1
|
Lee J, Jeong Y, Jin Jung H, Ullah S, Ko J, Young Kim G, Yoon D, Hong S, Kang D, Park Y, Chun P, Young Chung H, Ryong Moon H. Anti-tyrosinase flavone derivatives and their anti-melanogenic activities: Importance of the β-phenyl-α,β-unsaturated carbonyl scaffold. Bioorg Chem 2023; 135:106504. [PMID: 37015153 DOI: 10.1016/j.bioorg.2023.106504] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Flavone derivatives were designed and synthesized based on the hypothesis that flavones containing the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold have potential anti-tyrosinase activity. Flavones 1a and 1e inhibited mushroom tyrosinase more potently than kojic acid, and 1e inhibited monophenolase and diphenolase 61- and 28-fold more than kojic acid, respectively. Kinetic studies on mushroom tyrosinase indicated that 1a and 1e competitively inhibit monophenolase and diphenolase, and docking results supported these results. In an in vitro assay using B16F10 murine cells, 1a and 1e inhibited melanin production more potently than kojic acid, and this was attributed to the inhibition of tyrosinase. Furthermore, 1a and 1e strongly scavenged DPPH and ABTS radicals and ROS, which suggested that their antioxidant properties were at least partly responsible for their anti-melanogenic effects. Moreover, flavone 1a also inhibited the gene expressions of the melanogenesis-related genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Our findings that flavone derivatives (i) directly inhibit tyrosinase, (ii) act as antioxidants, and (iii) inhibit the expressions of melanogenesis-related genes suggest their potential use as natural melanogenesis inhibitors. Furthermore, the study confirms that the PUSC scaffold confers anti-tyrosinase activity.
Collapse
|
2
|
Divar M, Tadayyon S, Khoshneviszadeh M, Pirhadi S, Attarroshan M, Mobaraki K, Damghani T, Mirfazli S, Edraki N. Benzyl‐Triazole Derivatives of Hydrazinecarbothiamide Derivatives as Potent Tyrosinase Inhibitors: Synthesis, Biological Evaluation, Structure‐Activity Relationship and Docking Study. ChemistrySelect 2023. [DOI: 10.1002/slct.202203382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Masoumeh Divar
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Somayeh Tadayyon
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Mahshid Attarroshan
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Kourosh Mobaraki
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
- Department of Medicinal Chemistry School of Pharmacy Shiraz University of Medical Sciences 7146864685 Shiraz Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| | - Sara Mirfazli
- Department of Medicinal Chemistry School of Pharmacy Iran University of Medical Sciences 1475886671 Tehran Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center Shiraz University of Medical Sciences 7134853734 Shiraz Iran
| |
Collapse
|
3
|
Ko J, Lee J, Jung HJ, Ullah S, Jeong Y, Hong S, Kang MK, Park YJ, Hwang Y, Kang D, Park Y, Chun P, Yoo JW, Chung HY, Moon HR. Design and Synthesis of (Z)-5-(Substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one Analogues as Anti-Tyrosinase and Antioxidant Compounds: In Vitro and In Silico Insights. Antioxidants (Basel) 2022; 11:antiox11101918. [PMID: 36290640 PMCID: PMC9598926 DOI: 10.3390/antiox11101918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Many compounds containing the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold, including cinnamamide derivatives, have been shown to inhibit tyrosinase potently in vitro and in vivo. Structural changes to cinnamamide derivatives were produced by adding a dithionate functional group to provide eight (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs with high log p values for skin. These analogs were synthesized using a two-step reaction, and their stereochemistry was confirmed using the 3JC4-Hβ values of C4 measured in proton-coupled 13C mode. Analogs 2 (IC50 = 5.21 ± 0.86 µM) and 3 (IC50 = 1.03 ± 0.14 µM) more potently inhibited mushroom tyrosinase than kojic acid (IC50 = 25.26 ± 1.10 µM). Docking results showed 2 binds strongly to the active site of tyrosinase, while 3 binds strongly to an allosteric site. Kinetic studies using l-tyrosine as substrate indicated 2 and 3 competitively and non-competitively inhibit tyrosinase, respectively, which was supported by our docking results. In B16F10 cells, 3 significantly and concentration-dependently reduced α–MSH plus IBMX induced increases in cellular tyrosinase activity and melanin production and the similarity between these inhibitory patterns implied that the anti-melanogenic effect of 3 might be due to its tyrosinase-inhibitory ability. In addition, 2 and 3 exhibited strong antioxidant effects; for example, they reduced ROS and ONOO– levels and exhibited radical scavenging activities, suggesting that these effects might underlie their anti-melanogenic effects. Furthermore, 3 suppressed the expressions of melanogenesis-associated proteins and genes in B16F10 cells. These results suggest (Z)-5-(substituted benzylidene)-3-cyclohexyl-2-thioxothiazolidin-4-one analogs offer a means of producing novel anti-melanogenesis agents.
Collapse
Affiliation(s)
- Jeongin Ko
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Jieun Lee
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yeongmu Jeong
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Sojeong Hong
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Min Kyung Kang
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Yu Jung Park
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - YeJi Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Dongwan Kang
- New Drug Development Center, Department of Medicinal Chemistry, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Yujin Park
- New Drug Development Center, Department of Medicinal Chemistry, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Korea
| | - Jin-Wook Yoo
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
- Correspondence:
| |
Collapse
|
4
|
Newly Designed Quinazolinone Derivatives as Novel Tyrosinase Inhibitor: Synthesis, Inhibitory Activity, and Mechanism. Molecules 2022; 27:molecules27175558. [PMID: 36080324 PMCID: PMC9457556 DOI: 10.3390/molecules27175558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
We synthesized a series of quinazolinone derivates as tyrosinase inhibitors and evaluated their inhibition constants. We synthesized 2-(2,6-dimethylhepta-1,5-dien-1-yl)quinazolin-4(3H)-one (Q1) from the natural citral. The concentration, which led to 50% activity loss of Q1, was 103 ± 2 μM (IC50 = 103 ± 2 μM). Furthermore, we considered Q1 to be a mixed-type and reversible tyrosinase inhibitor, and determined the KI and KIS inhibition constants to be 117.07 μM and 423.63 μM, respectively. Our fluorescence experiment revealed that Q1 could interact with the substrates of tyrosine and L-DOPA in addition to tyrosinase. Molecular docking studies showed that the binding of Q1 to tyrosinase was driven by hydrogen bonding and hydrophobicity. Briefly, the current study confirmed a new tyrosinase inhibitor, which is expected to be developed into a novel pigmentation drug.
Collapse
|
5
|
Choi H, Young Ryu I, Choi I, Ullah S, Jin Jung H, Park Y, Hwang Y, Jeong Y, Hong S, Chun P, Young Chung H, Ryong Moon H. Identification of (Z)-2-benzylidene-dihydroimidazothiazolone derivatives as tyrosinase inhibitors: anti-melanogenic effects and in silico studies. Comput Struct Biotechnol J 2022; 20:899-912. [PMID: 35242283 PMCID: PMC8861568 DOI: 10.1016/j.csbj.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Heejeong Choi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Il Young Ryu
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Inkyu Choi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Scripps Research Institute, FL 33458, USA
| | - Hee Jin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yujin Park
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - YeJi Hwang
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yeongmu Jeong
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sojeong Hong
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
- Corresponding author at: Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
6
|
Unsal Tan O, Zengin M. Insights into the chemistry and therapeutic potential of acrylonitrile derivatives. Arch Pharm (Weinheim) 2021; 355:e2100383. [PMID: 34763365 DOI: 10.1002/ardp.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Acrylonitrile is a fascinating scaffold widely found in many natural products, drugs, and drug candidates with various biological activities. Several drug molecules such as entacapone, rilpivirine, teriflunomide, and so forth, bearing an acrylonitrile moiety have been marketed. In this review, diverse synthetic strategies for constructing desired acrylonitriles are discussed, and the different biological activities and medicinal significance of various acrylonitrile derivatives are critically evaluated. The information gathered is expected to provide rational guidance for the development of clinically useful agents from acrylonitriles.
Collapse
Affiliation(s)
- Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
7
|
Choi H, Ryu IY, Choi I, Ullah S, Jung HJ, Park Y, Jeong Y, Hwang Y, Hong S, Yoon IS, Yun H, Kim MS, Yoo JW, Jung Y, Chun P, Moon HR. Novel Anti-Melanogenic Compounds, ( Z)-5-(Substituted Benzylidene)-4-thioxothiazolidin-2-one Derivatives: In Vitro and In Silico Insights. Molecules 2021; 26:4963. [PMID: 34443550 PMCID: PMC8400311 DOI: 10.3390/molecules26164963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
To confirm that the β-phenyl-α,β-unsaturated thiocarbonyl (PUSTC) scaffold, similar to the β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold, acts as a core inhibitory structure for tyrosinase, twelve (Z)-5-(substituted benzylidene)-4-thioxothiazolidin-2-one ((Z)-BTTZ) derivatives were designed and synthesized. Seven of the twelve derivatives showed stronger inhibitory activity than kojic acid against mushroom tyrosinase. Compound 2b (IC50 = 0.47 ± 0.97 µM) exerted a 141-fold higher inhibitory potency than kojic acid. Kinetic studies' results confirmed that compounds 2b and 2f are competitive tyrosinase inhibitors, which was supported by high binding affinities with the active site of tyrosinase by docking simulation. Docking results using a human tyrosinase homology model indicated that 2b and 2f might potently inhibit human tyrosinase. In vitro assays of 2b and 2f were conducted using B16F10 melanoma cells. Compounds 2b and 2f significantly and concentration-dependently inhibited intracellular melanin contents, and the anti-melanogenic effects of 2b at 10 µM and 2f at 25 µM were considerably greater than the inhibitory effect of kojic acid at 25 µM. Compounds 2b and 2f similarly inhibited cellular tyrosinase activity and melanin contents, indicating that the anti-melanogenic effects of both were due to tyrosinase inhibition. A strong binding affinity with the active site of tyrosinase and potent inhibitions of mushroom tyrosinase, cellular tyrosinase activity, and melanin generation in B16F10 cells indicates the PUSTC scaffold offers an attractive platform for the development of novel tyrosinase inhibitors.
Collapse
Affiliation(s)
- Heejeong Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Il Young Ryu
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Inkyu Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Sultan Ullah
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA;
| | - Hee Jin Jung
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Yujin Park
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Yeongmu Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - YeJi Hwang
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Sojeong Hong
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - In-Soo Yoon
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Hwayoung Yun
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Min-Soo Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Jin-Wook Yoo
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Yunjin Jung
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| | - Pusoon Chun
- College of Pharmacy, Inje University, Gyeongnam, Gimhae 50834, Korea
- Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gyeongnam, Gimhae 50834, Korea
| | - Hyung Ryong Moon
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, Korea; (H.C.); (I.Y.R.); (I.C.); (H.J.J.); (Y.P.); (Y.J.); (Y.H.); (S.H.); (I.-S.Y.); (H.Y.); (M.-S.K.); (J.-W.Y.); (Y.J.)
| |
Collapse
|
8
|
Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur J Med Chem 2021; 224:113744. [PMID: 34365131 DOI: 10.1016/j.ejmech.2021.113744] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Tyrosinase is a copper-containing metalloenzyme that is responsible for the rate-limiting catalytic step in the melanin biosynthesis and enzymatic browning. As a promising target, tyrosinase inhibitors can be used as skin whitening agents and food preservatives, thus having broad potential in the fields of food, cosmetics, agriculture and medicine. From 2015 to 2020, numerous synthetic inhibitors of tyrosinase have been developed to overcome the challenges of low efficacy and side effects. This review summarizes the enzyme structure and biological functions of tyrosinase and demonstrates the recent advances of synthetic tyrosinase inhibitors from the perspective of medicinal chemistry, providing a better understanding of the catalytic mechanisms and more effective tyrosinase inhibitors.
Collapse
|
9
|
Choi I, Park Y, Ryu IY, Jung HJ, Ullah S, Choi H, Park C, Kang D, Lee S, Chun P, Young Chung H, Moon HR. In silico and in vitro insights into tyrosinase inhibitors with a 2-thioxooxazoline-4-one template. Comput Struct Biotechnol J 2020; 19:37-50. [PMID: 33363708 PMCID: PMC7753086 DOI: 10.1016/j.csbj.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
The β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold confers tyrosinase inhibitory activity, and in the present study, 16 (Z)-5-(substituted benzylidene)-3-phenyl-2-thioxooxazolidin-4-one analogues containing this scaffold were synthesized. Mushroom tyrosinase inhibitory activities were examined. Compound 1c (IC50 = 4.70 ± 0.40 μM) and compound 1j (IC50 = 11.18 ± 0.54 μM) inhibited tyrosinase by 4.9 and 2.1-fold, respectively, and did so more potently than kojic acid (IC50 = 23.18 ± 0.11 μM). Kinetic analysis of tyrosinase inhibition revealed that 1c and 1j inhibited tyrosinase competitively. Results of docking simulation with mushroom tyrosinase using four docking programs suggested that 1c and 1j bind more strongly than kojic acid to the active site of tyrosinase and supported kinetic findings that both compounds are competitive inhibitors. The docking results of human tyrosinase homology model indicated that 1c and 1j can also strongly inhibit human tyrosinase. EZ-cytox assays revealed 1c and 1j were not cytotoxic to B16F10 melanoma cells. The effects of 1c and 1j on cellular tyrosinase activity and melanin production were also investigated in α-MSH- and IBMX-co-stimulated these cells. Both compounds significantly and dose-dependently reduced tyrosinase activity, and at 10 µM were more potent than kojic acid at 20 µM. Compounds 1c and 1j also inhibited melanogenesis, which suggested that the inhibitory effects of these compounds on melanin production were mainly attributable to their inhibitions of tyrosinase. These results indicate that compounds 1c and 1j with the PUSC scaffold have potential use as whitening agents for the treatment of hyperpigmentation-associated diseases.
Collapse
Affiliation(s)
- Inkyu Choi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yujin Park
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Il Young Ryu
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hee Jin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Scripps Research Institute, FL 33458, USA
| | - Heejeong Choi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Chaeun Park
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Dongwan Kang
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sanggwon Lee
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
10
|
Damghani T, Hadaegh S, khoshneviszadeh M, Pirhadi S, Sabet R, Khoshneviszadeh M, Edraki N. Design, synthesis, in vitro evaluation and molecular docking study of N'-Arylidene imidazo [1,2-a] pyridine -2-carbohydrazide derivatives as novel Tyrosinase inhibitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. COSMETICS 2019. [DOI: 10.3390/cosmetics6040057] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the most common approaches for control of skin pigmentation involves the inhibition of tyrosinase, a copper-containing enzyme which catalyzes the key steps of melanogenesis. This review focuses on the tyrosinase inhibition properties of a series of natural and synthetic, bioinspired phenolic compounds that have appeared in the literature in the last five years. Both mushroom and human tyrosinase inhibitors have been considered. Among the first class, flavonoids, in particular chalcones, occupy a prominent role as natural inhibitors, followed by hydroxystilbenes (mainly resveratrol derivatives). A series of more complex phenolic compounds from a variety of sources, first of all belonging to the Moraceae family, have also been described as potent tyrosinase inhibitors. As to the synthetic compounds, hydroxycinnamic acids and chalcones again appear as the most exploited scaffolds. Several inhibition mechanisms have been reported for the described inhibitors, pointing to copper chelating and/or hydrophobic moieties as key structural requirements to achieve good inhibition properties. Emerging trends in the search for novel skin depigmenting agents, including the development of assays that could distinguish between inhibitors and potentially toxic substrates of the enzyme as well as of formulations aimed at improving the bioavailability and hence the effectiveness of well-known inhibitors, have also been addressed.
Collapse
|
12
|
Ullah S, Park Y, Park C, Lee S, Kang D, Yang J, Akter J, Chun P, Moon HR. Antioxidant, anti-tyrosinase and anti-melanogenic effects of (E)-2,3-diphenylacrylic acid derivatives. Bioorg Med Chem 2019; 27:2192-2200. [PMID: 31027707 DOI: 10.1016/j.bmc.2019.04.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 02/07/2023]
Abstract
During our continued search for strong skin whitening agents over the past ten years, we have investigated the efficacies of many tyrosinase inhibitors containing a common (E)-β-phenyl-α,β-unsaturated carbonyl scaffold, which we found to be essential for the effective inhibition of mushroom and mammalian tyrosinases. In this study, we explored the tyrosinase inhibitory effects of 2,3-diphenylacrylic acid (2,3-DPA) derivatives, which also possess the (E)-β-phenyl-α,β-unsaturated carbonyl motif. We synthesized fourteen (E)-2,3-DPA derivatives 1a-1n and one (Z)-2,3-DPA-derivative 1l' using a Perkin reaction with phenylacetic acid and appropriate substituted benzaldehydes. In our mushroom tyrosinase assay, 1c showed higher tyrosinase inhibitory activity (76.43 ± 3.53%, IC50 = 20.04 ± 1.91 µM) with than the other 2,3-DPA derivatives or kojic acid (21.56 ± 2.93%, IC50 = 30.64 ± 1.27 μM). Our mushroom tyrosinase inhibitory results were supported by our docking study, which showed compound 1c (-7.2 kcal/mole) exhibited stronger binding affinity for mushroom tyrosinase than kojic acid (-5.7 kcal/mole). In B16F10 melanoma cells (a murine cell-line), 1c showed no cytotoxic effect up to a concentration of 25 μM and exhibited greater tyrosinase inhibitory activity (68.83%) than kojic acid (49.39%). In these cells, arbutin (a well-known tyrosinase inhibitor used as the positive control) only inhibited tyrosinase by 42.67% even at a concentration of 400 μM. Furthermore, at 25 µM, 1c reduced melanin contents in B16F10 melanoma cells by 24.3% more than kojic acid (62.77% vs. 38.52%). These results indicate 1c is a promising candidate treatment for pigmentation-related diseases and potential skin whitening agents.
Collapse
Affiliation(s)
- Sultan Ullah
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yujin Park
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Chaeun Park
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sanggwon Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Dongwan Kang
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jungho Yang
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jinia Akter
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea
| | - Hyung Ryong Moon
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
13
|
Ullah S, Park C, Ikram M, Kang D, Lee S, Yang J, Park Y, Yoon S, Chun P, Moon HR. Tyrosinase inhibition and anti-melanin generation effect of cinnamamide analogues. Bioorg Chem 2019; 87:43-55. [PMID: 30856375 DOI: 10.1016/j.bioorg.2019.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/01/2019] [Accepted: 03/02/2019] [Indexed: 11/28/2022]
Abstract
Abnormal melanogenesis results in excessive production of melanin, leading to pigmentation disorders. As a key and rate-limiting enzyme for melanogenesis, tyrosinase has been considered an important target for developing therapeutic agents of pigment disorders. Despite having an (E)-β-phenyl-α,β-unsaturated carbonyl scaffold, which plays an important role in the potent inhibition of tyrosinase activity, cinnamic acids have not attracted attention as potential tyrosinase inhibitors, due to their low tyrosinase inhibitory activity and relatively high hydrophilicity. Given that cinnamic acids' structure intrinsically features this (E)-scaffold and following our experience that minute changes in the chemical structure can powerfully affect tyrosinase activity, twenty less hydrophilic cinnamamide derivatives were designed as potential tyrosinase inhibitors and synthesised using a Horner-Wadsworth-Emmons reaction. Four of these cinnmamides (4, 9, 14, and 19) exhibited much stronger mushroom tyrosinase inhibition (over 90% inhibition) at 25 µM compared to kojic acid (20.57% inhibition); crucially, all four have a 2,4-dihydroxy group on the β-phenyl ring of the scaffold. A docking simulation using tyrosinase indicated that the four cinnamamides exceeded the binding affinity of kojic acid, and bound more strongly to the active site of tyrosinase. Based on the strength of their tyrosinase inhibition, these four cinnamamides were further evaluated in B16F10 melanoma cells. All four cinnamamides, without cytotoxicity, exhibited higher tyrosinase inhibitory activity (67.33 - 79.67% inhibition) at 25 μM than kojic acid (38.11% inhibition), with the following increasing inhibitory order: morpholino (9) = cyclopentylamino (14) < cyclohexylamino (19) < N-methylpiperazino (4) cinnamamides. Analysis of tyrosinase activity and melanin content in B16F10 cells showed that the four cinnamamides dose-dependently inhibited both cellular tyrosinase activity and melanin content and that their inhibitory activity at 25 μM was much better than that of kojic acid. The results of melanin content analysis well matched those of the cellular tyrosinase activity analysis, indicating that tyrosinase inhibition by the four cinnamamides is a major factor in the reduction of melanin production. These results imply that these four cinnamamides with a 2,4-dihydroxyphenyl group can act as excellent anti-melanogenic agents in the treatment of pigmentation disorders.
Collapse
Affiliation(s)
- Sultan Ullah
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Chaeun Park
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Muhammad Ikram
- Department of Anatomy, Pusan National University School of Medicine, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, South Korea; Department of Pharmacy, Comsats University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Dongwan Kang
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sanggwon Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jungho Yang
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yujin Park
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sik Yoon
- Department of Anatomy, Pusan National University School of Medicine, 49 Busandaehak-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea
| | - Hyung Ryong Moon
- Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
14
|
Phthalimide-1,2,3-triazole hybrid compounds as tyrosinase inhibitors; synthesis, biological evaluation and molecular docking analysis. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
15
|
Design, synthesis and anti-melanogenic effect of cinnamamide derivatives. Bioorg Med Chem 2018; 26:5672-5681. [PMID: 30366788 DOI: 10.1016/j.bmc.2018.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022]
Abstract
Pigmentation disorders are attributed to excessive melanin which can be produced by tyrosinase. Therefore, tyrosinase is supposed to be a vital target for the treatment of disorders associated with overpigmentation. Based on our previous findings that an (E)-β-phenyl-α,β-unsaturated carbonyl scaffold can play a key role in the inhibition of tyrosinase activity, and the fact that cinnamic acid is a safe natural substance with a scaffolded structure, it was speculated that appropriate cinnamic acid derivatives may exhibit potent tyrosinase inhibitory activity. Thus, ten cinnamamides were designed, and synthesized by using a Horner-Emmons olefination as the key step. Cinnamamides 4 (93.72% inhibition), 9 (78.97% inhibition), and 10 (59.09% inhibition) with either a 2,4-dihydroxyphenyl, or 4-hydroxy-3-methoxyphenyl substituent showed much higher mushroom tyrosinase inhibition at 25 µM than kojic acid (18.81% inhibition), used as a positive control. Especially, the two cinnamamides 4 and 9 having a 2,4-dihydroxyphenyl group showed the strongest inhibition. Docking simulation with tyrosinase revealed that these three cinnamamides, 4, 9, and 10, bind to the active site of tyrosinase more strongly than kojic acid. Cell-based experiments carried out using B16F10 murine skin melanoma cells demonstrated that all three cinnamamides effectively inhibited cellular tyrosinase activity and melanin production in the cells without cytotoxicity. There was a close correlation between cellular tyrosinase activity and melanin content, indicating that the inhibitory effect of the three cinnamamides on melanin production is mainly attributed to their capability for cellular tyrosinase inhibition. These results imply that cinnamamides having the (E)-β-phenyl-α,β-unsaturated carbonyl scaffolds are promising candidates for skin-lighting agents.
Collapse
|
16
|
Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells. Eur J Med Chem 2018; 161:78-92. [PMID: 30347330 DOI: 10.1016/j.ejmech.2018.10.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
Of the three enzymes that regulate the biosynthesis of melanin, tyrosinase and its related proteins TYRP-1 and TYRP-2, tyrosinase is the most important because of its ability to limit the rate of melanin production in melanocytes. For treating skin pigmentation disorders caused by an excess of melanin, the inhibition of tyrosinase enzyme is by far the most established strategy. Cinnamic acid is a safe natural product with an (E)-β-phenyl-α,β-unsaturated carbonyl motif that we have previously shown to play an important role in high tyrosinase inhibition. Since cinnamic acid is relatively hydrophilic, which hinders its absorption on the skin, fifteen less hydrophilic cinnamic amide derivatives (1-15) were designed as safe and more potent tyrosinase inhibitors and were synthesized through a Horner-Wadsworth-Emmons reaction. The use of conc-HCl and acetic acid for debenzylation of the O-benzyl-protected cinnamic amides 40-54 produced the following three results. 1) Cinnamic amides 43, 48, and 53 with a 2,4-dibenzyloxyphenyl group, irrespective of the amine type of the amides, produced complex compounds with high polarity. 2) Cinnamic amides 40-42, 44, 50-52, and 54 with a benzylamino, or diethylamino group produced the desired debenzylated cinnamic amides 1-3, 5, 10-13, and 15. 3) Cinnamic amides 45-47, and 49 with an anilino moiety provided 3,4-dihydroquinolinones 16-19 through intramolecular Michael addition of the anilide group. Notably, the use of BBr3 as an alternative debenzylating agent for debenzylation of cinnamic amides 45-49 with the anilino moiety provided our desired cinnamic amides 6-10 without inducing the intramolecular Michael addition. Debenzylation of cinnamic amides 43, 48, and 53 with a 2,4-dibenzyloxyphenyl group was also successfully accomplished using BBr3 to give 4, 9, and 14. Among the nine compounds that inhibited mushroom tyrosinase more potently at 25 μM than kojic acid, four cinnamic amides 4, 5, 9, and 14 showed 3-fold greater tyrosinase inhibitory activity than kojic acid. The docking simulation using tyrosinase indicated that these four cinnamic amides (-6.2 to -7.9 kcal/mol) bind to the active site of tyrosinase with stronger binding affinity than kojic acid (-5.7 kcal/mol). All four cinnamic amides inhibited melanogenesis and tyrosinase activity more potently than kojic acid in α-MSH-stimulated B16F10 melanoma cells in a dose-dependent manner without cytotoxicity. The strong correlation between tyrosinase activity and melanin content suggests that the anti-melanogenic effect of cinnamic amides is due to tyrosinase inhibitory activity. Considering that the cinnamic amides 4, 9, and 14, which exhibited strong inhibition on mushroom tyrosinase and potent anti-melanogenic effect in B16F10 cells, commonly have a 2,4-dihydroxyphenyl substituent, the 2,4-dihydroxyphenyl substituent appears to be essential for high anti-melanogenesis. These results support the potential of these four cinnamic amides as novel and potent tyrosinase inhibitors for use as therapeutic agents with safe skin-lightening efficiency.
Collapse
|
17
|
Bezgin DA, Ershov OV, Ievlev MY, Belikov MY, Bardasov IN. Aqueous-Phase Synthesis and Solid-Phase Fluorescence of 3-(Methoxyphenyl)-2-cyanoacrylamides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018070217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Kim SJ, Yang J, Lee S, Park C, Kang D, Akter J, Ullah S, Kim YJ, Chun P, Moon HR. The tyrosinase inhibitory effects of isoxazolone derivatives with a (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold. Bioorg Med Chem 2018; 26:3882-3889. [PMID: 29907470 DOI: 10.1016/j.bmc.2018.05.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023]
Abstract
Thirteen (Z)-4-(substituted benzylidene)-3-phenylisoxazol-5(4H)-ones were designed to confirm the geometric effect of the double bond of the β-phenyl-α, β-unsaturated carbonyl scaffold on tyrosinase inhibitory activity. Compounds 1a-1m, which all possessed the (Z)-β-phenyl-α, β-unsaturated carbonyl scaffold, were synthesized using a tandem reaction consisting of an isoxazolone ring formation and a Knoevenagel condensation, and three starting materials, ethyl benzoylacetate, hydroxylamine and benzaldehydes. Some of the compounds showed inhibitory activity against mushroom tyrosinase as potent as compounds containing the "(E)"-β-phenyl-α, β-unsaturated carbonyl scaffold. Compounds 1c and 1m showed greater inhibitory activity than kojic acid: IC50 = 32.08 ± 2.25 μM for 1c; IC50 = 14.62 ± 1.38 μM for 1m; and IC50 = 37.86 ± 2.21 μM for kojic acid. A kinetic study indicated that 1m inhibited tyrosinase in a competitive manner and that it probably binds to the enzyme's active site. In silico docking simulation supported binding of 1m (-7.6 kcal/mol) to the active site of tyrosinase with stronger affinity than kojic acid (-5.7 kcal/mol). Similar results were obtained using cell-based assays, and in B16F10 cells, compound 1m dose-dependently inhibited tyrosinase activity and melanogenesis. These results indicate the anti-melanogenic effect of compound 1m is due to the inhibition of tyrosinase and (Z)-isomer of the β-phenyl-α, β-unsaturated carbonyl scaffold can, like its congener the (E)-isomer, act as an excellent scaffold for tyrosinase inhibition.
Collapse
Affiliation(s)
- Su Jeong Kim
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jungho Yang
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sanggwon Lee
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Chaeun Park
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Dongwan Kang
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Jinia Akter
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sultan Ullah
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yeon-Jeong Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea.
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
19
|
Jung HJ, Lee MJ, Park YJ, Noh SG, Lee AK, Moon KM, Lee EK, Bang EJ, Park YJ, Kim SJ, Yang J, Ullah S, Chun P, Jung YS, Moon HR, Chung HY. A novel synthetic compound, (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one (MHY773) inhibits mushroom tyrosinase. Biosci Biotechnol Biochem 2018; 82:1-9. [PMID: 29521165 DOI: 10.1080/09168451.2018.1445518] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/06/2018] [Indexed: 10/17/2022]
Abstract
As part of continued efforts for the development of new tyrosinase inhibitors, (Z)-5-(substituted benzylidene)-2-iminothiazolidin-4-one derivatives (1a - 1l) were rationally synthesized and evaluated for their inhibitory potential in vitro. These compounds were designed and synthesized based on the structural attributes of a β-phenyl-α,β-unsaturated carbonyl scaffold template. Among these compounds, (Z)-5-(3-hydroxy-4-methoxybenzylidene)-2-iminothiazolidin-4-one (1e, MHY773) exhibited the greatest tyrosinase inhibition (IC50 = 2.87 μM and 8.06 μM for monophenolase and diphenolase), and outperformed the positive control, kojic acid (IC50 = 15.59 and 31.61 μM). The kinetic and docking studies demonstrated that MHY773 interacted with active site of tyrosinase. Moreover, a melanin quantification assay demonstrated that MHY773 attenuates α-melanocyte-stimulating hormone (α-MSH) and 3-isobutyl-1-methylxanthine (IBMX)-induced melanin contents in B16F10 melanoma cells. Taken together, these data suggest that MHY773 suppressed the melanin production via the inhibition of tyrosinase activity. MHY773 is a promising for the development of effective pharmacological and cosmetic agents for skin-whitening.
Collapse
Affiliation(s)
- Hee Jin Jung
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Min Jung Lee
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Yeo Jin Park
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Sang Gyun Noh
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - A Kyoung Lee
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Kyoung Mi Moon
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Eun Kyeong Lee
- c Analytical Research Center, Korea Institute of Toxicology , Daejeon , Republic of Korea
| | - Eun Jin Bang
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Yun Jung Park
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Su Jeong Kim
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Jungho Yang
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Sultan Ullah
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Pusoon Chun
- d College of Pharmacy , Inje University , Gimhae , Republic of Korea
| | - Young Suk Jung
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Hyung Ryong Moon
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| | - Hae Young Chung
- a Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy , Pusan National University , Busan , Republic of Korea
- b College of Pharmacy , Pusan National University , Busan , Republic of Korea
| |
Collapse
|
20
|
Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 2017; 32:403-425. [PMID: 28097901 PMCID: PMC6010116 DOI: 10.1080/14756366.2016.1256882] [Citation(s) in RCA: 498] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/07/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Melanogenesis is a process to synthesize melanin, which is a primary responsible for the pigmentation of human skin, eye and hair. Although numerous enzymatic catalyzed and chemical reactions are involved in melanogenesis process, the enzymes such as tyrosinase and tyrosinase-related protein-1 (TRP-1) and TRP-2 played a major role in melanin synthesis. Specifically, tyrosinase is a key enzyme, which catalyzes a rate-limiting step of the melanin synthesis, and the downregulation of tyrosinase is the most prominent approach for the development of melanogenesis inhibitors. Therefore, numerous inhibitors that target tyrosinase have been developed in recent years. The review focuses on the recent discovery of tyrosinase inhibitors that are directly involved in the inhibition of tyrosinase catalytic activity and functionality from all sources, including laboratory synthetic methods, natural products, virtual screening and structure-based molecular docking studies.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|
21
|
Gupta VK, Singh RA. Aggregation-induced enhanced green light emission from a simple donor–π–acceptor (D–π–A) material: a structure–property relationship study. Faraday Discuss 2017; 196:131-142. [DOI: 10.1039/c6fd00158k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organic D–π–A materials, possessing intramolecular charge transfer, have attracted much scientific attention in recent years because of their potential applications in the development of organic light emitting devices (OLEDs). Two new compounds, A1 and A2, having a D–π–A skeleton have been synthesized and single crystals were grown by the solution growth technique. Both compounds were characterized for crystallographic, thermal and photophysical properties. Upon photo-excitation in the solid state, A1 showed very strong green light emission while A2 gave sky-blue emission with much lower intensity. A single crystal X-ray diffraction study revealed that in the crystal lattice of A1, both the donor and acceptor groups are involved in the intermolecular interactions. This results in the restricted intramolecular rotation (RIR) of the D and A moieties, and enables A1 to emit more intensely in the solid state due to aggregation-induced emission (AIE). Intense green light emission, along with a good crystalline nature indicates that A1 might be a potential candidate for opto-electronic devices.
Collapse
Affiliation(s)
- Vinod Kumar Gupta
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
| | - Ram Adhar Singh
- Department of Chemistry
- Centre of Advanced Study
- Institute of Science
- Banaras Hindu University
- Varanasi-221 005
| |
Collapse
|
22
|
Wang R, Chai WM, Yang Q, Wei MK, Peng Y. 2-(4-Fluorophenyl)-quinazolin-4(3H)-one as a novel tyrosinase inhibitor: Synthesis, inhibitory activity, and mechanism. Bioorg Med Chem 2016; 24:4620-4625. [PMID: 27527415 DOI: 10.1016/j.bmc.2016.07.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 01/12/2023]
Abstract
2-(4-Fluorophenyl)-quinazolin-4(3H)-one (FQ) was synthesized, and its structure was identified with (1)H nuclear magnetic resonance ((1)H NMR), (13)C nuclear magnetic resonance ((13)C NMR), fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry (HRMS). From the enzyme analysis, the results showed that it could inhibit the diphenolase activity of tyrosinase (IC50=120±2μM). Furthermore, the results of kinetic studies showed that the compound was a reversible mixed-type inhibitor, and that the inhibition constants were determined to be 703.2 (KI) and 222.1μM (KIS). The results of fluorescence quenching experiment showed that the compound could interact with tyrosinase and the substrates (tyrosine and l-DOPA). Molecular docking analysis revealed that the mass transfer rate was affected by FQ blocking the enzyme catalytic center. In brief, current study identified a novel tyrosinase inhibitor which deserved further study for hyperpigmentation drugs.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wei-Ming Chai
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Key Laboratory of Green Chemistry, Nanchang, Jiangxi 330022, China.
| | - Qin Yang
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Key Laboratory of Green Chemistry, Nanchang, Jiangxi 330022, China
| | - Man-Kun Wei
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yiyuan Peng
- Key Laboratory of Small Fuctional Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; Key Laboratory of Green Chemistry, Nanchang, Jiangxi 330022, China.
| |
Collapse
|
23
|
Ullah S, Son S, Yun HY, Kim DH, Chun P, Moon HR. Tyrosinase inhibitors: a patent review (2011-2015). Expert Opin Ther Pat 2016; 26:347-62. [DOI: 10.1517/13543776.2016.1146253] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|