1
|
Ganesh BH, Raj AG, Aruchamy B, Nanjan P, Drago C, Ramani P. Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure-Activity Relationship. ChemMedChem 2024; 19:e202300447. [PMID: 37926686 DOI: 10.1002/cmdc.202300447] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023]
Abstract
An overview of pyrroles as distinct scaffolds with therapeutic potential and the significance of pyrrole derivatives for drug development are provided in this article. It lists instances of naturally occurring pyrrole-containing compounds and describes the sources of pyrroles in nature, including plants and microbes. It also explains the many conventional and modern synthetic methods used to produce pyrroles. The key topics are the biological characteristics, pharmacological behavior, and functional alterations displayed by pyrrole derivatives. It also details how pyrroles are used to treat infectious diseases. It describes infectious disorders resistant to standard treatments and discusses the function of compounds containing pyrroles in combating infectious diseases. Furthermore, the review covers the uses of pyrrole derivatives in treating non-infectious diseases and resistance mechanisms in non-infectious illnesses like cancer, diabetes, and Alzheimer's and Parkinson's diseases. The important discoveries and probable avenues for pyrrole research are finally summarized, along with their significance for medicinal chemists and drug development. A reference from the last two decades is included in this review.
Collapse
Affiliation(s)
- Bharathi Hassan Ganesh
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Anirudh G Raj
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Baladhandapani Aruchamy
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Pandurangan Nanjan
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| | - Carmelo Drago
- Institute of Biomolecular Chemistry CNR, via Paolo Gaifami 18, 95126, Catania, Italy
| | - Prasanna Ramani
- Dhanvanthri Laboratory, Department of Sciences, Amrita School of Physical Sciences, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
- Center of Excellence in Advanced Materials & Green Technologies (CoE-AMGT), Amrita School of Engineering, Coimbatore, 641112, Amrita Vishwa Vidyapeetham, India
| |
Collapse
|
2
|
Prabhakar PK, Batiha GES. Potential Therapeutic Targets for the Management of Diabetes Mellitus Type 2. Curr Med Chem 2024; 31:3167-3181. [PMID: 37125833 DOI: 10.2174/0929867330666230501172557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 03/26/2023] [Indexed: 05/02/2023]
Abstract
Diabetes is one of the lifelong chronic metabolic diseases which is prevalent globally. There is a continuous rise in the number of people suffering from this disease with time. It is characterized by hyperglycemia, which leads to severe damage to the body's system, such as blood vessels and nerves. Diabetes occurs due to the dysfunction of pancreatic β -cell which leads to the reduction in the production of insulin or body cells unable to use insulin produce efficiently. As per the data shared International diabetes federation (IDF), there are around 415 million affected by this disease worldwide. There are a number of hit targets available that can be focused on treating diabetes. There are many drugs available and still under development for the treatment of type 2 diabetes. Inhibition of gluconeogenesis, lipolysis, fatty acid oxidation, and glucokinase activator is emerging targets for type 2 diabetes treatment. Diabetes management can be supplemented with drug intervention for obesity. The antidiabetic drug sale is the second-largest in the world, trailing only that of cancer. The future of managing diabetes will be guided by research on various novel targets and the development of various therapeutic leads, such as GLP-1 agonists, DPP-IV inhibitors, and SGLT2 inhibitors that have recently completed their different phases of clinical trials. Among these therapeutic targets associated with type 2 diabetes, this review focused on some common therapeutic targets for developing novel drug candidates of the newer generation with better safety and efficacy.
Collapse
Affiliation(s)
- Pranav Kumar Prabhakar
- Division of Research and Development, Lovely Professional University, Phagwara (Punjab) 144411, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| |
Collapse
|
3
|
Barghi Lish A, Foroumadi A, Kolvari E, Safari F. Synthesis and Biological Evaluation of 12-Aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3- d]pyridazine-8(9 H)-one Derivatives as Potential Cytotoxic Agents. ACS OMEGA 2023; 8:42212-42224. [PMID: 38024677 PMCID: PMC10653054 DOI: 10.1021/acsomega.3c04167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
In the present paper, a facile and efficient synthetic procedure has been applied to obtain dihydrodipyrrolo[1,2-a:2',1'-c]pyrazine-2,3-dicarboxylates (5a-s), which have subsequently gone through the cyclization in the presence of hydrazine hydrate to afford 12-aryl-11-hydroxy-5,6-dihydropyrrolo[2″,1″:3',4']pyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine-8(9H)-ones (7a-q). The molecular structures of these novel compounds were extensively examined through the analysis of spectroscopic data in combination with X-ray crystallography techniques. Following that, the in vitro cytotoxic activities of all derivatives against three human cancer cell lines (Panc-1, PC3, and MDA-MB-231) were comprehensively evaluated alongside the assessment on normal human dermal fibroblast (HDF) cells using the MTT assay. Among the compounds, the 3-nitrophenyl derivative (7m) from the second series showed the best antiproliferative activity against all tested cell lines, particularly against Panc-1 cell line, (IC50 = 12.54 μM), being nearly twice as potent as the standard drug etoposide. The induction of apoptosis and sub-G1 cell cycle arrest in Panc-1 cancer cells by compound 7m was confirmed through further assessment. Moreover, the inhibition of kinases and the induction of cellular apoptosis by compound 7m in Panc-1 cancer cells were validated using the Western blotting assay.
Collapse
Affiliation(s)
- Azam Barghi Lish
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Alireza Foroumadi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran1417614411, Iran
- Drug
Design and Development Research Center, The Institute of Pharmaceutical
Sciences (TIPS), Tehran University of Medical
Sciences, Tehran 1417614411, Iran
| | - Eskandar Kolvari
- Department
of Chemistry, Semnan University, Semnan 35351-19111, Iran
| | - Fatemeh Safari
- Department
of Biology, Faculty of Science, University
of Guilan, Rasht 4193833697, Iran
| |
Collapse
|
4
|
Zhou Z, Cai Z, Zhang C, Yang B, Chen L, He Y, Zhang L, Li Z. Design, synthesis, and biological evaluation of novel dual FFA1 and PPARδ agonists possessing phenoxyacetic acid scaffold. Bioorg Med Chem 2022; 56:116615. [PMID: 35051813 DOI: 10.1016/j.bmc.2022.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 11/11/2022]
Abstract
The free fatty acid receptor 1 (FFA1/GPR40) and peroxisome proliferator-activated receptor δ (PPARδ) have been widely considered as promising targets for type 2 diabetes mellitus (T2DM) due to their respective roles in promoting insulin secretion and improving insulin sensitivity. Hence, the dual FFA1/PPARδ agonists may exert synergistic effects by simultaneously activating FFA1 and PPARδ. The present study performed systematic exploration around previously reported FFA1 agonist 2-(2-fluoro-4-((2'-methyl-4'-(3-(methylsulfonyl)propoxy)-[1,1'-biphenyl]-3-yl)methoxy)phenoxy)acetic acid (lead compound), leading to the identification of a novel dual FFA1/PPARδ agonist 2-(2-fluoro-4-((3-(6-methoxynaphthalen-2-yl)benzyl)oxy)phenoxy)acetic acid (the optimal compound), which displayed high selectivity over PPARα and PPARγ. In addition, the docking study provided us with detailed binding modes of the optimal compound in FFA1 and PPARδ. Furthermore, the optimal compound exhibited greater glucose-lowering effects than lead compound, which might attribute to its synergistic effects by simultaneously modulating insulin secretion and resistance. Moreover, the optimal compound has an acceptable safety profile in the acute toxicity study at a high dose of 500 mg/kg Therefore, our results provided a novel dual FFA1/PPARδ agonist with excellent glucose-lowering effects in vivo.
Collapse
Affiliation(s)
- Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zongyu Cai
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Congzi Zhang
- Xianning Central Hospital, The First Affiliated Hospital of Hubei University Of Science And Technology, Xianning 437000, PR China
| | - Benhui Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lianru Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yepu He
- Xianning Central Hospital, The First Affiliated Hospital of Hubei University Of Science And Technology, Xianning 437000, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; National Key Clinical Department (Clinical Pharmacy), The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Cabrera N, Cuesta SA, Mora JR, Calle L, Márquez EA, Kaunas R, Paz JL. In Silico Searching for Alternative Lead Compounds to Treat Type 2 Diabetes through a QSAR and Molecular Dynamics Study. Pharmaceutics 2022; 14:232. [PMID: 35213965 PMCID: PMC8879932 DOI: 10.3390/pharmaceutics14020232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
Free fatty acid receptor 1 (FFA1) stimulates insulin secretion in pancreatic β-cells. An advantage of therapies that target FFA1 is their reduced risk of hypoglycemia relative to common type 2 diabetes treatments. In this work, quantitative structure-activity relationship (QSAR) approach was used to construct models to identify possible FFA1 agonists by applying four different machine-learning algorithms. The best model (M2) meets the Tropsha's test requirements and has the statistics parameters R2 = 0.843, Q2CV = 0.785, and Q2ext = 0.855. Also, coverage of 100% of the test set based on the applicability domain analysis was obtained. Furthermore, a deep analysis based on the ADME predictions, molecular docking, and molecular dynamics simulations was performed. The lipophilicity and the residue interactions were used as relevant criteria for selecting a candidate from the screening of the DiaNat and DrugBank databases. Finally, the FDA-approved drugs bilastine, bromfenac, and fenofibric acid are suggested as potential and lead FFA1 agonists.
Collapse
Affiliation(s)
- Nicolás Cabrera
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (N.C.); (R.K.)
| | - Sebastián A. Cuesta
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK;
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y vía Interoceánica, Quito 170901, Ecuador
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y vía Interoceánica, Quito 170901, Ecuador
| | - Luis Calle
- Faculty of Pharmacy, University of Granada, 18011 Granada, Spain;
- Facultad de Ciencias Médicas, Instituto de Investigación e Innovación en Salud Integral, Universidad Católica Santiago de Guayaquil, Guayaquil 09013493, Ecuador
| | - Edgar A. Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia
| | - Roland Kaunas
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA; (N.C.); (R.K.)
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru;
| |
Collapse
|
6
|
Farwa U, Raza MA. Heterocyclic compounds as a magic bullet for diabetes mellitus: a review. RSC Adv 2022; 12:22951-22973. [PMID: 36105949 PMCID: PMC9379558 DOI: 10.1039/d2ra02697j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world. From the last two decades, the use of synthetic agents has risen due to their major involvement in curing of chronic diseases including DM. The core skeleton of drugs has been studied such as thiazolidinone, azole, chalcone, pyrrole and pyrimidine along with their derivatives. Diabetics assays have been performed in consideration of different enzymes such as α-glycosidase, α-amylase, and α-galactosidase against acarbose standard drug. The studied moieties were depicted in both models: in vivo as well as in vitro. Molecular docking of the studied compounds as antidiabetic molecules was performed with the help of Auto Dock and molecular operating environment (MOE) software. Amino acid residues Asp349, Arg312, Arg439, Asn241, Val303, Glu304, Phe158, His103, Lys422 and Thr207 that are present on the active sites of diabetic related enzymes showed interactions with ligand molecules. In this review data were organized for the synthesis of heterocyclic compounds through various routes along with their antidiabetic potential, and further studies such as pharmacokinetic and toxicology studies should be executed before going for clinical trials. Diabetes mellitus (DM) is a major metabolic disorder due to hyperglycemia, which is increasing all over the world.![]()
Collapse
Affiliation(s)
- Umme Farwa
- Department of Chemistry, University of Gujrat, Gujrat 50700, Pakistan
| | | |
Collapse
|
7
|
Rani L, Grewal AS, Sharma N, Singh S. Recent Updates on Free Fatty Acid Receptor 1 (GPR-40) Agonists for the Treatment of Type 2 Diabetes Mellitus. Mini Rev Med Chem 2021; 21:426-470. [PMID: 33100202 DOI: 10.2174/1389557520666201023141326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global incidence of type 2 diabetes mellitus (T2DM) has enthused the development of new antidiabetic targets with low toxicity and long-term stability. In this respect, free fatty acid receptor 1 (FFAR1), which is also recognized as a G protein-coupled receptor 40 (GPR40), is a novel target for the treatment of T2DM. FFAR1/GPR40 has a high level of expression in β-cells of the pancreas, and the requirement of glucose for stimulating insulin release results in immense stimulation to utilise this target in the medication of T2DM. METHODS The data used for this review is based on the search of several scienctific databases as well as various patent databases. The main search terms used were free fatty acid receptor 1, FFAR1, FFAR1 agonists, diabetes mellitus, G protein-coupled receptor 40 (GPR40), GPR40 agonists, GPR40 ligands, type 2 diabetes mellitus and T2DM. RESULTS The present review article gives a brief overview of FFAR1, its role in T2DM, recent developments in small molecule FFAR1 (GPR40) agonists reported till now, compounds of natural/plant origin, recent patents published in the last few years, mechanism of FFAR1 activation by the agonists, and clinical status of the FFAR1/GPR40 agonists. CONCLUSION The agonists of FFAR1/GRP40 showed considerable potential for the therapeutic control of T2DM. Most of the small molecule FFAR1/GPR40 agonists developed were aryl alkanoic acid derivatives (such as phenylpropionic acids, phenylacetic acids, phenoxyacetic acids, and benzofuran acetic acid derivatives) and thiazolidinediones. Some natural/plant-derived compounds, including fatty acids, sesquiterpenes, phenolic compounds, anthocyanins, isoquinoline, and indole alkaloids, were also reported as potent FFAR1 agonists. The clinical investigations of the FFAR1 agonists demonstrated their probable role in the improvement of glucose control. Though, there are some problems still to be resolved in this field as some FFAR1 agonists terminated in the late phase of clinical studies due to "hepatotoxicity." Currently, PBI-4050 is under clinical investigation by Prometic. Further investigation of pharmacophore scaffolds for FFAR1 full agonists as well as multitargeted modulators and corresponding clinical investigations will be anticipated, which can open up new directions in this area.
Collapse
Affiliation(s)
- Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
8
|
Li Z, Zhou Z, Zhang L. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): a patent review. Expert Opin Ther Pat 2019; 30:27-38. [DOI: 10.1080/13543776.2020.1698546] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Zongtao Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
- Key Laboratory of New Drug Discovery and Evaluation of ordinary universities of Guangdong province, Guangdong Pharmaceutical University, Guangzhou, PR China
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou, PR China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
9
|
Li Z, Ren Q, Wang X, Zhou Z, Hu L, Deng L, Guan L, Qiu Q. Discovery of HWL-088: A highly potent FFA1/GPR40 agonist bearing a phenoxyacetic acid scaffold. Bioorg Chem 2019; 92:103209. [DOI: 10.1016/j.bioorg.2019.103209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/16/2019] [Accepted: 08/15/2019] [Indexed: 11/16/2022]
|
10
|
Li Z, Hu L, Wang X, Zhou Z, Deng L, Xu Y, Zhang L. Design, synthesis, and biological evaluation of novel dual FFA1 (GPR40)/PPARδ agonists as potential anti-diabetic agents. Bioorg Chem 2019; 92:103254. [PMID: 31518760 DOI: 10.1016/j.bioorg.2019.103254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/05/2019] [Accepted: 09/04/2019] [Indexed: 01/07/2023]
|
11
|
Design, synthesis and anti-tumour activity of new pyrimidine-pyrrole appended triazoles. Toxicol In Vitro 2019; 60:87-96. [DOI: 10.1016/j.tiv.2019.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/18/2019] [Accepted: 05/13/2019] [Indexed: 12/17/2022]
|
12
|
Li Z, Liu C, Yang J, Zhou J, Ye Z, Feng D, Yue N, Tong J, Huang W, Qian H. Design, synthesis and biological evaluation of novel FFA1/GPR40 agonists: New breakthrough in an old scaffold. Eur J Med Chem 2019; 179:608-622. [PMID: 31279294 DOI: 10.1016/j.ejmech.2019.06.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/04/2019] [Accepted: 06/28/2019] [Indexed: 12/11/2022]
Abstract
Based on an old phenoxyacetic acid scaffold, CPU014 (compound 14) has been identified as a superior agonist by comprehensive exploration of structure-activity relationship. In vitro toxicity study suggested that CPU014 has lower risk of hepatotoxicity than TAK-875. During acute toxicity study (5-500 mg/kg), a favorable therapeutic window of CPU014 was observed by evaluation of plasma profiles and liver slices. Moreover, CPU014 promotes insulin secretion in a glucose-dependent manner, while no GLP-1 secretion has been enhanced. Other than good pharmacokinetic properties, CPU014 significantly improved glucose tolerance both in normal and diabetic models without the risk of hypoglycemia. These subversive findings provided a safer candidate CPU014, which is currently in preclinical study to assess its potential for the treatment of diabetes.
Collapse
Affiliation(s)
- Zheng Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jianyong Yang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jiaqi Zhou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiwen Ye
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Dazhi Feng
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Na Yue
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Jiayi Tong
- Zhongda Hospital, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
13
|
Li Z, Chen Y, Zhou Z, Deng L, Xu Y, Hu L, Liu B, Zhang L. Discovery of first-in-class thiazole-based dual FFA1/PPARδ agonists as potential anti-diabetic agents. Eur J Med Chem 2019; 164:352-365. [PMID: 30605833 DOI: 10.1016/j.ejmech.2018.12.069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
|
14
|
Li Z, Zhou Z, Deng F, Li Y, Zhang D, Zhang L. Design, synthesis, and biological evaluation of novel pan agonists of FFA1, PPARγ and PPARδ. Eur J Med Chem 2018; 159:267-276. [PMID: 30296685 DOI: 10.1016/j.ejmech.2018.09.071] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/17/2022]
|
15
|
Li Z, Xu X, Liu R, Deng F, Zeng X, Zhang L. Nitric oxide donor-based FFA1 agonists: Design, synthesis and biological evaluation as potential anti-diabetic and anti-thrombotic agents. Bioorg Med Chem 2018; 26:4560-4566. [DOI: 10.1016/j.bmc.2018.07.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022]
|
16
|
Structure-based design of free fatty acid receptor 1 agonists bearing non-biphenyl scaffold. Bioorg Chem 2018; 80:296-302. [PMID: 29980115 DOI: 10.1016/j.bioorg.2018.06.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/05/2018] [Accepted: 06/29/2018] [Indexed: 11/22/2022]
Abstract
The free fatty acid receptor 1 (FFA1) enhances the glucose-stimulated insulin secretion without the risk of hypoglycemia. However, most of FFA1 agonists have a common biphenyl moiety, leading to a relative deprivation in structure types. Herein, we describe the exploration of non-biphenyl scaffold based on the co-crystal structure of FFA1 to increase additional interactions with the lateral residues, which led to the identification of lead compounds 3 and 9. In induced-fit docking study, compound 3 forms an edge-on interaction with Trp150 by slightly rotating the indole ring of Trp150, and compound 9 has additional hydrogen bond and δ-π interactions with Leu135, which demonstrated the feasibility of our design strategy. Moreover, lead compounds 3 and 9 revealed improved polar surface area compared to GW9508, and have considerable hypoglycemic effects in mice. This structure-based study might inspire us to design more promising FFA1 agonists by increasing additional interactions with the residues outside of binding pocket.
Collapse
|
17
|
Liu C, Li Z, Shi W, Li H, Wang N, Dai Y, Liao C, Huang W, Qian H. Improving metabolic stability with deuterium: The discovery of HWL-066, a potent and long-acting free fatty acid receptor 1 agonists. Chem Biol Drug Des 2018; 92:1547-1554. [PMID: 29777569 DOI: 10.1111/cbdd.13321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/21/2018] [Accepted: 03/11/2018] [Indexed: 11/27/2022]
Abstract
The free fatty acid receptor 1 (FFA1) is a potential target due to its function in enhancing of glucose-stimulated insulin secretion. The FFA1 agonist GW9508 has great potential for the treatment of type 2 diabetes mellitus, but it has been suffering from high plasma clearance probably because the phenylpropanoic acid is vulnerable to β-oxidation. To identify orally available analog without influence on the unique pharmacological mechanism of GW9508, we tried to interdict the metabolically labile group by incorporating two deuterium atoms at the α-position of phenylpropionic acid affording compound 4 (HWL-066). As expected, HWL-066 revealed a lower clearance (CL = 0.23 L-1 hr-1 kg-1 ), higher maximum concentration (Cmax = 5907.47 μg/L), and longer half-life (T1/2 = 3.50 hr), resulting in a 2.8-fold higher exposure than GW9508. Moreover, the glucose-lowering effect of HWL-066 was far better than that of GW9508 and comparable with TAK-875. Different from glibenclamide, no side-effect of hypoglycemia was observed in mice after oral administrating HWL-066 (80 mg/kg).
Collapse
Affiliation(s)
- Chunxia Liu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Huilan Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Nasi Wang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuxuan Dai
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chen Liao
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| | - Hai Qian
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
18
|
Kerru N, Singh-Pillay A, Awolade P, Singh P. Current anti-diabetic agents and their molecular targets: A review. Eur J Med Chem 2018; 152:436-488. [PMID: 29751237 DOI: 10.1016/j.ejmech.2018.04.061] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is a medical condition characterized by the body's loss of control over blood sugar. The frequency of diagnosed cases and consequential increases in medical costs makes it a rapidly growing chronic disease that threatens human health worldwide. In addition, its unnerving statistical projections are perilous to both the economy of the nation and man's life expectancy. Type-I and type-II diabetes are the two clinical forms of diabetes mellitus. Type-II diabetes mellitus (T2DM) is illustrated by the abnormality of glucose homeostasis in the body, resulting in hyperglycemia. Although significant research attention has been devoted to the development of diabetes regimens, which demonstrates success in lowering blood glucose levels, their efficacies are unsustainable due to undesirable side effects such as weight gain and hypoglycemia. Over the years, heterocyclic scaffolds have been the basis of anti-diabetic chemotherapies; hence, in this review we consolidate the use of bioactive scaffolds, which have been evaluated for their biological response as inhibitors against their respective anti-diabetic molecular targets over the past five years (2012-2017). Our investigation reveals a diverse target set which includes; protein tyrosine phosphatase 1 B (PTP1B), dipeptidly peptidase-4 (DPP-4), free fatty acid receptors 1 (FFAR1), G protein-coupled receptors (GPCR), peroxisome proliferator activated receptor-γ (PPARγ), sodium glucose co-transporter-2 (SGLT2), α-glucosidase, aldose reductase, glycogen phosphorylase (GP), fructose-1,6-bisphosphatase (FBPase), glucagon receptor (GCGr) and phosphoenolpyruvate carboxykinase (PEPCK). This review offers a medium on which future drug design and development toward diabetes management may be modelled (i.e. optimization via structural derivatization), as many of the drug candidates highlighted show promise as an effective anti-diabetic chemotherapy.
Collapse
Affiliation(s)
- Nagaraju Kerru
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Ashona Singh-Pillay
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| | - Paul Awolade
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, South Africa.
| |
Collapse
|
19
|
Li Z, Liu C, Shi W, Cai X, Dai Y, Liao C, Huang W, Qian H. Identification of highly potent and orally available free fatty acid receptor 1 agonists bearing isoxazole scaffold. Bioorg Med Chem 2018; 26:703-711. [DOI: 10.1016/j.bmc.2017.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/16/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
|
20
|
Design, synthesis, and biological evaluation of deuterated phenylpropionic acid derivatives as potent and long-acting free fatty acid receptor 1 agonists. Bioorg Chem 2018; 76:303-313. [DOI: 10.1016/j.bioorg.2017.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/05/2017] [Accepted: 12/03/2017] [Indexed: 11/17/2022]
|
21
|
Structure-based optimization of free fatty acid receptor 1 agonists bearing thiazole scaffold. Bioorg Chem 2018; 77:429-435. [PMID: 29433092 DOI: 10.1016/j.bioorg.2018.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 11/20/2022]
Abstract
The free fatty acid receptor 1 (FFA1) plays an important role in amplifying insulin secretion in a glucose dependent manner. We have previously reported a series of FFA1 agonists with thiazole scaffold exemplified by compound 1, and identified a small hydrophobic subpocket partially occupied by the methyl group of compound 1. Herein, we describe further structure optimization to better fit the small hydrophobic subpocket by replacing the small methyl group with other hydrophobic substituents. All of these efforts resulted in the identification of compound 6, a potent FFA1 agonist (EC50 = 39.7 nM) with desired ligand efficiency (0.24) and ligand lipophilicity efficiency (4.7). Moreover, lead compound 6 exhibited a greater potential for decreasing the hyperglycemia levels than compound 1 during an oral glucose tolerance test. In summary, compound 6 is a promising FFA1 agonist for further investigation, and the structure-based study promoted our understanding for the binding pocket of FFA1.
Collapse
|
22
|
Li Z, Liu C, Xu X, Qiu Q, Su X, Dai Y, Yang J, Li H, Shi W, Liao C, Pan M, Huang W, Qian H. Discovery of phenylsulfonyl acetic acid derivatives with improved efficacy and safety as potent free fatty acid receptor 1 agonists for the treatment of type 2 diabetes. Eur J Med Chem 2017; 138:458-479. [DOI: 10.1016/j.ejmech.2017.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/15/2017] [Accepted: 07/02/2017] [Indexed: 02/03/2023]
|
23
|
Yang J, Li Z, Li H, Liu C, Wang N, Shi W, Liao C, Cai X, Huang W, Qian H. Design, synthesis and structure–activity relationship studies of novel free fatty acid receptor 1 agonists bearing amide linker. Bioorg Med Chem 2017; 25:2445-2450. [DOI: 10.1016/j.bmc.2017.03.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/09/2017] [Accepted: 03/01/2017] [Indexed: 11/28/2022]
|
24
|
Li Z, Xu X, Huang W, Qian H. Free Fatty Acid Receptor 1 (FFAR1) as an Emerging Therapeutic Target for Type 2 Diabetes Mellitus: Recent Progress and Prevailing Challenges. Med Res Rev 2017; 38:381-425. [DOI: 10.1002/med.21441] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/23/2017] [Accepted: 02/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zheng Li
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Xue Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Wenlong Huang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease; China Pharmaceutical University; 24 Tongjiaxiang Nanjing 210009 P.R. China
| |
Collapse
|
25
|
Zhan XP, Lan L, Wang S, Zhao K, Xin YX, Qi Q, Wang YL, Mao ZM. Synthesis and Anticancer Activity of 3-(Substituted Aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole Derivatives. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201600219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/28/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Xiao-Ping Zhan
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Lan Lan
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Shuai Wang
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kai Zhao
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yu-Xuan Xin
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Qi Qi
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yao-Lin Wang
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhen-Min Mao
- School of Pharmacy; Shanghai Jiaotong University; 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
26
|
Li Z, Yang J, Wang X, Li H, Liu C, Wang N, Huang W, Qian H. Discovery of novel free fatty acid receptor 1 agonists bearing triazole core via click chemistry. Bioorg Med Chem 2016; 24:5449-5454. [DOI: 10.1016/j.bmc.2016.08.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 01/18/2023]
|
27
|
Urbanaitė A, Čikotienė I. Synthesis of Polysubstituted Pyrroles through the Tandem 1,3-Addition/5-endo-digCyclization of 1-(1-Alkynyl)cyclopropyl Imines. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600985] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aurelija Urbanaitė
- Department of Organic Chemistry; Faculty of Chemistry; Vilnius University; Naugarduko 24 03225 Vilnius Lithuania
| | - Inga Čikotienė
- Department of Organic Chemistry; Faculty of Chemistry; Vilnius University; Naugarduko 24 03225 Vilnius Lithuania
| |
Collapse
|
28
|
Li Z, Qiu Q, Geng X, Yang J, Huang W, Qian H. Free fatty acid receptor agonists for the treatment of type 2 diabetes: drugs in preclinical to phase II clinical development. Expert Opin Investig Drugs 2016; 25:871-90. [PMID: 27171154 DOI: 10.1080/13543784.2016.1189530] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The alarming prevalence of type 2 diabetes mellitus (T2DM) stimulated the exploitation of new antidiabetic drugs with extended durability and enhanced safety. In this regard, the free fatty acid receptor 1 (FFA1) and FFA4 have emerged as attractive targets in the last decade. FFA1 has prominent advantages in promoting insulin and incretin secretion while FFA4 shows great potential in incretin secretion, insulin sensitization and anti-inflammatory effects. AREA COVERED Herein, the authors focus specifically on FFA1 and FFA4 agonists in clinical trials and preclinical development. LY2922470, P11187 and SHR0534 are currently active in clinical trials while the CNX-011-67, SAR1, DS-1558 and BMS-986118 are in preclinical phase. The information for this review is retrieved from Integrity, Scifinder, Espacenet and clinicaltrials.gov databases. EXPERT OPINION Current proof-of-concept in clinical trials suggests that FFA1 agonists have a significant improvement for T2DM without the risk of hypoglycemia. However, there are still several challenging problems including the mechanism of the receptor and the efficacy and safety of the ligands.
Collapse
Affiliation(s)
- Zheng Li
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Qianqian Qiu
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Xinqian Geng
- b Department of Endocrinology and Metabolism , Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes , Shanghai , PR China
| | - Jianyong Yang
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China
| | - Wenlong Huang
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China.,c Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease , China Pharmaceutical University , Nanjing , PR China
| | - Hai Qian
- a Center of Drug Discovery, State Key Laboratory of Natural Medicines , China Pharmaceutical University , Nanjing , PR China.,c Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease , China Pharmaceutical University , Nanjing , PR China
| |
Collapse
|
29
|
Abstract
FFA1 is a G protein-coupled receptor activated by medium- to long-chain fatty acids. FFA1 plays important roles in various physiological processes such as insulin secretion and energy metabolism. FFA1 expressed on pancreatic β-cells and intestine contributes to insulin and incretin secretion, respectively. These physiological functions of FFA1 are interesting as an attractive drug target for type II diabetes and metabolic disorders. A number of synthetic FFA1 ligands have been developed and they have contributed to our current understanding of the physiological and pathophysiological functions of FFA1 both in in vitro and in vivo studies. In addition, these synthetic ligands also provided information on the structure-activity relationships of FFA1 ligands. Further, FFA1 protein crystallized with one of the high affinity agonist leads provided useful insights for the development of more effective ligands. Among FFA1 ligands, several compounds have been further investigated in the clinical trials. Thus, FFA1 ligands have great potential as drug candidates. In this section, recent progress about FFA1 ligands and the possibility of their clinical use are described.
Collapse
|