7 agonist. The selective activation of CXCR7 by 1 could provide the basis for developing CXCR7-targeted therapeutics and deciphering the role of CXCR7 in different diseases.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3) , University of Florida , Gainesville , Florida 32610 , United States
| | - Danmeng Luo
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3) , University of Florida , Gainesville , Florida 32610 , United States
| | - Jia-Lei Yan
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Nanshan District, Shenzhen 518055 , China
| | - Mohammad A Rezaei
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3) , University of Florida , Gainesville , Florida 32610 , United States.,Department of Chemistry , University of Florida , Gainesville , Florida 32611 , United States
| | - Lilibeth A Salvador-Reyes
- Marine Science Institute, College of Science , University of the Philippines , Diliman, Quezon City 1101 , Philippines
| | | | - Chenglong Li
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3) , University of Florida , Gainesville , Florida 32610 , United States
| | - Tao Ye
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics , Peking University Shenzhen Graduate School , Xili, Nanshan District, Shenzhen 518055 , China.,QianYan Pharmatech Limited , Shenzhen , 518172 , China
| | - Valerie J Paul
- Smithsonian Marine Station , Fort Pierce , Florida 34949 , United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3) , University of Florida , Gainesville , Florida 32610 , United States
| |
Collapse
|
20
|
Li Z, Bao K, Xu H, Wu P, Li W, Liu J, Zhang W. Design, synthesis, and bioactivities of tasiamide B derivatives as cathepsin D inhibitors. J Pept Sci 2019; 25:e3154. [PMID: 30734395 DOI: 10.1002/psc.3154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 01/28/2023]
Abstract
Cathepsin D (Cath D) is overexpressed and hypersecreted by malignant tumors and involved in the progress of tumor invasion, proliferation, metastasis, and apoptosis. Cath D has been considered as a potential target to treat cancer. Our previous studies revealed that tasiamide B derivatives TB-9 and TB-11 exhibited high potent inhibition against Cath D and other aspartic proteases, but their molecular weights are still high, and the role of each residue is unknown yet. Based on this, two series of tasiamide B derivatives have been designed, synthesized, and evaluated for their inhibitory activity against Cath D/Cath E/BACE1. Enzymatic assays revealed that the target compound 1 with lower molecule weight showed good inhibitory activity against Cath D with IC50 of 3.29 nM and satisfactory selectivity over Cath E (72-fold) and BACE1 (295-fold), which could be a valuable template for the design of highly potent and selective Cath D inhibitors.
Collapse
Affiliation(s)
- Zhi Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Keting Bao
- School of Pharmacy, Fudan University, Shanghai, China
| | - Hao Xu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Ping Wu
- School of Pharmacy, Fudan University, Shanghai, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
| | - Wei Zhang
- School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Pereira F, Aires-de-Sousa J. Computational Methodologies in the Exploration of Marine Natural Product Leads. Mar Drugs 2018; 16:md16070236. [PMID: 30011882 PMCID: PMC6070892 DOI: 10.3390/md16070236] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/18/2022] Open
Abstract
Computational methodologies are assisting the exploration of marine natural products (MNPs) to make the discovery of new leads more efficient, to repurpose known MNPs, to target new metabolites on the basis of genome analysis, to reveal mechanisms of action, and to optimize leads. In silico efforts in drug discovery of NPs have mainly focused on two tasks: dereplication and prediction of bioactivities. The exploration of new chemical spaces and the application of predicted spectral data must be included in new approaches to select species, extracts, and growth conditions with maximum probabilities of medicinal chemistry novelty. In this review, the most relevant current computational dereplication methodologies are highlighted. Structure-based (SB) and ligand-based (LB) chemoinformatics approaches have become essential tools for the virtual screening of NPs either in small datasets of isolated compounds or in large-scale databases. The most common LB techniques include Quantitative Structure–Activity Relationships (QSAR), estimation of drug likeness, prediction of adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, similarity searching, and pharmacophore identification. Analogously, molecular dynamics, docking and binding cavity analysis have been used in SB approaches. Their significance and achievements are the main focus of this review.
Collapse
Affiliation(s)
- Florbela Pereira
- LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Joao Aires-de-Sousa
- LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
22
|
Al-Awadhi FH, Law BK, Paul VJ, Luesch H. Grassystatins D-F, Potent Aspartic Protease Inhibitors from Marine Cyanobacteria as Potential Antimetastatic Agents Targeting Invasive Breast Cancer. JOURNAL OF NATURAL PRODUCTS 2017; 80:2969-2986. [PMID: 29087712 PMCID: PMC5764543 DOI: 10.1021/acs.jnatprod.7b00551] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Three new modified peptides named grassystatins D-F (1-3) were discovered from a marine cyanobacterium from Guam. Their structures were elucidated using NMR spectroscopy and mass spectrometry. The hallmark structural feature in the peptides is a statine unit, which contributes to their aspartic protease inhibitory activity preferentially targeting cathepsins D and E. Grassystatin F (3) was the most potent analogue, with IC50 values of 50 and 0.5 nM against cathepsins D and E, respectively. The acidic tumor microenvironment is known to increase the activation of some of the lysosomal proteases associated with tumor metastasis such as cathepsins. Because cathepsin D is a biomarker in aggressive forms of breast cancer and linked to poor prognosis, the effects of cathepsin D inhibition by 1 and 3 on the downstream cellular substrates cystatin C and PAI-1 were investigated. Furthermore, the functional relevance of targeting cathepsin D substrates was evaluated by examining the effect of 1 and 3 on the migration of MDA-MD-231 cells. Grassystatin F (3) inhibited the cleavage of cystatin C and PAI-1, the activities of their downstream targets cysteine cathepsins and tPA, and the migration of the highly aggressive triple negative breast cancer cells, phenocopying the effect of siRNA-mediated knockdown of cathepsin D.
Collapse
Affiliation(s)
- Fatma H. Al-Awadhi
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Brian K. Law
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Department of Pharmacology and Therapeutics, University of Florida, 1600 Archer Road, Gainesville, Florida 32610, United States
| | - Valerie J. Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
- Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
23
|
Shah SAA, Akhter N, Auckloo BN, Khan I, Lu Y, Wang K, Wu B, Guo YW. Structural Diversity, Biological Properties and Applications of Natural Products from Cyanobacteria. A Review. Mar Drugs 2017; 15:md15110354. [PMID: 29125580 PMCID: PMC5706043 DOI: 10.3390/md15110354] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022] Open
Abstract
Nowadays, various drugs on the market are becoming more and more resistant to numerous diseases, thus declining their efficacy for treatment purposes in human beings. Antibiotic resistance is one among the top listed threat around the world which eventually urged the discovery of new potent drugs followed by an increase in the number of deaths caused by cancer due to chemotherapy resistance as well. Accordingly, marine cyanobacteria, being the oldest prokaryotic microorganisms belonging to a monophyletic group, have proven themselves as being able to generate pharmaceutically important natural products. They have long been known to produce distinct and structurally complex secondary metabolites including peptides, polyketides, alkaloids, lipids, and terpenes with potent biological properties and applications. As such, this review will focus on recently published novel compounds isolated from marine cyanobacteria along with their potential bioactivities such as antibacterial, antifungal, anticancer, anti-tuberculosis, immunosuppressive and anti-inflammatory capacities. Moreover, various structural classes, as well as their technological uses will also be discussed.
Collapse
Affiliation(s)
| | - Najeeb Akhter
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| | | | - Ishrat Khan
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Yanbin Lu
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Kuiwu Wang
- Department of Applied Chemistry, Zhejiang Gongshang University, Hangzhou 310012, China.
| | - Bin Wu
- Ocean College, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
24
|
Wu P, Xu H, Li Z, Zhou Y, Li Y, Zhang W. Synthesis and biological evaluation of oxoapratoxin E and its C30 epimer. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Xu H, Bao K, Tang S, Ai J, Hu H, Zhang W. Cyanobacterial peptides as a prototype for the design of cathepsin D inhibitors. J Pept Sci 2017; 23:701-706. [PMID: 28585417 DOI: 10.1002/psc.3014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/25/2017] [Accepted: 05/03/2017] [Indexed: 11/12/2022]
Abstract
Cathepsin D (Cath D) is overexpressed and secreted in a number of solid tumors and involved in the progress of tumor invasion, proliferation, metastasis, and apoptosis. Inhibition of Cath D is regarded as an attractive pathway for the development of novel anticancer drugs. Our previous studies revealed that tasiamide B, a cyanobacterial peptide that contained a statine-like unit, exhibited good inhibition against Cath D and other aspartic proteases. Using this natural product as prototype, we designed and synthesized three new analogs, which bear isophthalic acid fragment at the N-terminus and isobutyl amine (1), cyclopropyl amine (2), or 3-methoxybenzyl amine (3) moiety at the C-terminus. Enzymatic assays revealed that all these three compounds showed moderate-to-good inhibition against Cath D, with IC50 s of 15, 884, and 353 nM, respectively. Notably, compound 1 showed extreme selectivity for Cath D with 576-fold over Cath E and 554-fold over BACE1, which could be a valuable template for the design of highly potent and selective Cath D inhibitors. Additionally, compound 1 showed moderated activity against HeLa cell lines with IC50 of 41.8 μM. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Hao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Keting Bao
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Ai
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiyan Hu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Wei Zhang
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
26
|
Wu D, Yin Q, Cai P, Zhao X, Pan Y. Enhancement of visual chiral sensing via an anion-binding approach: Novel ionic liquids as the chiral selectors. Anal Chim Acta 2017; 962:97-103. [DOI: 10.1016/j.aca.2017.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/08/2017] [Accepted: 01/11/2017] [Indexed: 12/11/2022]
|
27
|
Development and Structural Modification of BACE1 Inhibitors. Molecules 2016; 22:molecules22010004. [PMID: 28025519 PMCID: PMC6155942 DOI: 10.3390/molecules22010004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder which usually occurs in the elderly. The accumulation of β-amyloid and the formation of neurofibrillary tangles are considered as the main pathogenies of AD. Research suggests that β-secretase 1 (BACE1) plays an important role in the formation of β-amyloid. Discovery of new BACE1 inhibitors has become a significant method to slow down the progression of AD or even cure this kind of disease. This review summarizes the different types and the structural modification of these new BACE1 inhibitors.
Collapse
|
28
|
Liu JK, Gu W, Cheng XR, Cheng JP, Nie AH, Zhou WX. Design and synthesis of 3′-(prop-2-yn-1-yloxy)-biphenyl substituted cyclic acylguanidine compounds as BACE1 inhibitors. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Tasiamide F, a potent inhibitor of cathepsins D and E from a marine cyanobacterium. Bioorg Med Chem 2016; 24:3276-82. [PMID: 27211244 DOI: 10.1016/j.bmc.2016.04.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/21/2022]
Abstract
In search of novel protease inhibitors with therapeutic potential, our efforts exploring the marine cyanobacterium Lyngbya sp. have led to the discovery of tasiamide F (1), which is an analogue of tasiamide B (2). The structure was elucidated using a combination of NMR spectroscopy and mass spectrometry. The key structural feature in 1 is the presence of the Phe-derived statine core, which contributes to its aspartic protease inhibitory activity. The antiproteolytic activity of 1 and 2 was evaluated in vitro against cathepsins D and E, and BACE1. Tasiamide F (1) displayed IC50 values of 57nM, 23nM, and 0.69μM, respectively, indicating greater selectivity for cathepsins over BACE1 compared with tasiamide B (2). Molecular docking experiments were carried out for compounds 1 and 2 against cathepsins D and E to rationalize their activity towards these proteases. The dysregulated activities of cathepsins D and E have been implicated in cancer and modulation of immune responses, respectively, and these proteases represent potential therapeutic targets.
Collapse
|
30
|
Cheung RCF, Ng TB, Wong JH. Marine Peptides: Bioactivities and Applications. Mar Drugs 2015; 13:4006-43. [PMID: 26132844 PMCID: PMC4515606 DOI: 10.3390/md13074006] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022] Open
Abstract
Peptides are important bioactive natural products which are present in many marine species. These marine peptides have high potential nutraceutical and medicinal values because of their broad spectra of bioactivities. Their antimicrobial, antiviral, antitumor, antioxidative, cardioprotective (antihypertensive, antiatherosclerotic and anticoagulant), immunomodulatory, analgesic, anxiolytic anti-diabetic, appetite suppressing and neuroprotective activities have attracted the attention of the pharmaceutical industry, which attempts to design them for use in the treatment or prevention of various diseases. Some marine peptides or their derivatives have high commercial values and had reached the pharmaceutical and nutraceutical markets. A large number of them are already in different phases of the clinical and preclinical pipeline. This review highlights the recent research in marine peptides and the trends and prospects for the future, with special emphasis on nutraceutical and pharmaceutical development into marketed products.
Collapse
Affiliation(s)
- Randy Chi Fai Cheung
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| | - Jack Ho Wong
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|