1
|
Nafie MS, Kahwash SH, Youssef MM, Dawood KM. Recent advances on quinoxalines as target-oriented chemotherapeutic anticancer agents through apoptosis. Arch Pharm (Weinheim) 2024; 357:e2400225. [PMID: 38822393 DOI: 10.1002/ardp.202400225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The current review outlines all possible recent synthetic platforms to quinoxaline derivatives and the potent stimulated apoptosis mechanisms targeted by anticancer therapies. The currently reported results disclosed that quinoxaline derivatives had promising anticancer potencies against a wide array of cancer cell lines, better than the reference drugs, through target inhibition. This review summarizes some potent quinoxaline derivatives with their synthesis strategies and their potential activities against various molecular targets. Quinoxalines can be considered an important scaffold for apoptosis inducers in cancer cells through inhibiting some molecular targets, so they can be further developed as target-oriented chemotherapeutics.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Shaima H Kahwash
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Magdy M Youssef
- Chemistry Department, Biochemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Kamal M Dawood
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Lu Y, Li M, Feng Q, Zhang Z, Zhang Z, Lu K, Liu Z, Zhao X. Visible-light-induced tandem reaction of quinoxalin-2(1 H)-ones, alkenes, and sulfonyl chlorides. Org Biomol Chem 2024; 22:6799-6809. [PMID: 39105651 DOI: 10.1039/d4ob00960f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
A visible-light-induced tandem reaction involving quinoxalin-2(1H)-ones, alkenes, and sulfonyl chlorides, catalyzed by 4CzIPN, was developed. The utilization of easily accessible sulfonyl chlorides, metal-free conditions, and a wide substrate scope established this protocol as an efficient and alternative method for obtaining sulfonated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Yaru Lu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Meng Li
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Qianqian Feng
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Ziqin Zhang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Zhenting Zhang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China, 300457
| | - Zhengyu Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Key laboratory of Inorganic-organic Hybrid Functional Material Chemistry, Ministry of Education, Tianjin Normal University, Tianjin, China, 300387.
| |
Collapse
|
3
|
Nafie MS, Ali MA, Youssef MM. N-allyl quinoxaline derivative exhibited potent and selective cytotoxicity through EGFR/VEGFR-mediated apoptosis: In vitro and in vivo studies. J Biochem Mol Toxicol 2024; 38:e23690. [PMID: 38493304 DOI: 10.1002/jbt.23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
The cytotoxic activity, EGFR/VEGFR2 target inhibition, apoptotic activity, RT-PCR gene expression, in vivo employing a solid-Ehrlich carcinoma model, and in silico investigations for highlighting the binding affinity of eight quinoxaline derivatives were tested for anticancer activities. The results showed that compound 8 (N-allyl quinoxaline) had potent cytotoxicity against A594 and MCF-7 cancer cells with IC50 values of 0.86 and 1.06 µM, respectively, with noncytotoxic activity against WISH and MCF-10A cells having IC50 values more than 100 µM. Furthermore, it strongly induced apoptotic cell death in A549 and MCF-7 cells by 43.13% and 34.07%, respectively, stopping the cell cycle at S and G1-phases. For the molecular target, the results showed that compound 8 had a promising EGFR inhibition activity with an IC50 value of 0.088 µM compared to Sorafenib (IC50 = 0.056 µM), and it had a promising VEGFR2 inhibition activity with an IC50 value of 0.108 µM compared to Sorafenib (IC50 = 0.049 µM). Treatment with compound 8 ameliorated biochemical and histochemical parameters near normal in the in vivo investigation, with a tumor inhibition ratio of 68.19% compared to 64.8% for 5-FU treatment. Finally, the molecular docking study demonstrated the binding affinity through binding energy and interactive binding mode inside the EGFR/VEGFR2 proteins. Potent EGFR and VEGFR2 inhibition of compound 8 suggests its potential for development as a selective anticancer drug.
Collapse
Affiliation(s)
- Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Mohab A Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Magdy M Youssef
- Division of Biochemistry, Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Nakka S, Raza A, Chaitanya KS, Bandaru NVMR, Chandu A, Murugesan S, Devunuri N, Sharma AK, Chandrasekhar KVG. Design, synthesis, and biological evaluation of novel quinoxaline aryl ethers as anticancer agents. Chem Biol Drug Des 2024; 103:e14502. [PMID: 38453260 DOI: 10.1111/cbdd.14502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/16/2023] [Accepted: 01/10/2024] [Indexed: 03/09/2024]
Abstract
We designed and synthesized thirty novel quinoxaline aryl ethers as anticancer agents, and the structures of final compounds were confirmed with various analytical techniques like Mass, 1 H NMR, 13 C NMR, FTIR, and elemental analyses. The compounds were tested against three cancer cell lines: colon cancer (HCT-116), breast cancer (MDA-MB-231), prostate cancer (DU-145), and one normal cell line: human embryonic kidney cell line (HEK-293). The obtained results indicate that two compounds, FQ and MQ, with IC50 values < 16 μM, were the most active compounds. Molecular docking studies revealed the binding of FQ and MQ molecules in the active site of the c-Met kinase (PDB ID: 3F66, 1.40 Å). Furthermore, QikProp ADME prediction and the MDS analysis preserved those critical docking data of both compounds, FQ and MQ. Western blotting was used to confirm the impact of the compounds FQ and MQ on the inhibition of the c-Met kinase receptor. The apoptosis assays were performed to investigate the mechanism of cell death for the most active compounds, FQ and MQ. The Annexin V/7-AAD assay indicated apoptosis in MDA-MB-231 cells treated with FQ and MQ, with FQ (21.4%) showing a higher efficacy in killing MDA-MB-231 cells than MQ (14.25%). The Caspase 3/7 7-AAD assay further supported these findings, revealing higher percentages of apoptotic cells for FQ-treated MDA-MB-231 cells (41.8%). The results obtained from the apoptosis assay conclude that FQ exhibits better anticancer activity against MDA-MB-231 cells than MQ.
Collapse
Affiliation(s)
- Srinuvasu Nakka
- Department of Chemistry, School of Applied Sciences and Humanities, Vignan's Foundation for Science Technology and Research University (VFSTR), Guntur, Andhra Pradesh, India
| | - Asif Raza
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania, USA
| | - Kosana Sai Chaitanya
- Department of Chemistry, Birla Institute of Technology and Science, Hyderabad Campus, Hyderabad, Telangana, India
| | | | - Ala Chandu
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Sankaranarayanan Murugesan
- Department of Pharmacy, Medicinal Chemistry Research Laboratory, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Nagaraju Devunuri
- Department of Chemistry, School of Applied Sciences and Humanities, Vignan's Foundation for Science Technology and Research University (VFSTR), Guntur, Andhra Pradesh, India
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania, USA
| | | |
Collapse
|
5
|
Farghaly TA, Alqurashi RM, Masaret GS, Abdulwahab HG. Recent Methods for the Synthesis of Quinoxaline Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:920-982. [PMID: 37885112 DOI: 10.2174/0113895575264375231012115026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/11/2023] [Indexed: 10/28/2023]
Abstract
Quinoxaline derivatives have been incorporated into numerous marketed drugs used for the treatment of various diseases. Examples include glecaprevir (Mavyret), voxilaprevir (Vosevi), Balversa (L01EX16) (erdafitinib), carbadox, XK469R (NSC698215), and becampanel (AMP397). These quinoxaline derivatives exhibit a diverse range of pharmacological activities, including antibacterial, antitubercular, antiviral, anti-HIV, anti-inflammatory, antifungal, anticancer, antiproliferative, antitumor, kinase inhibition, antimicrobial, antioxidant, and analgesic effects. Recognizing the significance of these bioactive quinoxaline derivatives, researchers have dedicated their efforts to developing various synthetic methods for their production. This review aimed to compile the most recent findings on the synthesis and biological properties of quinoxaline derivatives from 2015 to 2023.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Raghad M Alqurashi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghada S Masaret
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanan Gaber Abdulwahab
- Department of Pharmaceutical Medicinal Chemistry and Drug Design, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Amin T, Sharma RP, Mir KB, Slathia N, Chhabra S, Tsering D, Kotwal P, Bhagat M, Nandi U, Parkesh R, Kapoor KK, Goswami A. Quinoxalinone substituted pyrrolizine (4h)-induced dual inhibition of AKT and ERK instigates apoptosis in breast and colorectal cancer by modulating mitochondrial membrane potential. Eur J Pharmacol 2023; 957:175945. [PMID: 37541376 DOI: 10.1016/j.ejphar.2023.175945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/08/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
AKT and ERK 1/2 play a pivotal role in cancer cell survival, proliferation, migration, and angiogenesis. Therefore, AKT and ERK 1/2 are considered crucial targets for cancer intervention. In this study, we envisaged the role of AKT and ERK signaling in apoptosis regulation in presence of compound 4h, a novel synthetic derivative of quinoxalinone substituted spiropyrrolizines exhibiting substantial antiproliferative activity in various cancer cell lines. Structurally 4h is a spiropyrrolizine derivative. Molecular docking analysis revealed that compound 4h shows strong binding affinity with AKT-1 (-9.5 kcal/mol) and ERK2 (-9.0 kcal/mol) via binding at allosteric sites of AKT and active site of ERK2. The implications of 4h binding with these two survival kinases resulted in the obstruction for ATP binding, hence, hampering their phosphorylation dependent activation. We demonstrate that 4h mediated apoptotic induction via disruption in the mitochondrial membrane potential of MCF-7 and HCT-116 cells and 4h-mediated inhibition of survival pathways occurred in a wild type PTEN background and is diminished in PTEN-/- cells. In 4T1 mammary carcinoma model, 4h exhibited pronounced reduction in the tumor size and tumor volume at significantly low doses. Besides, 4h reached the highest plasma concentration of 5.8 μM within a period of 1 h in mice model intraperitoneally. Furthermore, 4h showed acceptable clearance with an adequate elimination half-life and satisfactory pharmacokinetic behaviour, thus proclaiming as a potential lead molecule against breast and colorectal cancer by specifically inhibiting simultaneously AKT and ERK1/2 kinases.
Collapse
Affiliation(s)
- Tanzeeba Amin
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | | | - Khalid Bashir Mir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Nancy Slathia
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Sonali Chhabra
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Dolma Tsering
- Department of Chemistry, University of Jammu, Jammu 180006, India
| | - Pankul Kotwal
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Madhulika Bhagat
- School of Biotechnology, University of Jammu, J&K, 181143, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| | - Raman Parkesh
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Kamal K Kapoor
- School of Biotechnology, University of Jammu, J&K, 181143, India.
| | - Anindya Goswami
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
7
|
Umirova GA, Turaev KK, Alimnazarov BK, Kasimov SA, Djalilov AT, Ibragimov BT, Ashurov JM. Crystal structure and Hirshfeld surface analysis of 8-aza-niumylquinolinium tetra-chlorido-zincate(II). Acta Crystallogr E Crystallogr Commun 2023; 79:856-861. [PMID: 37693678 PMCID: PMC10483548 DOI: 10.1107/s2056989023007466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023]
Abstract
The reaction of 8-amino-quinoline, zinc chloride and hydro-chloric acid in ethanol yielded the title salt, (C9H10N2)[ZnCl4], which consists of a planar 8-aza-n-ium-yl-quinolinium dication and a tetra-hedral tetra-chloro-zincate dianion. The 8-amino-quinoline moiety is protonated at both the amino and the ring N atoms. In the crystal, the cations and anions are connected by inter-molecular N-H⋯Cl and C-H⋯Cl hydrogen bonds, forming sheets parallel to (001). Adjacent sheets are linked through π-π inter-actions involving the pyridine and arene rings of the 8-aza-niumylquinolinium dication. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H⋯Cl (48.1%), H⋯H (19.9%), H⋯C/C⋯H (14.3%) (involving the cations) and H⋯Cl (82.6%) (involving the anions) interactions.
Collapse
Affiliation(s)
- Gulnora A. Umirova
- Termez State University, Barkamol avlod street 43, Termez city, Uzbekistan
| | - Khayit Kh. Turaev
- Termez State University, Barkamol avlod street 43, Termez city, Uzbekistan
| | | | - Sherzod A. Kasimov
- Termez State University, Barkamol avlod street 43, Termez city, Uzbekistan
| | - Abdulakhat T. Djalilov
- Tashkent Scientific Research Institute of Chemical Technology, Township Shura-bazar, District of Zangiata, Tashkent 111116, Uzbekistan
| | - Bakhtiyar T. Ibragimov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan
| | - Jamshid M. Ashurov
- Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek Str. 83, Tashkent 700125, Uzbekistan
| |
Collapse
|
8
|
Peng S, Xie LY, Yang L. A visible-light-mediated cascade reaction of quinoxalin-2(1 H)-ones, alkenes, and sulfinic acids. Org Biomol Chem 2023; 21:4109-4113. [PMID: 37128965 DOI: 10.1039/d3ob00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A photocatalytic three-component cascade reaction of quinoxalin-2(1H)-ones, alkenes, and sulfinic acids under metal-, strong oxidant-, and external photocatalyst-free conditions was developed. The reaction was performed at room temperature using air as a green oxidant. Various sulfonated quinoxalin-2(1H)-ones were obtained in satisfactory yields with good functional group compatibility. The preliminary study showed that the current transformation was enabled by the formation of an electron donor-acceptor (EDA) complex between quinoxalin-2(1H)-ones and sulfinic acids.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Hunan, 425100, China.
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China
| |
Collapse
|
9
|
Bisoyi A, Tripathy AR, Yedase GS, P SS, Choudhury U, Yatham VR. Photoinduced Decarboxylative C3-H Alkylation of Quinoxalin-2(1 H)-ones. J Org Chem 2023; 88:2631-2641. [PMID: 36734694 DOI: 10.1021/acs.joc.2c02823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient, catalyst- and additive-free, visible-light-driven radical C3-H alkylation of quinoxalin-2(1H)-one derivatives has been developed. This reaction utilizes alkyl-NHP-esters as an alkyl radical donor and quinoxalin-2(1H)-one derivatives as an alkyl radical acceptor. The operationally simple protocol works under mild reaction conditions and tolerates a variety of functional groups. Furthermore, the synthetic utility of the methodology was successfully implemented for synthesizing biologically relevant C3-alkyl substituted quinoxalin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Shifana Sinu P
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Udita Choudhury
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
10
|
Kumar A, Singh AK, Singh H, Vijayan V, Kumar D, Naik J, Thareja S, Yadav JP, Pathak P, Grishina M, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals (Basel) 2023; 16:299. [PMID: 37259442 PMCID: PMC9965678 DOI: 10.3390/ph16020299] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the major healthcare challenges across the globe. Several anticancer drugs are available on the market but they either lack specificity or have poor safety, severe side effects, and suffer from resistance. So, there is a dire need to develop safer and target-specific anticancer drugs. More than 85% of all physiologically active pharmaceuticals are heterocycles or contain at least one heteroatom. Nitrogen heterocycles constituting the most common heterocyclic framework. In this study, we have compiled the FDA approved heterocyclic drugs with nitrogen atoms and their pharmacological properties. Moreover, we have reported nitrogen containing heterocycles, including pyrimidine, quinolone, carbazole, pyridine, imidazole, benzimidazole, triazole, β-lactam, indole, pyrazole, quinazoline, quinoxaline, isatin, pyrrolo-benzodiazepines, and pyrido[2,3-d]pyrimidines, which are used in the treatment of different types of cancer, concurrently covering the biochemical mechanisms of action and cellular targets.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Veena Vijayan
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Deepak Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jashwanth Naik
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Jagat Pal Yadav
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur 209217, India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, 454008 Chelyabinsk, Russia
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
11
|
Quinoxaline-specific enantioselective sulfa-michael reaction catalyzed by chiral phosphoric acid. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Chowdhary S, Raza A, Seboletswe P, Cele N, Sharma AK, Singh P, Kumar V. Cu-promoted synthesis of Indolo[2,3-b]quinoxaline-Mannich adducts via three-component reaction and their anti-proliferative evaluation on colorectal and ovarian cancer cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
El
Rayes SM, El-Enany G, Gomaa MS, Ali IAI, Fathalla W, Pottoo FH, Khan FA. Convenient Synthesis of N-Alkyl-2-(3-phenyl-quinoxalin-2-ylsulfanyl)acetamides and Methyl-2-[2-(3-phenyl-quinoxalin-2-ylsulfanyl)acetylamino]alkanoates. ACS OMEGA 2022; 7:34166-34176. [PMID: 36188256 PMCID: PMC9520703 DOI: 10.1021/acsomega.2c03522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
A series of 27 new quinoxaline derivatives (N-alkyl-[2-(3-phenyl-quinoxalin-2-ylsulfanyl)]acetamides, methyl-2-[2-(3-phenylquinoxalin-2-ylsulfanyl)-acetylamino]alkanoates, and their corresponding dipeptides) were prepared from 3-phenylquinoxaline-2(1H)-thione based on the chemoselective reaction with soft electrophiles. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to study the efficacy of 27 compounds on cancer cell viability and proliferation. A total of 13 compounds (4a-c, 5, 6, 8c, 9c, 9f, 10a, 10b, 11c, 12b, and 12c) showed inhibitory action on HCT-116 cancer cells and 15 compounds (4a-c, 5, 6, 8c, 9a, 9c, 9f, 9h, 10b, 11c, 12a, 12b, and 12c) showed activity on MCF-7 cancer cells, with compound 10b exhibiting the highest inhibitory action (IC50 1.52 and 2 μg/mL, respectively) on both cell lines. The molecular modeling studies on the human thymidylate synthase (hTS) homodimer interface showed that these compounds are good binders and could selectively inhibit the enzyme by stabilizing its inactive conformation. The study also identified key residues for homodimer binding, which could be used for further optimization and development.
Collapse
Affiliation(s)
- Samir Mohamed El
Rayes
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Gaber El-Enany
- Department
of Physics, College of Science and Arts in Uglat Asugour, Qassim University, Buraydah 52571, Kingdom of Suadi Arabia
- Science
& Math Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Mohamed Sayed Gomaa
- Department
of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| | - Ibrahim A. I. Ali
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Walid Fathalla
- Science
& Math Department, Faculty of Engineering, Port Said University, Port Said 42526, Egypt
| | - Faheem Hyder Pottoo
- Department
of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| | - Firdos Alam Khan
- Department
of Stem Cell Research, Institute of Research and Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Mamedov VA, Algaeva NE, Syakaev VV, Mustakimova LV, Khafizova EA, Shamsutdinova LR, Rizvanov IK, Gubaidullin AT. Bromine-Promoted One-Pot Furo[ b]annulation and α-C(sp 2)-Thiomethylation Cascade of ( E)-3-Styrylquinoxalin-2(1 H)-ones with Dimethyl Sulfoxide. J Org Chem 2022; 87:12072-12086. [PMID: 36069536 DOI: 10.1021/acs.joc.2c01158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new process has been developed for the bromine-promoted sequential (sp2)C = (sp2)C bond functionalization of (E)-3-styrylquinoxalin-2(1H)-ones and furo[b]annulation via the 5-exo-cyclization in dimethyl sulfoxide (DMSO). The reaction represents a novel strategy for the synthesis of 2-aryl-3-(methylthio)furo[2,3-b]quinoxalines and involves 3-(1,2-dibromo-2-arylethyl)quinoxalin-2(1H)-ones and 2-arylfuro[2,3-b]quinoxalines as key intermediates. Furthermore, DMSO was converted to dimethyl sulfide in situ, which served as the methylthiolation reagent in the reaction. This protocol constitutes an efficient and convenient method for the annulation and methylthiolation of (E)-3-styrylquinoxalin-2(1H)-ones bearing a wide range of functional groups in high yields at room temperature.
Collapse
Affiliation(s)
- Vakhid A Mamedov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Nataliya E Algaeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Victor V Syakaev
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Liliya V Mustakimova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Elena A Khafizova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Leisan R Shamsutdinova
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Ildar' Kh Rizvanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| | - Aidar T Gubaidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, RFC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Street 8, 420088 Kazan, Russian Federation
| |
Collapse
|
15
|
Kumar R, Chen ZF, Choudhary MI, Yousuf S. Insight into structural features and supramolecular architecture of synthesized quinoxaline derivatives with anti-leishmanial activity, in vitro. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
V. Bala Aakash, Ramalakshmi N, Bhuvaneswari S, Sankari E, Arunkumar S. Comprehensive Review on Versatile Pharmacology of Quinoxaline Derivative. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Abad N, Missioui M, Alsubari A, Mague JT, Essassi EM, Ramli Y. Crystal structure of ethyl 2-{4-[(2-oxo-3-phenyl-1,2-di-hydro-quinoxalin-1-yl)meth-yl]-1 H-1,2,3-triazol-1-yl}acetate. IUCRDATA 2022; 7:0. [PMID: 36341047 PMCID: PMC9635411 DOI: 10.1107/s2414314622006939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
The quinoxaline portion of the title mol-ecule, C21H19N5O3, is not quite planar as indicated by a dihedral angle of 3.38 (7)° between the constituent rings. The mol-ecule is 'U-shaped', which is consolidated by an intra-molecular anti-parallel carbonyl electrostatic inter-action with C··O distances of 2.8905 (16) and 3.0221 (15) Å, in the crystal forms corrugated layers through C-H⋯O and C-H⋯N hydrogen bonds and C-H⋯π(ring) and π-stacking inter-actions.
Collapse
Affiliation(s)
- Nadeem Abad
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Abdulsalam Alsubari
- Laboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| |
Collapse
|
18
|
|
19
|
Wang M, Liu J, Zhang Y, Sun P. Decarbonylative C3‐Alkylation of Quinoxalin‐2(1H)‐ones with Aliphatic Aldehydes via Photocatalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jie Liu
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000 CHINA
| | | | | |
Collapse
|
20
|
Sharma RP, Mahajan S, Slathia N, Kapoor KK. FeCl 3 as an efficient catalyst for the synthesis of styrylquinoxalin-2(1 H)-ones. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2070435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Sheena Mahajan
- CSIR-Indian Institute of Integrative Medicine, Natural Product and Medicinal Chemistry Division, Jammu, India
| | - Nancy Slathia
- Department of Chemistry, University of Jammu, Jammu, India
| | | |
Collapse
|
21
|
Synthesis, crystal structure and negative hyperconjugation study of quinoxaline derivatives containing piperazine. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Alanazi MM, Elkady H, Alsaif NA, Obaidullah AJ, Alanazi WA, Al-Hossaini AM, Alharbi MA, Eissa IH, Dahab MA. Discovery of new quinoxaline-based derivatives as anticancer agents and potent VEGFR-2 inhibitors: Design, synthesis, and in silico study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132220] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Devi L, Gupta A, Kapoor KK. Unexplored Potential of Polyaniline Embedded Barium Chloride Nanocomposite in the Synthesis of Styrylquinoxalin-2(1H)-Ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2039235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Lalita Devi
- Department of Chemistry, University of Jammu, Jammu, India
| | - Annah Gupta
- Department of Chemistry, University of Jammu, Jammu, India
| | | |
Collapse
|
24
|
Zhang L, He J, Zhang P, Zheng K, Shen C. Visible-light-induced decarboxylative alkylation of quinoxalin-2(1H)-ones with phenyliodine(III) dicarboxylates by cerium photocatalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
He L, Liang C, Ouyang Y, Li L, Guo Y, Zhang P, Li W. α-Functionalization of ketones promoted by sunlight and heterogeneous catalysis in the aqueous phase. Org Biomol Chem 2022; 20:790-795. [PMID: 34994749 DOI: 10.1039/d1ob02249k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, a protocol that combines heterogeneous catalysis and solar photocatalysis for the regioselective α-substitution of asymmetric ketones with quinoxalinones has been reported. The result indicates that the reaction is more likely to occur on the α-carbon. This strategy provides a green and efficient way for the α-functionalization of ketones. A singlet oxygen involved mechanism is suggested for the transformation.
Collapse
Affiliation(s)
- Lei He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Chenfeng Liang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yani Ouyang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Lin Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Yirui Guo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
26
|
Yan Q, Cui W, Li J, Xu G, Song X, Lv J, Yang D. C–H benzylation of quinoxalin-2(1 H)-ones via visible-light riboflavin photocatalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01910d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An efficient visible light promoted riboflavin-catalyzed direct benzylation of substituted quinoxalin-2(1H)-ones for the synthesis of various C3-benzylated quinoxalin-2(1H)-one derivatives has been developed under mild conditions.
Collapse
Affiliation(s)
- Qiuli Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wenwen Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Junxin Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guiyun Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
27
|
Photocatalyst-free visible light induced decarboxylative alkylation of quinoxalin-2(1H)-ones with carboxylic acids. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Ye ZP, Liu F, Duan XY, Gao J, Guan JP, Xiao JA, Xiang HY, Chen K, Yang H. Visible Light-Promoted Radical Relay Cyclization/C-C Bond Formation of N-Allylbromodifluoroacetamides with Quinoxalin-2(1 H)-ones. J Org Chem 2021; 86:17173-17183. [PMID: 34743511 DOI: 10.1021/acs.joc.1c02285] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible light-promoted radical relay of N-allylbromodifluoroacetamide with quinoxalin-2(1H)-ones was developed in which 5-exo-trig cyclization and C-C bond formation were involved. This protocol was performed under mild conditions to facilely offer a variety of hybrid molecules bearing both quinoxalin-2(1H)-one and 3,3-difluoro-γ-lactam motifs. These prepared novel skeletons would expand the accessible chemical space for structurally complex heterocycles with potential biological activities.
Collapse
Affiliation(s)
- Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xin-Yu Duan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
29
|
Peng S, Liu JJ, Yang L. Alkylation of quinoxalin-2(1 H)-ones using phosphonium ylides as alkylating reagents. Org Biomol Chem 2021; 19:9705-9710. [PMID: 34726225 DOI: 10.1039/d1ob01858b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and efficient methodology for the construction of 3-alkylquinoxalinones through base promoted direct alkylation of quinoxalin-2(1H)-ones with phosphonium ylides as alkylating reagents under metal- and oxidant-free conditions was developed. Various 3-alkylquinoxalin-2(1H)-ones were easily obtained in good to excellent yields. Tentative mechanistic studies suggest that this reaction is likely to involve a nucleophilic addition-elimination process.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Jun-Jia Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| | - Luo Yang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Hunan, 411105, PR China.
| |
Collapse
|
30
|
Missioui M, Mortada S, Guerrab W, Serdaroğlu G, Kaya S, Mague JT, Essassi EM, Faouzi MEA, Ramli Y. Novel antioxidant quinoxaline derivative: Synthesis, crystal structure, theoretical studies, antidiabetic activity and molecular docking study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Liu F, Ye ZP, Hu YZ, Gao J, Zheng L, Chen K, Xiang HY, Chen XQ, Yang H. N, N, N', N'-Tetramethylethylenediamine-Enabled Photoredox-Catalyzed C-H Methylation of N-Heteroarenes. J Org Chem 2021; 86:11905-11914. [PMID: 34344150 DOI: 10.1021/acs.joc.1c01325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aiming at the valuable methylation process, readily available and inexpensive N,N,N',N'-tetramethylethylenediamine (TMEDA) was first identified as a new methyl source in photoredox-catalyzed transformation in this work. By virtue of this simple methylating reagent, a facile and practical protocol for the direct C-H methylation of N-heteroarenes was developed, featuring mild reaction conditions, broad substrate scope, and scalability. Mechanistic studies disclosed that a sequential photoredox, base-assisted proton shift, fragmentation, and tautomerization process was essentially involved.
Collapse
Affiliation(s)
- Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
32
|
Singh S, Dagar N, Raha Roy S. Direct functionalization of quinoxalin-2(1H)-one with alkanes: C(sp 2)-H/C(sp 3)-H cross coupling in transition metal-free mode. Org Biomol Chem 2021; 19:5383-5394. [PMID: 34047750 DOI: 10.1039/d1ob00665g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Considering the significance of pharmaceutically important heterocycles, efficient and highly versatile protocols for the functionalization of diverse heterocycles with easily accessible feedstock are crucial. Here, we have reported selective alkylation of quinoxalin-2(1H)-one with a broad class of hydrocarbons having different C(sp3)-H bonds with varying bond strengths using di-tert-butyl peroxide (DTBP) as an alkoxyl radical mediator for hydrogen atom transfer (HAT). This dehydrogenative coupling approach utilizes feedstock chemicals such as cycloalkanes, cyclic ethers and alkyl arenes as coupling partners. This protocol exhibits good functional group compatibility and selectivity regarding both heterocycles and unactivated alkanes. Moreover, this methodology allows functionalization of relatively strong C-H bonds of adamantane and exclusive selectivity towards 3° C(sp3)-H bonds is observed. We also illustrate the applicability of this C(sp2)-H/C(sp3)-H cross-coupling for practical access to bioactive pharmaceuticals.
Collapse
Affiliation(s)
- Swati Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Neha Dagar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
33
|
|
34
|
Ammar YA, Farag AA, Ali AM, Ragab A, Askar AA, Elsisi DM, Belal A. Design, synthesis, antimicrobial activity and molecular docking studies of some novel di-substituted sulfonylquinoxaline derivatives. Bioorg Chem 2020; 104:104164. [DOI: 10.1016/j.bioorg.2020.104164] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/11/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
|
35
|
Missioui M, Essassi EM, Mague JT, Ramli Y. Synthesis and crystal structure of (E)-1-benzyl-3-(4-methoxystyryl)quinoxalin-2(1H)-one, C24H20N2O2. Z KRIST-NEW CRYST ST 2020. [DOI: 10.1515/ncrs-2020-0300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractC24H20N2O2, monoclinic, P21/c (no. 14), a = 11.1713(3) Å, b = 17.7718(5) Å, c = 10.9852(3) Å, β = 118.990(1)°, V = 1907.67(9) Å3, Z = 4, Rgt(F) = 0.0538, wRref(F2) = 0.1582, T = 296(2) K.
Collapse
Affiliation(s)
- Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V Universityin Rabat, Morocco
| | - El Mokhtar Essassi
- Laboratory of Heterocyclic Organic Chemistry, Mohammed V University, Agdal-Rabat, Morocco
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V Universityin Rabat, Morocco
| |
Collapse
|
36
|
Ghosh P, Kwon NY, Kim S, Han S, Lee SH, An W, Mishra NK, Han SB, Kim IS. C−H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sangil Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won An
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Soo Bong Han
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry University of Science and Technology Daejeon 34113 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
37
|
Ghosh P, Kwon NY, Kim S, Han S, Lee SH, An W, Mishra NK, Han SB, Kim IS. C−H Methylation of Iminoamido Heterocycles with Sulfur Ylides**. Angew Chem Int Ed Engl 2020; 60:191-196. [DOI: 10.1002/anie.202010958] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/01/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Na Yeon Kwon
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Saegun Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Sangil Han
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Won An
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Soo Bong Han
- Division of Bio & Drug Discovery Korea Research Institute of Chemical Technology Daejeon 34114 Republic of Korea
- Department of Medicinal and Pharmaceutical Chemistry University of Science and Technology Daejeon 34113 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
38
|
Wang Z, Shi J, Zhu X, Zhao W, Gong Y, Hao X, Hou Y, Liu Y, Ding S, Liu J, Chen Y. Design, synthesis and biological evaluation of novel 4-phenoxypyridine based 3-oxo-3,4-dihydroquinoxaline-2-carboxamide derivatives as potential c-Met kinase inhibitors. Bioorg Chem 2020; 105:104371. [PMID: 33075664 DOI: 10.1016/j.bioorg.2020.104371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
Blocking c-Met kinase activity by small-molecule inhibitors has been identified as a promising approach for the treatment of cancers. Herein, we described the design, synthesis, and biological evaluation of a series of 4-phenoxypyridine-based 3-oxo-3,4-dihydroquinoxaline derivatives as c-Met kinase inhibitors. Inhibitory activitives against c-Met kinase evaluation indicated that most of compounds showed excellent c-Met kinase activity in vitro, and IC50 values of ten compounds (23a, 23e, 23f, 23l, 23r, 23s, 23v, 23w, 23x and 23y) were less than 10.00 nM. Notably, three of them (23v, 23w and 23y) showed remarkable potency with IC50 values of 2.31 nM, 1.91 nM and 2.44 nM, respectively, and thus they were more potent than positive control drug foretinib (c-Met, IC50 = 2.53 nM). Cytotoxic evaluation indicated the most promising compound 23w showed remarkable cytotoxicity against A549, H460 and HT-29 cell lines with IC50 values of 1.57 μM, 0.94 μM and 0.65 μM, respectively. Furthermore, the acridine orange/ethidium bromide (AO/EB) staining, cell apoptosis assays by flow cytometry, wound-healing assays and transwell migration assays on HT-29 and/or A549 cells of 23w were performed. Especially compound 23w, which displayed potent antitumor, apoptosis induction and antimetastatic activity, could be used as a promising lead for further development. Meanwhile, their preliminary structure-activity relationships (SARs) were also discussed.
Collapse
Affiliation(s)
- Zhen Wang
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 10036, PR China
| | - Jiantao Shi
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 10036, PR China
| | - Xianglong Zhu
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 10036, PR China
| | - Wenwen Zhao
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 10036, PR China
| | - Yilin Gong
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 10036, PR China
| | - Xuechen Hao
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 10036, PR China
| | - Yunlei Hou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Shi Ding
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 10036, PR China
| | - Ju Liu
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 10036, PR China.
| | - Ye Chen
- College of Pharmacy of Liaoning University, API Engineering Technology Research Center of Liaoning Province, 66 Chongshan Road, Huanggu District, Shenyang 10036, PR China.
| |
Collapse
|
39
|
Rostoll‐Berenguer J, Blay G, Pedro JR, Vila C. Recent Advances in Photocatalytic Functionalization of Quinoxalin‐2‐ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000746] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jaume Rostoll‐Berenguer
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Gonzalo Blay
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - José R. Pedro
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| | - Carlos Vila
- Departament de Química Orgànica Facultat de Química Universitat de València Dr. Moliner 50 46100 Burjassot, València Spain
| |
Collapse
|
40
|
Ahmed EA, Mohamed MFA, Omran A, Salah H. Synthesis, EGFR-TK inhibition and anticancer activity of new quinoxaline derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1787448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eman A. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Mamdouh F. A. Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, Egypt
| | - Ahmed Omran
- Department of Pharmacology, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hanan Salah
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| |
Collapse
|
41
|
Synthesis, characterization of some pyrazine derivatives as anti-cancer agents: In vitro and in Silico approaches. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128013] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
42
|
Mahajan S, Slathia N, Nuthakki VK, Bharate SB, Kapoor KK. Malononitrile-activated synthesis and anti-cholinesterase activity of styrylquinoxalin-2(1 H)-ones. RSC Adv 2020; 10:15966-15975. [PMID: 35493659 PMCID: PMC9052867 DOI: 10.1039/d0ra02816a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Herein, we report a base-free malononitrile activated condensation of 3-methylquinoxaline-2(1H)-one (3MQ) 1 with aryl aldehydes 3a–3ad for synthesis of styrylquinoxalin-2(1H)-ones (SQs) 4a–4ad with excellent yields. In this reaction, malononitrile activates the aldehyde via Knoevenagel condensation towards reaction with 3MQ 1 and gets liberated during the course of reaction to yield the desired SQs 4a–4ad. The SQs were evaluated for in vitro cholinesterase inhibition and 4n was found to display a mixed type of inhibition of AChE, which was supported by molecular modelling studies. This study has led to the discovery of a new chemotype for cholinesterase inhibition which might be useful in finding a remedy for Alzheimer's disease. SQs displaying anti-Alzheimer activity is serendipitous. Malononitrile as a handle to facilitate nucleophilic attack has been applied for the first time for the easy access of SQs.![]()
Collapse
Affiliation(s)
- Sheena Mahajan
- Department of Chemistry, University of Jammu Jammu-180006 India
| | - Nancy Slathia
- Department of Chemistry, University of Jammu Jammu-180006 India
| | - Vijay K Nuthakki
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Canal Road Jammu-180001 India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kamal K Kapoor
- Department of Chemistry, University of Jammu Jammu-180006 India
| |
Collapse
|
43
|
Silva L, Coelho P, Teixeira D, Monteiro A, Pinto G, Soares R, Prudêncio C, Vieira M. Oxidative Stress Modulation and Radiosensitizing Effect of Quinoxaline-1,4-Dioxides Derivatives. Anticancer Agents Med Chem 2020; 20:111-120. [DOI: 10.2174/1871520619666191028091547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022]
Abstract
Background:
Quinoxaline-1,4-dioxide (QNX) derivatives are synthetic heterocyclic compounds with
multiple biological and pharmacological effects.
Objective:
In this study, we investigated the oxidative status of quinoxaline-1,4-dioxides derivatives in modulating
melanoma and glioma cell lines, based on previous results from the research group and their capability to
promote cell damage by the production of Reactive Oxygen Species (ROS).
Methods:
Using in vitro cell cultures, the influence of 2-amino-3-cyanoquinoxaline-1,4-dioxide (2A3CQNX), 3-
methyl-2-quinoxalinecarboxamide-1,4-dioxide (3M2QNXC) and 2-hydroxyphenazine-1,4-dioxide (2HF) was
evaluated in metabolic activity, catalase activity, glutathione and 3-nitrotyrosine (3-NT) quantitation by HPLC
in malignant melanocytes (B16-F10, MeWo) and brain tumor cells (GL-261 and BC3H1) submitted to radiotherapy
treatments (total dose of 6 Gy).
Results:
2HF increased the levels of 3-NT in non-irradiated MeWo and glioma cell lines and decreased cell
viability in these cell lines with and without irradiation.
Conclusions:
Quinoxaline-1,4-dioxides derivatives modulate the oxidative status in malignant melanocytes and
brain tumor cell lines and exhibited a potential radiosensitizer in vitro action on the tested radioresistant cell
lines.
Collapse
Affiliation(s)
- Liliana Silva
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| | - Pedro Coelho
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| | - Dulce Teixeira
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| | - Armanda Monteiro
- Servico de Radioterapia, Centro Hospitalar de Sao Joao, Porto, Portugal
| | - Gabriela Pinto
- Servico de Radioterapia, Centro Hospitalar de Sao Joao, Porto, Portugal
| | - Raquel Soares
- Departamento de Biomedicina, Unidade de Bioquimica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Cristina Prudêncio
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| | - Mónica Vieira
- Centro de Investigacao em Saude Ambiental (CISA), Escola Superior de Saude do Porto, Politecnico do Porto, Porto, Portugal
| |
Collapse
|
44
|
El Rayes SM, Aboelmagd A, Gomaa MS, Ali IAI, Fathalla W, Pottoo FH, Khan FA. Convenient Synthesis and Anticancer Activity of Methyl 2-[3-(3-Phenyl-quinoxalin-2-ylsulfanyl)propanamido]alkanoates and N-Alkyl 3-((3-Phenyl-quinoxalin-2-yl)sulfanyl)propanamides. ACS OMEGA 2019; 4:18555-18566. [PMID: 31737814 PMCID: PMC6854567 DOI: 10.1021/acsomega.9b02320] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/02/2019] [Indexed: 05/16/2023]
Abstract
A series of methyl 2-[3-(3-phenyl-quinoxalin-2-ylsulfanyl)propanamido]alkanoates and their corresponding hydrazides and N-alkyl 3-((3-phenylquinoxalin-2-yl)sulfanyl)propanamides were prepared on the basis of the chemoselective Michael reaction of acrylic acid with the parent substrate 3-phenylquinoxaline-2(1H)-thione. The parent thione was produced by a convenient novel thiation method from the corresponding 3-phenylquinoxalin-2(1H)-one. The chemical structures of the newly synthesized compounds were confirmed by elemental analyses, 1H and 13C NMR. The antiproliferative activity of the synthesized compounds was tested against human HCT-116 and MCF-7 cell lines. Out of 25 screened derivatives, 10 active compounds exhibited IC50's in the range 1.9-7.52 μg/mL on the HCT-116, and 17 active compounds exhibited IC50's in the range 2.3-6.62 μg/mL on the MCF-7 cell lines compared to the reference drug doxorubicin (IC50 3.23 μg/mL). The structure-activity relationship of the tested compounds was studied through their binding affinity to the human thymidylate synthase allosteric site in silico using molecular docking and proved the quinoxaline ring as a suitable scaffold carrying a peptidomimetic side chain in position 3.
Collapse
Affiliation(s)
- Samir M. El Rayes
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
- E-mail: . Phone: +20127500914
| | - Ahmed Aboelmagd
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy and Department of
Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Kingdom of Saudi
Arabia
| | - Ibrahim A. I. Ali
- Department
of Chemistry, Faculty of Science, Suez Canal
University, Ismailia 41522, Egypt
| | - Walid Fathalla
- Department
of Physics and Mathematics, Faculty of Engineering, Port-Said University, Port-Said 42526, Egypt
| | - Faheem H. Pottoo
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy and Department of
Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Eastern Province, Kingdom of Saudi
Arabia
| | - Firdos A. Khan
- Department
of Stem Cell Biology, Institute for Research & Medical Consultations
(IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
45
|
Mai W, Yuan J, Zhu J, Li Q, Yang L, Xiao Y, Mao P, Qu L. Selectfluor‐Mediated Direct C‐H Phosphonation of Quinoxalin‐2(1
H
)‐ones under Base and Transition‐Metal Free Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201903478] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wen‐Peng Mai
- School of Materials and Chemical EngineeringHenan Institute of Engineering Zhengzhou 451191 China
| | - Jin‐Wei Yuan
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Jun‐Liang Zhu
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Qiang‐Qiang Li
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Liang‐Ru Yang
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Yong‐Mei Xiao
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Pu Mao
- School of Chemistry & Chemical EngineeringHenan University of TechnologyAcademician Workstation for Natural Medicinal Chemistry of Henan Province Zhengzhou 450001 China
| | - Ling‐Bo Qu
- College of ChemistryZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
46
|
Selim MR, Zahran MA, Belal A, Abusaif MS, Shedid SA, Mehany AB, Elhagali GA, Ammar YA. Hybridized Quinoline Derivatives as Anticancer Agents: Design, Synthesis, Biological Evaluation and Molecular Docking. Anticancer Agents Med Chem 2019; 19:439-452. [DOI: 10.2174/1871520618666181112121058] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/13/2022]
Abstract
Objective:
Conjugating quinolones with different bioactive pharmacophores to obtain potent anticancer
active agents.
Methods:
Fused pyrazolopyrimidoquinolines 3a-d, Schiff bases 5, 6a-e, two hybridized systems: pyrazolochromenquinoline
7 and pyrazolothiazolidinquinoline 8, different substituted thiazoloquinolines 13-15 and
thiazolo[3,2-a]pyridine derivatives 16a-c were synthesized. Their chemical structures were characterized
through spectral and elemental analysis, cytotoxic activity on five cancer cell lines, caspase-3 activation, tubulin
polymerization inhibition and cell cycle analysis were evaluated.
Results:
Four compounds 3b, 3d, 8 and 13 showed potent activity than doxorubicin on HCT116 and three compounds
3b, 3d and 8 on HEPG2. These promising derivatives showed increase in the level of caspase-3. The
trifloromethylphenyl derivatives of pyrazolopyrimidoquinolines 3b and 3d showed considerable tubulin polymerization
inhibitory activity. Both compounds arrested cell cycle at G2/M phase and induced apoptosis.
Conclusion:
Compounds 3b and 3d can be considered as promising anticancer active agents with 70% of colchicine
activity on tubulin polymerization inhibition and represent hopeful leads that deserve further investigation
and optimization.
Collapse
Affiliation(s)
- Mohamed R. Selim
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Medhat A. Zahran
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Said A. Shedid
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Ahmed B.M. Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | | | - Yousry A. Ammar
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
47
|
Rezaei Z, Mahdi Didehvar M, Mahdavi M, Azizian H, Hamedifar H, Mohammed EHM, Ostad S, Amini M. Anticancer properties of N-alkyl-2, 4-diphenylimidazo [1, 2-a] quinoxalin-1-amine derivatives; kinase inhibitors. Bioorg Chem 2019; 90:103055. [PMID: 31220669 DOI: 10.1016/j.bioorg.2019.103055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/27/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022]
Abstract
Structure activity correlation revealed that the quinoxaline ring is a satisfactory backbone for anticancer activity and a specific functional group at position 1 and 2 can improve the activity. In this basis, besides quinoxaline, imidazoles as potential anticancer agents were used as a supplementary agents for cancer treatment. In this paper, a new series of N-alkyl-2, 4-diphenylimidazo [1, 2-a] quinoxalin-1-amine derivatives were synthesized in a simple and efficient step. The products are fully characterized by 1H NMR, 13C NMR, FT-IR, HRMS, and CHN elemental analysis. Several starting materials with different functionalities have been used for the synthesis of the final products with high isolated yields. The biological activities of the synthesized compounds were evaluated in kinase inhibition and cytotoxic activity in several cancerous cell lines. All compounds (6) were evaluated for inhibition of the cell proliferation using 4 cancerous cell lines. Five of the more active compounds were studied for determination of IC50%. Compounds 6(32-34) showed good activity on some of cancerous cell lines. The results showed that compound 6-32 has the highest biological activity (IC50% 9.77 for K562 cell line). An IC50% value of 15.84 µM was observed for 6-34. Furthermore 6-34 exhibited inhibition of ABL1 and c-Src kinases with an IC50% value of 5.25 µM and 3.94 µM respectively. Docking simulation was performed to position active synthesized compounds 6-32, 6-33, and 6-34 over the ABL1 active site in two different wild-type (DFG-in and DFG-out motif conformer) and T315I mutant to determine the probable binding orientation, conformation and mode of interaction. According to docking study, the docked location in wild type forms is similar and can be found near the P-loop region while in the case of T315I mutant form, the compounds have a distinct docked location which is close to the αC helix and activation loop. Also, it concluded the role of R1 substituent on phenyl ring produced higher interaction energy. Additionally, the detailed inter-molecular energy and types of non-bonding interaction of these compounds over the wild-type and mutant form of ABL1.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, 14176 Tehran, Iran
| | - Mir Mahdi Didehvar
- School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Eman H M Mohammed
- Department of Chemistry, Faculty of Sciences, Menoufia University, Shebin EI-Koam, Egypt
| | - Sayednaser Ostad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy and Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran, Iran.
| |
Collapse
|
48
|
Díaz-Hernández D, Cañete Á, Pavez L, Pérez-Sanhueza A, Günther G, Szreder T, De la Fuente JR. Spectral and Kinetic Study of 3-Styrylquinoxalin-2(1 H)-ones Photoreduced by N-Phenylglycine and Amines. J Phys Chem B 2019; 123:3688-3698. [PMID: 30964986 DOI: 10.1021/acs.jpcb.9b01950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photoreduction by amines and N-phenylglycine, NPG, of six styrylquinoxalin-2(1 H)-ones derivatives substituted in the styryl moiety, R-SQ, was studied by using flash photolysis. The photoreaction is initiated via a single electron transfer from the electron donor (amines or NPG) to R-SQ excited triplet state, 3R-SQ*, with the formation of a triplet state radical ion pair or a charge transfer exciplex, 3[CRIP/CTE]. These species live longer than the respective 3R-SQ* and have very similar transient spectra. In the presence of NPG, these 3[CRIP/CTE] evolve on μs time scale to the respective hydrogenated radicals, R-SQH•, whose transient spectra and reaction rate constants with NPG are reported. The identity of these hydrogenated radicals was supported by the spectra obtained with the α-H donor triethylamine and previous pulse radiolysis studies in 2-propanol. Our findings allow proposing a radical chain reaction mechanism that explains the observed spectral behavior and rationalizes formation of the main product formed by binding of four PhNHCH2• derived from NPG decarboxylation.
Collapse
Affiliation(s)
- Dafne Díaz-Hernández
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas , Universidad de Chile , Casilla 223, Santiago 1 , Santiago , Chile
| | - Álvaro Cañete
- Departamento de Química Orgánica, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Casilla 306, Correo 22 , Santiago , Chile
| | - Lynda Pavez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Casilla 306, Correo 22 , Santiago , Chile
| | - Alberto Pérez-Sanhueza
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas , Universidad de Chile , Casilla 223, Santiago 1 , Santiago , Chile
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas , Universidad de Chile , Casilla 223, Santiago 1 , Santiago , Chile
| | - Tomasz Szreder
- Institute of Nuclear Chemistry and Technology , Dorodna 16 , 03-195 Warsaw , Poland
| | - Julio R De la Fuente
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas , Universidad de Chile , Casilla 223, Santiago 1 , Santiago , Chile
| |
Collapse
|
49
|
Quinoxaline-1,4-dioxide derivatives inhibitory action in melanoma and brain tumor cells. Future Med Chem 2019; 11:645-657. [PMID: 30964331 DOI: 10.4155/fmc-2018-0251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aim: Quinoxaline-1,4-dioxide derivatives are synthetic heterocyclic compounds with multiple biological and pharmacological effects. In this study, we investigated the bioactivity of five quinoxaline-1,4-di-N-oxides derivatives in different animal cell lines. Materials & methods: Using in vitro cell cultures, we evaluated the influence of quinoxaline-1,4-dioxide, 2-methylquinoxaline-1,4-dioxide, 2-amino-3-cyanoquinoxaline-1,4-dioxide, 3-methyl-2-quinoxalinecarboxamide-1,4-dioxide and 2-hydroxyphenazine-N,N-dioxide (2HF) in the viability, migration and proliferation of nonmalignant (3T3-L1 and human dermal microvascular endothelial cell) and malignant (B16-F10, MeWo, GL-261 and BC3H1) cell lines. Results: The viability IC50 concentrations for each quinoxaline-1,4-di-N-oxide derivative were calculated, and a concomitant reduction of migration and proliferation was observed mainly in malignant cell lines. Conclusion: 2HF exhibited potent anti-viability, anti-migration and anti-proliferative actions selectively in tumor cells, nevertheless more studies are required to further investigate 2HF promising biologic effects.
Collapse
|
50
|
Loukrakpam DC, Phukan P. TsNBr2Mediated Synthesis of 2‐Acylbenzothiazoles and Quinoxalines from Aryl Methyl Ketones under Metal Free Condition. ChemistrySelect 2019. [DOI: 10.1002/slct.201900713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Prodeep Phukan
- Department of ChemistryGauhati University Guwahati 781014 Assam India
| |
Collapse
|