1
|
Yildirim O, Barman D, Chung M, Stone S, Geißen R, Boby ML, Sherborne BS, Tan DS. Design and synthesis of a library of C8-substituted sulfamidoadenosines to probe bacterial permeability. Bioorg Med Chem Lett 2024; 110:129844. [PMID: 38851357 PMCID: PMC11361631 DOI: 10.1016/j.bmcl.2024.129844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Gram-negative bacteria pose a major challenge in antibiotic drug discovery because their cell envelope presents a permeability barrier that affords high intrinsic resistance to small-molecule drugs. The identification of correlations between chemical structure and Gram-negative permeability would thus enable development of predictive tools to facilitate antibiotic discovery. Toward this end, have advanced a library design paradigm in which various chemical scaffolds are functionalized at different regioisomeric positions using a uniform reagent set. This design enables decoupling of scaffold, regiochemistry, and substituent effects upon Gram-negative permeability of these molecules. Building upon our recent synthesis of a library of C2-substituted sulfamidoadenosines, we have now developed an efficient synthetic route to an analogous library of regioisomeric C8-substituted congeners. The C8 library samples a region of antibiotic-relevant chemical space that is similar to that addressed by the C2 library, but distinct from that sampled by a library of analogously substituted oxazolidinones. Selected molecules were tested for accumulation in Escherichia coli in a pilot analysis, setting the stage for full comparative evaluation of these libraries in the future.
Collapse
Affiliation(s)
- Okan Yildirim
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Dipti Barman
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mia Chung
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Samantha Stone
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Raphael Geißen
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Doctoral Program, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Melissa L Boby
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Graduate School, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Graduate School, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
2
|
Verma A, Naik B, Kumar V, Mishra S, Choudhary M, Khan JM, Gupta AK, Pandey P, Rustagi S, Kakati B, Gupta S. Revolutionizing Tuberculosis Treatment: Uncovering New Drugs and Breakthrough Inhibitors to Combat Drug-Resistant Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2369-2385. [PMID: 37944023 DOI: 10.1021/acsinfecdis.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, UP, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchur 788011, Assam, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, U.K., India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| |
Collapse
|
3
|
Kumar G, Adhikrao PA. Targeting Mycobacterium tuberculosis iron-scavenging tools: a recent update on siderophores inhibitors. RSC Med Chem 2023; 14:1885-1913. [PMID: 37859726 PMCID: PMC10583813 DOI: 10.1039/d3md00201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 10/21/2023] Open
Abstract
Among the various bacterial infections, tuberculosis (TB) remains a life-threatening infectious disease responsible as the most significant cause of mortality and morbidity worldwide. The co-infection of human immunodeficiency virus (HIV) in association with TB burdens the healthcare system substantially. Notably, M.tb possesses defence against most antitubercular antibiotic drugs, and the efficacy of existing frontline anti-TB drugs is waning. Also, new and recurring cases of TB from resistant bacteria such as multidrug-resistant TB (MDR), extensively drug-resistant TB (XDR), and totally drug-resistant TB (TDR) strains are increasing. Hence, TB begs the scientific community to explore the new therapeutic class of compounds with their novel mechanism. M.tb requires iron from host cells to sustain, grow, and carry out several biological processes. M.tb has developed strategic methods of acquiring iron from the surrounding environment. In this communication, we discuss an overview of M.tb iron-scavenging tools. Also, we have summarized recently identified MbtA and MbtI inhibitors, which prevent M.tb from scavenging iron. These iron-scavenging tool inhibitors have the potential to be developed as anti-TB agents/drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| | - Patil Amruta Adhikrao
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad (NIPER-Hyderabad) Balanagar Hyderabad 500037 India
| |
Collapse
|
4
|
Cole MS, Howe MD, Buonomo JA, Sharma S, Lamont EA, Brody SI, Mishra NK, Minato Y, Thiede JM, Baughn AD, Aldrich CC. Cephem-Pyrazinoic Acid Conjugates: Circumventing Resistance in Mycobacterium tuberculosis. Chemistry 2022; 28:e202200995. [PMID: 35697660 PMCID: PMC9474573 DOI: 10.1002/chem.202200995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 01/14/2023]
Abstract
Tuberculosis (TB) is a leading source of infectious disease mortality globally. Antibiotic-resistant strains comprise an estimated 10 % of new TB cases and present an urgent need for novel therapeutics. β-lactam antibiotics have traditionally been ineffective against M. tuberculosis (Mtb), the causative agent of TB, due to the organism's inherent expression of β-lactamases that destroy the electrophilic β-lactam warhead. We have developed novel β-lactam conjugates, which exploit this inherent β-lactamase activity to achieve selective release of pyrazinoic acid (POA), the active form of a first-line TB drug. These conjugates are selectively active against M. tuberculosis and related mycobacteria, and activity is retained or even potentiated in multiple resistant strains and models. Preliminary mechanistic investigations suggest that both the POA "warhead" as well as the β-lactam "promoiety" contribute to the observed activity, demonstrating a codrug strategy with important implications for future TB therapy.
Collapse
Affiliation(s)
- Malcolm S. Cole
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| | - Michael D. Howe
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
| | - Joseph A. Buonomo
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| | - Sachin Sharma
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| | - Elise A. Lamont
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
| | - Scott I. Brody
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| | - Neeraj K. Mishra
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
- Department of BiotechnologyGandhi Institute of Technology and Management (GITAM) School of ScienceDeemed to be UniversityGandhi nagarRushikonda, Visakhapatnam-530045Andhra PradeshIndia
| | - Yusuke Minato
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
- Department of MicrobiologyFujita Health University School of Medicine1-98 Dengakugakubo, Kutsukake-choToyoakeAichi 470-1192Japan
| | - Joshua M. Thiede
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
| | - Anthony D. Baughn
- Department of Microbiology, ImmunologyUniversity of Minnesota Medical School689 23 Ave SEMinneapolisMinnesota 55455USA
| | - Courtney C. Aldrich
- Department of Medicinal ChemistryUniversity of Minnesota308 Harvard St SEMinneapolisMinnesota 55455USA
| |
Collapse
|
5
|
Alexandrova LA, Khandazhinskaya AL, Matyugina ES, Makarov DA, Kochetkov SN. Analogues of Pyrimidine Nucleosides as Mycobacteria Growth Inhibitors. Microorganisms 2022; 10:microorganisms10071299. [PMID: 35889017 PMCID: PMC9322969 DOI: 10.3390/microorganisms10071299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/25/2023] Open
Abstract
Tuberculosis (TB) is the oldest human infection disease. Mortality from TB significantly decreased in the 20th century, because of vaccination and the widespread use of antibiotics. However, about a third of the world’s population is currently infected with Mycobacterium tuberculosis (Mtb) and the death rate from TB is about 1.4–2 million people per year. In the second half of the 20th century, new extensively multidrug-resistant strains of Mtb were identified, which are steadily increasing among TB patients. Therefore, there is an urgent need to develop new anti-TB drugs, which remains one of the priorities of pharmacology and medicinal chemistry. The antimycobacterial activity of nucleoside derivatives and analogues was revealed not so long ago, and a lot of studies on their antibacterial properties have been published. Despite the fact that there are no clinically used drugs based on nucleoside analogues, some progress has been made in this area. This review summarizes current research in the field of the design and study of inhibitors of mycobacteria, primarily Mtb.
Collapse
|
6
|
Parameterization and Application of the General Amber Force Field to Model Fluoro Substituted Furanose Moieties and Nucleosides. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092616. [PMID: 35565967 PMCID: PMC9101125 DOI: 10.3390/molecules27092616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022]
Abstract
Molecular mechanics force field calculations have historically shown significant limitations in modeling the energetic and conformational interconversions of highly substituted furanose rings. This is primarily due to the gauche effect that is not easily captured using pairwise energy potentials. In this study, we present a refinement to the set of torsional parameters in the General Amber Force Field (gaff) used to calculate the potential energy of mono, di-, and gem-fluorinated nucleosides. The parameters were optimized to reproduce the pseudorotation phase angle and relative energies of a diverse set of mono- and difluoro substituted furanose ring systems using quantum mechanics umbrella sampling techniques available in the IpolQ engine in the Amber suite of programs. The parameters were developed to be internally consistent with the gaff force field and the TIP3P water model. The new set of angle and dihedral parameters and partial charges were validated by comparing the calculated phase angle probability to those obtained from experimental nuclear magnetic resonance experiments.
Collapse
|
7
|
Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131473] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Shyam M, Shilkar D, Verma H, Dev A, Sinha BN, Brucoli F, Bhakta S, Jayaprakash V. The Mycobactin Biosynthesis Pathway: A Prospective Therapeutic Target in the Battle against Tuberculosis. J Med Chem 2020; 64:71-100. [PMID: 33372516 DOI: 10.1021/acs.jmedchem.0c01176] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The alarming rise in drug-resistant clinical cases of tuberculosis (TB) has necessitated the rapid development of newer chemotherapeutic agents with novel mechanisms of action. The mycobactin biosynthesis pathway, conserved only among the mycolata family of actinobacteria, a group of intracellularly surviving bacterial pathogens that includes Mycobacterium tuberculosis, generates a salicyl-capped peptide mycobactin under iron-stress conditions in host macrophages to support the iron demands of the pathogen. This in vivo essentiality makes this less explored mycobactin biosynthesis pathway a promising endogenous target for novel lead-compounds discovery. In this Perspective, we have provided an up-to-date account of drug discovery efforts targeting selected enzymes (MbtI, MbtA, MbtM, and PPTase) from the mbt gene cluster (mbtA-mbtN). Furthermore, a succinct discussion on non-specific mycobactin biosynthesis inhibitors and the Trojan horse approach adopted to impair iron metabolism in mycobacteria has also been included in this Perspective.
Collapse
Affiliation(s)
- Mousumi Shyam
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Harshita Verma
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Abhimanyu Dev
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester LE1 9BH, U.K
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, U.K
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 Jharkhand, India
| |
Collapse
|
9
|
Alexander EM, Kreitler DF, Guidolin V, Hurben AK, Drake E, Villalta PW, Balbo S, Gulick AM, Aldrich CC. Biosynthesis, Mechanism of Action, and Inhibition of the Enterotoxin Tilimycin Produced by the Opportunistic Pathogen Klebsiella oxytoca. ACS Infect Dis 2020; 6:1976-1997. [PMID: 32485104 PMCID: PMC7354218 DOI: 10.1021/acsinfecdis.0c00326] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tilimycin is an enterotoxin produced by the opportunistic pathogen Klebsiella oxytoca that causes antibiotic-associated hemorrhagic colitis (AAHC). This pyrrolobenzodiazepine (PBD) natural product is synthesized by a bimodular nonribosomal peptide synthetase (NRPS) pathway composed of three proteins: NpsA, ThdA, and NpsB. We describe the functional and structural characterization of the fully reconstituted NRPS system and report the steady-state kinetic analysis of all natural substrates and cofactors as well as the structural characterization of both NpsA and ThdA. The mechanism of action of tilimycin was confirmed using DNA adductomics techniques through the detection of putative N-2 guanine alkylation after tilimycin exposure to eukaryotic cells, providing the first structural characterization of a PBD-DNA adduct formed in cells. Finally, we report the rational design of small-molecule inhibitors that block tilimycin biosynthesis in whole cell K. oxytoca (IC50 = 29 ± 4 μM) through the inhibition of NpsA (KD = 29 ± 4 nM).
Collapse
Affiliation(s)
- Evan M. Alexander
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Dale F. Kreitler
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Valeria Guidolin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alexander K. Hurben
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Eric Drake
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Peter W. Villalta
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences University at Buffalo, Buffalo, New York 14203, USA
| | - Courtney C. Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
10
|
Gram-scale preparation of the antibiotic lead compound salicyl-AMS, a potent inhibitor of bacterial salicylate adenylation enzymes. Methods Enzymol 2020. [PMID: 32416922 DOI: 10.1016/bs.mie.2020.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Salicyl-AMS (1) is a potent inhibitor of salicylate adenylation enzymes used in bacterial siderophore biosynthesis and a promising lead compound for the treatment of tuberculosis. An optimized, multigram synthesis is presented, which provides salicyl-AMS as its sodium salt (1·Na) in three synthetic steps followed by a two-step salt formation process. The synthesis proceeds in 11.6% overall yield from commercially available adenosine 2',3'-acetonide and provides highly purified material.
Collapse
|
11
|
Lux MC, Standke LC, Tan DS. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. J Antibiot (Tokyo) 2019; 72:325-349. [PMID: 30982830 PMCID: PMC6594144 DOI: 10.1038/s41429-019-0171-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
Adenylate-forming enzymes are a mechanistic superfamily that are involved in diverse biochemical pathways. They catalyze ATP-dependent activation of carboxylic acid substrates as reactive acyl adenylate (acyl-AMP) intermediates and subsequent coupling to various nucleophiles to generate ester, thioester, and amide products. Inspired by natural products, acyl sulfonyladenosines (acyl-AMS) that mimic the tightly bound acyl-AMP reaction intermediates have been developed as potent inhibitors of adenylate-forming enzymes. This simple yet powerful inhibitor design platform has provided a wide range of biological probes as well as several therapeutic lead compounds. Herein, we provide an overview of the nine structural classes of adenylate-forming enzymes and examples of acyl-AMS inhibitors that have been developed for each.
Collapse
Affiliation(s)
- Michaelyn C Lux
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Lisa C Standke
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Derek S Tan
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Sloan Kettering Institute, and Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Bythrow GV, Mohandas P, Guney T, Standke LC, Germain GA, Lu X, Ji C, Levendosky K, Chavadi SS, Tan DS, Quadri LEN. Kinetic Analyses of the Siderophore Biosynthesis Inhibitor Salicyl-AMS and Analogues as MbtA Inhibitors and Antimycobacterial Agents. Biochemistry 2019; 58:833-847. [PMID: 30582694 DOI: 10.1021/acs.biochem.8b01153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a paramount need for expanding the drug armamentarium to counter the growing problem of drug-resistant tuberculosis. Salicyl-AMS, an inhibitor of salicylic acid adenylation enzymes, is a first-in-class antibacterial lead compound for the development of tuberculosis drugs targeting the biosynthesis of salicylic-acid-derived siderophores. In this study, we determined the Ki of salicyl-AMS for inhibition of the salicylic acid adenylation enzyme MbtA from Mycobacterium tuberculosis (MbtAtb), designed and synthesized two new salicyl-AMS analogues to probe structure-activity relationships (SAR), and characterized these two analogues alongside salicyl-AMS and six previously reported analogues in biochemical and cell-based studies. The biochemical studies included determination of kinetic parameters ( Kiapp, konapp, koff, and tR) and analysis of the mechanism of inhibition. For these studies, we optimized production and purification of recombinant MbtAtb, for which Km and kcat values were determined, and used the enzyme in conjunction with an MbtAtb-optimized, continuous, spectrophotometric assay for MbtA activity and inhibition. The cell-based studies provided an assessment of the antimycobacterial activity and postantibiotic effect of the nine MbtAtb inhibitors. The antimycobacterial properties were evaluated using a strain of nonpathogenic, fast-growing Mycobacterium smegmatis that was genetically engineered for MbtAtb-dependent susceptibility to MbtA inhibitors. This convenient model system greatly facilitated the cell-based studies by bypassing the methodological complexities associated with the use of pathogenic, slow-growing M. tuberculosis. Collectively, these studies provide new information on the mechanism of inhibition of MbtAtb by salicyl-AMS and eight analogues, afford new SAR insights for these inhibitors, and highlight several suitable candidates for future preclinical evaluation.
Collapse
Affiliation(s)
- Glennon V Bythrow
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Poornima Mohandas
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Tezcan Guney
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Lisa C Standke
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Gabrielle A Germain
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Xuequan Lu
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Cheng Ji
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Keith Levendosky
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| | - Sivagami Sundaram Chavadi
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States
| | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States.,Pharmacology Program, Weill Cornell Graduate School of Medical Sciences , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States.,Tri-Institutional Research Program , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , New York 10065 , United States
| | - Luis E N Quadri
- Department of Biology, Brooklyn College , City University of New York , 2900 Bedford Avenue , Brooklyn , New York 11210 , United States.,Biology Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States.,Biochemistry Program, Graduate Center , City University of New York , 365 Fifth Avenue , New York , New York 10016 , United States
| |
Collapse
|
13
|
Khandazhinskaya AL, Alexandrova LA, Matyugina ES, Solyev PN, Efremenkova OV, Buckheit KW, Wilkinson M, Buckheit RW, Chernousova LN, Smirnova TG, Andreevskaya SN, Leonova OG, Popenko VI, Kochetkov SN, Seley-Radtke KL. Novel 5'-Norcarbocyclic Pyrimidine Derivatives as Antibacterial Agents. Molecules 2018; 23:E3069. [PMID: 30477147 PMCID: PMC6321083 DOI: 10.3390/molecules23123069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 11/16/2022] Open
Abstract
A series of novel 5'-norcarbocyclic derivatives of 5-alkoxymethyl or 5-alkyltriazolyl-methyl uracil were synthesized and the activity of the compounds evaluated against both Gram-positive and Gram-negative bacteria. The growth of Mycobacterium smegmatis was completely inhibited by the most active compounds at a MIC99 of 67 μg/mL (mc²155) and a MIC99 of 6.7⁻67 μg/mL (VKPM Ac 1339). Several compounds also showed the ability to inhibit the growth of attenuated strains of Mycobacterium tuberculosis ATCC 25177 (MIC99 28⁻61 μg/mL) and Mycobacterium bovis ATCC 35737 (MIC99 50⁻60 μg/mL), as well as two virulent strains of M. tuberculosis; a laboratory strain H37Rv (MIC99 20⁻50 μg/mL) and a clinical strain with multiple drug resistance MS-115 (MIC99 20⁻50 μg/mL). Transmission electron microscopy (TEM) evaluation of M. tuberculosis H37Rv bacterial cells treated with one of the compounds demonstrated destruction of the bacterial cell wall, suggesting that the mechanism of action for these compounds may be related to their interactions with bacteria cell walls.
Collapse
Affiliation(s)
- Anastasia L Khandazhinskaya
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Liudmila A Alexandrova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Elena S Matyugina
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Pavel N Solyev
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Olga V Efremenkova
- Gause Institute of New Antibiotics, 11 Bol'shaya Pirogovskaya St., Moscow 119021, Russia.
| | - Karen W Buckheit
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA.
| | - Maggie Wilkinson
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA.
| | - Robert W Buckheit
- ImQuest BioSciences, 7340 Executive Way Suite R, Frederick, MD 21704, USA.
| | - Larisa N Chernousova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia.
| | - Tatiana G Smirnova
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia.
| | - Sofya N Andreevskaya
- Central Tuberculosis Research Institute, 2 Yauzskaya Alley, Moscow 107564, Russia.
| | - Olga G Leonova
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Vladimir I Popenko
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia.
| | - Katherine L Seley-Radtke
- Department of Chemistry & Biochemistry, University of Maryland, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| |
Collapse
|
14
|
Patel K, Butala S, Khan T, Suvarna V, Sherje A, Dravyakar B. Mycobacterial siderophore: A review on chemistry and biology of siderophore and its potential as a target for tuberculosis. Eur J Med Chem 2018; 157:783-790. [PMID: 30142615 DOI: 10.1016/j.ejmech.2018.08.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 10/28/2022]
Abstract
Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis is known to secrete low molecular mass compounds called siderophores especially under low iron conditions to chelate iron from host environment. Iron is essential for growth and other essential processes to sustain life of the bacterium in the host. Hence targeting siderophore is considered to be an alternative approach to prevent further virulence of bacterium into the host. This review article presents classification of siderophores, their role in transporting iron into the tubercular cell, biosynthesis of mycobactins, viability of siderophore as a therapeutic target and also focuses on overview on various approaches to target siderophore. The approaches encompass mutation effect on genes involved in siderophore recycling, synthetic as well as natural compounds that can inhibit further spread of bacterium by targeting siderophore.
Collapse
Affiliation(s)
- Kavitkumar Patel
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India.
| | - Sahil Butala
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Atul Sherje
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| | - Bhushan Dravyakar
- Department of Pharmaceutical Chemistry, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, 400 056, India
| |
Collapse
|
15
|
Gruzdev DA, Musiyak VV, Levit GL, Krasnov VP, Charushin VN. Purine derivatives with antituberculosis activity. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4772] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The review summarizes the data published over the last 10 – 15 years concerning the key groups of purine derivatives with antituberculosis activity. The structures of purines containing heteroatoms (S, O, N), fragments of heterocycles, amino acids and peptides, in the 6-position, as well as of purine nucleosides are presented. The possible targets for the action of such compounds and structure – activity relationship are discussed. Particular attention is paid to the most active compounds, which are of considerable interest as a basis for the development of efficient antituberculosis drugs.
The bibliography includes 99 references.
Collapse
|
16
|
Abstract
After decades of relative inactivity, a large increase in efforts to discover antitubercular therapeutics has brought insights into the biology of Mycobacterium tuberculosis (Mtb) and promising new drugs such as bedaquiline, which inhibits ATP synthase, and the nitroimidazoles delamanid and pretomanid, which inhibit both mycolic acid synthesis and energy production. Despite these advances, the drug discovery pipeline remains underpopulated. The field desperately needs compounds with novel mechanisms of action capable of inhibiting multi- and extensively drug -resistant Mtb (M/XDR-TB) and, potentially, nonreplicating Mtb with the hope of shortening the duration of required therapy. New knowledge about Mtb, along with new methods and technologies, has driven exploration into novel target areas, such as energy production and central metabolism, that diverge from the classical targets in macromolecular synthesis. Here, we review new small molecule drug candidates that act on these novel targets to highlight the methods and perspectives advancing the field. These new targets bring with them the aspiration of shortening treatment duration as well as a pipeline of effective regimens against XDR-TB, positioning Mtb drug discovery to become a model for anti-infective discovery.
Collapse
Affiliation(s)
- Samantha Wellington
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Deborah T. Hung
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| |
Collapse
|
17
|
Fan YL, Jin XH, Huang ZP, Yu HF, Zeng ZG, Gao T, Feng LS. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 2018; 150:347-365. [PMID: 29544148 DOI: 10.1016/j.ejmech.2018.03.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Tuberculosis still remains one of the most common, communicable, and leading deadliest diseases known to mankind throughout the world. Drug-resistance in Mycobacterium tuberculosis which threatens to worsen the global tuberculosis epidemic has caused great concern in recent years. To overcome the resistance, the development of new drugs with novel mechanisms of actions is of great importance. Imidazole-containing derivatives endow with various biological properties, and some of them demonstrated excellent anti-tubercular activity. As the most emblematic example, 4-nitroimidazole delamanid has already received approval for treatment of multidrug-resistant tuberculosis infected patients. Thus, imidazole-containing derivatives have caused great interests in discovery of new anti-tubercular agents. Numerous of imidazole-containing derivatives were synthesized and screened for their in vitro and in vivo anti-mycobacterial activities against both drug-sensitive and drug-resistant Mycobacterium tuberculosis pathogens. This review aims to outline the recent advances of imidazole-containing derivatives as anti-tubercular agents, and summarize the structure-activity relationship of these derivatives. The enriched structure-activity relationship may pave the way for the further rational development of imidazole-containing derivatives as anti-tubercular agents.
Collapse
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Xiao-Hong Jin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhong-Ping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China.
| | - Hai-Feng Yu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Tao Gao
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China
| |
Collapse
|
18
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemical and Biological Aspects of Nutritional Immunity-Perspectives for New Anti-Infectives that Target Iron Uptake Systems. Angew Chem Int Ed Engl 2017; 56:14360-14382. [PMID: 28439959 DOI: 10.1002/anie.201701586] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 12/22/2022]
Abstract
Upon bacterial infection, one of the defense mechanisms of the host is the withdrawal of essential metal ions, in particular iron, which leads to "nutritional immunity". However, bacteria have evolved strategies to overcome iron starvation, for example, by stealing iron from the host or other bacteria through specific iron chelators with high binding affinity. Fortunately, these complex interactions between the host and pathogen that lead to metal homeostasis provide several opportunities for interception and, thus, allow the development of novel antibacterial compounds. This Review focuses on iron, discusses recent highlights, and gives some future perspectives which are relevant in the fight against antibiotic resistance.
Collapse
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening, Helmholtz Zentrum für Infektionsforschung, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Joshua A V Blodgett
- Department of Biology, Washington University, St. Louis, MO, 63130-4899, USA
| | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, I-20133, Milano, Italy
| | - Sabine Laschat
- Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 7, 0569, Stuttgart, Germany
| | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Rainer Schobert
- Organische Chemie I, Universität Bayreuth, Universitätsstrasse 30, 95447, Bayreuth, Germany
| |
Collapse
|
19
|
Bilitewski U, Blodgett JAV, Duhme-Klair AK, Dallavalle S, Laschat S, Routledge A, Schobert R. Chemische und biologische Aspekte von “Nutritional Immunity” - Perspektiven für neue Antiinfektiva mit Fokus auf bakterielle Eisenaufnahmesysteme. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701586] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ursula Bilitewski
- AG Compound Profiling and Screening; Helmholtz-Zentrum für Infektionsforschung; Inhoffenstraße 7 38124 Braunschweig Deutschland
| | | | | | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences; Università degli Studi di Milano; I-20133 Milano Italien
| | - Sabine Laschat
- Institut für Organische Chemie; Universität Stuttgart; Pfaffenwaldring 55, 7 0569 Stuttgart Deutschland
| | - Anne Routledge
- Department of Chemistry; University of York, Heslington; York YO10 5DD Großbritannien
| | - Rainer Schobert
- Organische Chemie I; Universität Bayreuth; Universitätsstraße 30 95447 Bayreuth Deutschland
| |
Collapse
|
20
|
Liu T, Xie W, Li C, Ren H, Mao Y, Chen G, Cheng M, Zhao D, Shen J, Li J, Zhou Y, Xiong B, Chen YL. Preparation of 5'-deoxy-5'-amino-5'-C-methyl adenosine derivatives and their activity against DOT1L. Bioorg Med Chem Lett 2017; 27:4960-4963. [PMID: 29050780 DOI: 10.1016/j.bmcl.2017.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022]
Abstract
From a readily available 5-C-Me ribofuranoside, we have realized a reliable route to valuable 5'-deoxy-5'-amino-5'-C-methyl adenosine derivatives at gram scale with confirmed stereochemistry. These adenosine derivatives are useful starting materials for the preparation of 5'-deoxy-5'-amino-5'-C-methyl adenosine derivatives with higher complexity. From one of the new adenosine derivatives, some 5'-deoxy-5'-amino-5'-C-methyl adenosine DOT1L inhibitors were prepared in several steps. Data from DOT1L assay indicated that additional 5'-C-Me group improved the enzyme inhibitory activity.
Collapse
Affiliation(s)
- Tongchao Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Lu, Shenyang 110016, PR China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Wuchen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Cong Li
- The National Center for Drug Screening, 189 Guoshoujing Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Huanming Ren
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Yudong Mao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China
| | - Guohua Chen
- School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, PR China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Lu, Shenyang 110016, PR China
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Lu, Shenyang 110016, PR China
| | - Jingkang Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Jia Li
- The National Center for Drug Screening, 189 Guoshoujing Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China
| | - Yubo Zhou
- The National Center for Drug Screening, 189 Guoshoujing Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| | - Bing Xiong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| | - Yue-Lei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
21
|
New prodrugs against tuberculosis. Drug Discov Today 2017; 22:519-525. [DOI: 10.1016/j.drudis.2016.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/30/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022]
|