1
|
Yildirim O, Barman D, Chung M, Stone S, Geißen R, Boby ML, Sherborne BS, Tan DS. Design and synthesis of a library of C8-substituted sulfamidoadenosines to probe bacterial permeability. Bioorg Med Chem Lett 2024; 110:129844. [PMID: 38851357 PMCID: PMC11361631 DOI: 10.1016/j.bmcl.2024.129844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Gram-negative bacteria pose a major challenge in antibiotic drug discovery because their cell envelope presents a permeability barrier that affords high intrinsic resistance to small-molecule drugs. The identification of correlations between chemical structure and Gram-negative permeability would thus enable development of predictive tools to facilitate antibiotic discovery. Toward this end, have advanced a library design paradigm in which various chemical scaffolds are functionalized at different regioisomeric positions using a uniform reagent set. This design enables decoupling of scaffold, regiochemistry, and substituent effects upon Gram-negative permeability of these molecules. Building upon our recent synthesis of a library of C2-substituted sulfamidoadenosines, we have now developed an efficient synthetic route to an analogous library of regioisomeric C8-substituted congeners. The C8 library samples a region of antibiotic-relevant chemical space that is similar to that addressed by the C2 library, but distinct from that sampled by a library of analogously substituted oxazolidinones. Selected molecules were tested for accumulation in Escherichia coli in a pilot analysis, setting the stage for full comparative evaluation of these libraries in the future.
Collapse
Affiliation(s)
- Okan Yildirim
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Dipti Barman
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Mia Chung
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Samantha Stone
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Raphael Geißen
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Doctoral Program, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Melissa L Boby
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Graduate School, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | | | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Pharmacology Graduate Program, Weill Cornell Graduate School, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
2
|
Piddock LJV, Alimi Y, Anderson J, de Felice D, Moore CE, Røttingen JA, Skinner H, Beyer P. Advancing global antibiotic research, development and access. Nat Med 2024; 30:2432-2443. [PMID: 39227444 DOI: 10.1038/s41591-024-03218-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
The pipeline of new antibiotics is insufficient to keep pace with the growing global burden of drug-resistant infections. Substantial economic challenges discourage private investment in antibiotic research and development (R&D), with a decline in the number of companies and researchers working in the field. Compounding these issues, many countries (from low income to high income) face a growing crisis of antibiotic shortages and inequitable access to existing and emerging treatments. This has led to an increasing role for public and philanthropic funding in supporting antibiotic R&D via the creation of nonprofit public-private partnerships, including Combating Antibiotic-Resistant Bacteria Biopharmaceutical Accelerator (CARB-X) and the Global Antibiotic Research and Development Partnership (GARDP), industry support for the AMR Action Fund, and pilot schemes to evaluate and reimburse antibiotics in innovative ways. Now is the time to raise the urgency, ambition and commitments of the world's leaders to fully support the antibiotic R&D ecosystem, incentivizing all sectors to conduct public health-driven antibiotic R&D and make effective antibiotics accessible to all who need them.
Collapse
Affiliation(s)
- Laura J V Piddock
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland.
| | - Yewande Alimi
- Africa Centres for Disease Control and Prevention (Africa CDC), Addis Ababa, Ethiopia
| | - James Anderson
- International Federation of Pharmaceutical Manufacturers and Associations (IFPMA), Geneva, Switzerland
| | | | - Catrin E Moore
- Centre for Neonatal and Paediatric Infection, St George's, University of London, London, UK
| | | | | | - Peter Beyer
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| |
Collapse
|
3
|
Hadjicharalambous A, Newman H, Lewis N, Rowland C, Bournakas N, Stanway SJ, Dawson M, Skynner MJ, Beswick P. Investigating Penetration and Antimicrobial Activity of Vector-Bicycle Conjugates. ACS Infect Dis 2024; 10:2381-2389. [PMID: 38865197 PMCID: PMC11249977 DOI: 10.1021/acsinfecdis.3c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
Growing antibiotic resistance is rapidly threatening the efficacy of treatments for Gram-negative infections. Bicycle molecules, constrained bicyclic peptides from diverse libraries generated by bacteriophage display that bind with high affinity to a chosen target are a potential new class of antibiotics. The generally impermeable bacterial outer membrane currently limits the access of peptides to bacteria. The conjugation of membrane active peptides offers an avenue for outer membrane penetration. Here, we investigate which physicochemical properties of a specific membrane active peptide (MAP), derived from ixosin-B, could be tweaked to enhance the penetration of conjugates by generating multiple MAP-Bicycle conjugate variants. We demonstrate that charge and hydrophobicity are important factors, which enhance penetration and, therefore, antimicrobial potency. Interestingly, we show that induction of secondary structure, but not a change in amphipathicity, is vital for effective penetration of the Gram-negative outer membrane. These results offer insights into the ways vectors could be designed to deliver Bicycle molecules (and other cargos) through biological membranes.
Collapse
Affiliation(s)
- Andreas Hadjicharalambous
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QN, U.K.
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Hector Newman
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Nick Lewis
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Catherine Rowland
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Nikolaos Bournakas
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Steven J. Stanway
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Michael Dawson
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Michael J. Skynner
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| | - Paul Beswick
- BicycleTx
Limited, Portway Building, Granta Park, Cambridge CB21 6GS, U.K.
| |
Collapse
|
4
|
Parkhill SL, Johnson EO. Integrating bacterial molecular genetics with chemical biology for renewed antibacterial drug discovery. Biochem J 2024; 481:839-864. [PMID: 38958473 PMCID: PMC11346456 DOI: 10.1042/bcj20220062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
The application of dyes to understanding the aetiology of infection inspired antimicrobial chemotherapy and the first wave of antibacterial drugs. The second wave of antibacterial drug discovery was driven by rapid discovery of natural products, now making up 69% of current antibacterial drugs. But now with the most prevalent natural products already discovered, ∼107 new soil-dwelling bacterial species must be screened to discover one new class of natural product. Therefore, instead of a third wave of antibacterial drug discovery, there is now a discovery bottleneck. Unlike natural products which are curated by billions of years of microbial antagonism, the vast synthetic chemical space still requires artificial curation through the therapeutics science of antibacterial drugs - a systematic understanding of how small molecules interact with bacterial physiology, effect desired phenotypes, and benefit the host. Bacterial molecular genetics can elucidate pathogen biology relevant to therapeutics development, but it can also be applied directly to understanding mechanisms and liabilities of new chemical agents with new mechanisms of action. Therefore, the next phase of antibacterial drug discovery could be enabled by integrating chemical expertise with systematic dissection of bacterial infection biology. Facing the ambitious endeavour to find new molecules from nature or new-to-nature which cure bacterial infections, the capabilities furnished by modern chemical biology and molecular genetics can be applied to prospecting for chemical modulators of new targets which circumvent prevalent resistance mechanisms.
Collapse
Affiliation(s)
- Susannah L. Parkhill
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
| | - Eachan O. Johnson
- Systems Chemical Biology of Infection and Resistance Laboratory, The Francis Crick Institute, London, U.K
- Faculty of Life Sciences, University College London, London, U.K
- Department of Chemistry, Imperial College, London, U.K
- Department of Chemistry, King's College London, London, U.K
| |
Collapse
|
5
|
Muñoz KA, Ulrich RJ, Vasan AK, Sinclair M, Wen PC, Holmes JR, Lee HY, Hung CC, Fields CJ, Tajkhorshid E, Lau GW, Hergenrother PJ. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature 2024; 630:429-436. [PMID: 38811738 DOI: 10.1038/s41586-024-07502-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024]
Abstract
Infections caused by Gram-negative pathogens are increasingly prevalent and are typically treated with broad-spectrum antibiotics, resulting in disruption of the gut microbiome and susceptibility to secondary infections1-3. There is a critical need for antibiotics that are selective both for Gram-negative bacteria over Gram-positive bacteria, as well as for pathogenic bacteria over commensal bacteria. Here we report the design and discovery of lolamicin, a Gram-negative-specific antibiotic targeting the lipoprotein transport system. Lolamicin has activity against a panel of more than 130 multidrug-resistant clinical isolates, shows efficacy in multiple mouse models of acute pneumonia and septicaemia infection, and spares the gut microbiome in mice, preventing secondary infection with Clostridioides difficile. The selective killing of pathogenic Gram-negative bacteria by lolamicin is a consequence of low sequence homology for the target in pathogenic bacteria versus commensals; this doubly selective strategy can be a blueprint for the development of other microbiome-sparing antibiotics.
Collapse
Affiliation(s)
- Kristen A Muñoz
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca J Ulrich
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Archit K Vasan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matt Sinclair
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Po-Chao Wen
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jessica R Holmes
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hyang Yeon Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chien-Che Hung
- Veterinary Diagnostic Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher J Fields
- High-Performance Computing in Biology, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Emad Tajkhorshid
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
6
|
Zhu S, Alexander MK, Paiva TO, Rachwalski K, Miu A, Xu Y, Verma V, Reichelt M, Dufrêne YF, Brown ED, Cox G. The inactivation of tolC sensitizes Escherichia coli to perturbations in lipopolysaccharide transport. iScience 2024; 27:109592. [PMID: 38628966 PMCID: PMC11019271 DOI: 10.1016/j.isci.2024.109592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
The Escherichia coli outer membrane channel TolC complexes with several inner membrane efflux pumps to export compounds across the cell envelope. All components of these complexes are essential for robust efflux activity, yet E. coli is more sensitive to antimicrobial compounds when tolC is inactivated compared to the inactivation of genes encoding the inner membrane drug efflux pumps. While investigating these susceptibility differences, we identified a distinct class of inhibitors targeting the core-lipopolysaccharide translocase, MsbA. We show that tolC null mutants are sensitized to structurally unrelated MsbA inhibitors and msbA knockdown, highlighting a synthetic-sick interaction. Phenotypic profiling revealed that tolC inactivation induced cell envelope softening and increased outer membrane permeability. Overall, this work identified a chemical probe of MsbA, revealed that tolC is associated with cell envelope mechanics and integrity, and highlighted that these findings should be considered when using tolC null mutants to study efflux deficiency.
Collapse
Affiliation(s)
- Shawna Zhu
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| | | | - Telmo O. Paiva
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Kenneth Rachwalski
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Anh Miu
- Genentech Inc, Biochemical and Cellular Pharmacology, South San Francisco, CA, USA
| | - Yiming Xu
- Genentech Inc, Infectious Diseases, South San Francisco, CA, USA
| | - Vishal Verma
- Genentech Inc, Discovery Chemistry, South San Francisco, CA, USA
| | - Mike Reichelt
- Genentech Inc, Pathology, South San Francisco, CA, USA
| | - Yves F. Dufrêne
- Institute of Life Sciences, UCLouvain, Croix du Sud, 4-5, bte L7.07.06, B-1348 Louvain-la-Neuve, Belgium
| | - Eric D. Brown
- Biochemistry and Biomedical Sciences and Degroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Dyett BP, Sarkar S, Yu H, Strachan J, Drummond CJ, Conn CE. Overcoming Therapeutic Challenges of Antibiotic Delivery with Cubosome Lipid Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38690584 DOI: 10.1021/acsami.4c00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Low discovery rates for new antibiotics, commercial disincentives to invest, and inappropriate use of existing drugs have created a perfect storm of antimicrobial resistance (AMR). This "silent pandemic" of AMR looms as an immense, global threat to human health. In tandem, many potential novel drug candidates are not progressed due to elevated hydrophobicity, which may result in poor intracellular internalization and undesirable serum protein binding. With a reducing arsenal of effective antibiotics, enabling technology platforms that improve the outcome of treatments, such as repurposing existing bioactive agents, is a prospective option. Nanocarrier (NC) mediated drug delivery is one avenue for amplifying the therapeutic outcome. Here, the performance of several antibiotic classes encapsulated within the lipid-based cubosomes is examined. The findings demonstrate that encapsulation affords significant improvements in drug concentration:inhibition outcomes and assists in other therapeutic challenges associated with internalization, enzyme degradation, and protein binding. We emphasize that a currently sidelined compound, novobiocin, became active and revealed a significant increase in inhibition against the pathogenic Gram-negative strain, Pseudomonas aeruginosa. Encapsulation affords co-delivery of multiple bioactives as a strategy for mitigating failure of monotherapies and tackling resistance. The rationale in optimized drug selection and nanocarrier choice is examined by transport modeling which agrees with experimental inhibition results. The results demonstrate that lipid nanocarrier encapsulation may alleviate a range of challenges faced by antibiotic therapies and increase the range of antibiotics available to treat bacterial infections.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Sampa Sarkar
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Haitao Yu
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Jamie Strachan
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
8
|
Hogan AM, Motnenko A, Rahman ASMZ, Cardona ST. Cell envelope structural and functional contributions to antibiotic resistance in Burkholderia cenocepacia. J Bacteriol 2024; 206:e0044123. [PMID: 38501654 PMCID: PMC11025338 DOI: 10.1128/jb.00441-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple β-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and β-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.
Collapse
Affiliation(s)
- Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Zhao X, Cao X, Qiu H, Liang W, Jiang Y, Wang Q, Wang W, Li C, Li Y, Han B, Tang K, Zhao L, Zhang X, Wang X, Liang H. Rational molecular design converting fascaplysin derivatives to potent broad-spectrum inhibitors against bacterial pathogens via targeting FtsZ. Eur J Med Chem 2024; 270:116347. [PMID: 38552428 DOI: 10.1016/j.ejmech.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/21/2024]
Abstract
The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 μg/mL) and Gram-negative (MIC = 1.56-12.5 μg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.
Collapse
Affiliation(s)
- Xing Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xuanyu Cao
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yinli Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Qiang Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Weile Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chengxi Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Bowen Han
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xuan Zhang
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
10
|
Amudala S, Sumit, Aidhen IS. LpxC inhibition: Potential and opportunities with carbohydrate scaffolds. Carbohydr Res 2024; 537:109057. [PMID: 38402732 DOI: 10.1016/j.carres.2024.109057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Uridine diphosphate-3-O-(hydroxymyristoyl)-N-acetylglucosamine deacetylase (LpxC) is a key enzyme involved in the biosynthesis of lipid A, an essential building block, for the construction and assembly of the outer membrane (OM) of Gram-negative bacteria. The enzyme is highly conserved in almost all Gram-negative bacteria and hence has emerged as a promising target for drug discovery in the fight against multi-drug resistant Gram-negative infections. Since the first nanomolar LpxC inhibitor, L-161,240, an oxazoline-based hydroxamate, the two-decade-long ongoing search has provided valuable information regarding essential features necessary for inhibition. Although the design and structure optimization for arriving at the most efficacious inhibitor of this enzyme has made good use of different heterocyclic moieties, the use of carbohydrate scaffold is scant. This review briefly covers the advancement and progress made in LpxC inhibition. The field awaits the use of potential associated with carbohydrate-based scaffolds for LpxC inhibition and the discovery of anti-bacterial agents against Gram-negative infections.
Collapse
Affiliation(s)
- Subramanyam Amudala
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Sumit
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Indrapal Singh Aidhen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
11
|
Zhao S, Maceren J, Chung M, Stone S, Geißen R, Boby ML, Sherborne BS, Tan DS. Design and synthesis of a library of C2-substituted sulfamidoadenosines to probe bacterial permeability. Bioorg Med Chem Lett 2024; 97:129486. [PMID: 37734424 PMCID: PMC10842738 DOI: 10.1016/j.bmcl.2023.129486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Antibiotic resistance is a major threat to public health, and Gram-negative bacteria pose a particular challenge due to their combination of a low permeability cell envelope and efflux pumps. Our limited understanding of the chemical rules for overcoming these barriers represents a major obstacle in antibacterial drug discovery. Several recent efforts to address this problem have involved screening compound libraries for accumulation in bacteria in order to understand the structural properties required for Gram-negative permeability. Toward this end, we used cheminformatic analysis to design a library of sulfamidoadenosines (AMSN) having diverse substituents at the adenine C2 position. An efficient synthetic route was developed with installation of a uniform cross-coupling reagent set using Sonogashira and Suzuki reactions of a C2-iodide. The potential utility of these compounds was demonstrated by pilot analysis of selected analogues for accumulation in Escherichia coli.
Collapse
Affiliation(s)
- Shibin Zhao
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Julian Maceren
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Mia Chung
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Samantha Stone
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | - Raphael Geißen
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA; Doctoral Program, Faculty of Biology, Albert-Ludwigs-Universität Freiburg,79104 Freiburg im Breisgau, Germany
| | - Melissa L Boby
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA; Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA
| | | | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA; Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA; Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, USA.
| |
Collapse
|
12
|
Mukherjee A, Ramirez D, Arora R, Arthur G, Schweizer F. Amphiphilic tribasic galactosamines potentiate rifampicin in Gram-negative bacteria at low Mg ++/Ca ++concentrations. Bioorg Med Chem Lett 2024; 97:129371. [PMID: 37301521 DOI: 10.1016/j.bmcl.2023.129371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Many antibiotics specific to Gram-positive bacteria like rifampicin (RIF) are inactive in Gram-negative bacteria because of outer membrane (OM) impermeability. Enhancing the OM permeability of these antibiotics with the help of OM perturbants is a promising strategy to develop new agents against Gram-negative bacteria. Here we report the synthesis and biological properties of amphiphilic tribasic galactosamines as potential RIF potentiators. Our results demonstrate that tribasic galactose-based amphiphiles potentiate RIF in multidrug-resistant Acinetobacter baumannii and Escherichia coli but not Pseudomonas aeruginosa in low salt-containing media. Under these conditions, lead compounds 20, 22 and 35 lowered the minimum inhibitory concentration of RIF by 64- to 256-fold against Gram-negative bacteria. However, the RIF-potentiating effect was reduced when bivalent Mg++ or Ca++ ions were added in the media at physiological concentrations. Overall, our results indicate that amphiphilic tribasic galactosamine-based compounds show reduced RIF-potentiating effects when compared to amphiphilic tobramycin antibiotics at physiological salt concentrations.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Rajat Arora
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9 Canada.
| |
Collapse
|
13
|
Gugger MK, Hergenrother PJ. A new type of antibiotic targets a drug-resistant bacterium. Nature 2024; 625:451-452. [PMID: 38172308 DOI: 10.1038/d41586-023-03988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
|
14
|
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics, due in large part to the permeability barrier formed by their cell envelope. The complex and synergistic interplay of the two Gram-negative membranes and active efflux prevents the accumulation of a diverse range of compounds that are effective against Gram-positive bacteria. A lack of detailed information on how components of the cell envelope contribute to this has been identified as a key barrier to the rational development of new antibiotics with efficacy against Gram-negative species. This review describes the current understanding of the role of the different components of the Gram-negative cell envelope in preventing compound accumulation and the state of efforts to describe properties that allow compounds to overcome this barrier and apply them to the development of new broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Claire Maher
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- College of Engineering, Science and Environment, University of Newcastle, Newcastle, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, Australia
| |
Collapse
|
15
|
Geddes EJ, Gugger MK, Garcia A, Chavez MG, Lee MR, Perlmutter SJ, Bieniossek C, Guasch L, Hergenrother PJ. Porin-independent accumulation in Pseudomonas enables antibiotic discovery. Nature 2023; 624:145-153. [PMID: 37993720 PMCID: PMC11254092 DOI: 10.1038/s41586-023-06760-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/18/2023] [Indexed: 11/24/2023]
Abstract
Gram-negative antibiotic development has been hindered by a poor understanding of the types of compounds that can accumulate within these bacteria1,2. The presence of efflux pumps and substrate-specific outer-membrane porins in Pseudomonas aeruginosa renders this pathogen particularly challenging3. As a result, there are few antibiotic options for P. aeruginosa infections4 and its many porins have made the prospect of discovering general accumulation guidelines seem unlikely5. Here we assess the whole-cell accumulation of 345 diverse compounds in P. aeruginosa and Escherichia coli. Although certain positively charged compounds permeate both bacterial species, P. aeruginosa is more restrictive compared to E. coli. Computational analysis identified distinct physicochemical properties of small molecules that specifically correlate with P. aeruginosa accumulation, such as formal charge, positive polar surface area and hydrogen bond donor surface area. Mode of uptake studies revealed that most small molecules permeate P. aeruginosa using a porin-independent pathway, thus enabling discovery of general P. aeruginosa accumulation trends with important implications for future antibiotic development. Retrospective antibiotic examples confirmed these trends and these discoveries were then applied to expand the spectrum of activity of a gram-positive-only antibiotic, fusidic acid, into a version that demonstrates a dramatic improvement in antibacterial activity against P. aeruginosa. We anticipate that these discoveries will facilitate the design and development of high-permeating antipseudomonals.
Collapse
Affiliation(s)
- Emily J Geddes
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Morgan K Gugger
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Alfredo Garcia
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Martin Garcia Chavez
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Myung Ryul Lee
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Sarah J Perlmutter
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Christoph Bieniossek
- Roche Pharma Research and Early Development, Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Laura Guasch
- Roche Pharma Research and Early Development, Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paul J Hergenrother
- Department of Chemistry and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
16
|
Theuretzbacher U, Blasco B, Duffey M, Piddock LJV. Unrealized targets in the discovery of antibiotics for Gram-negative bacterial infections. Nat Rev Drug Discov 2023; 22:957-975. [PMID: 37833553 DOI: 10.1038/s41573-023-00791-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/15/2023]
Abstract
Advances in areas that include genomics, systems biology, protein structure determination and artificial intelligence provide new opportunities for target-based antibacterial drug discovery. The selection of a 'good' new target for direct-acting antibacterial compounds is the first decision, for which multiple criteria must be explored, integrated and re-evaluated as drug discovery programmes progress. Criteria include essentiality of the target for bacterial survival, its conservation across different strains of the same species, bacterial species and growth conditions (which determines the spectrum of activity of a potential antibiotic) and the level of homology with human genes (which influences the potential for selective inhibition). Additionally, a bacterial target should have the potential to bind to drug-like molecules, and its subcellular location will govern the need for inhibitors to penetrate one or two bacterial membranes, which is a key challenge in targeting Gram-negative bacteria. The risk of the emergence of target-based drug resistance for drugs with single targets also requires consideration. This Review describes promising but as-yet-unrealized targets for antibacterial drugs against Gram-negative bacteria and examples of cognate inhibitors, and highlights lessons learned from past drug discovery programmes.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Maëlle Duffey
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland
| | - Laura J V Piddock
- Global Antibiotic Research and Development Partnership (GARDP), Geneva, Switzerland.
| |
Collapse
|
17
|
Bergkessel M, Forte B, Gilbert IH. Small-Molecule Antibiotic Drug Development: Need and Challenges. ACS Infect Dis 2023; 9:2062-2071. [PMID: 37819866 PMCID: PMC10644355 DOI: 10.1021/acsinfecdis.3c00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Indexed: 10/13/2023]
Abstract
The need for new antibiotics is urgent. Antimicrobial resistance is rising, although currently, many more people die from drug-sensitive bacterial infections. The continued evolution of drug resistance is inevitable, fueled by pathogen population size and exposure to antibiotics. Additionally, opportunistic pathogens will always pose a threat to vulnerable patients whose immune systems cannot efficiently fight them even if they are sensitive to available antibiotics, according to clinical microbiology tests. These problems are intertwined and will worsen as human populations age, increase in density, and experience disruptions such as war, extreme weather events, or declines in standard of living. The development of appropriate drugs to treat all the world's bacterial infections should be a priority, and future success will likely require combinations of multiple approaches. However, the highest burden of bacterial infection is in Low- and Middle-Income Countries, where limited medical infrastructure is a major challenge. For effectively managing infections in these contexts, small-molecule-based treatments offer significant advantages. Unfortunately, support for ongoing small-molecule antibiotic discovery has recently suffered from significant challenges related both to the scientific difficulties in treating bacterial infections and to market barriers. Nevertheless, small-molecule antibiotics remain essential and irreplaceable tools for fighting infections, and efforts to develop novel and improved versions deserve ongoing investment. Here, we first describe the global historical context of antibiotic treatment and then highlight some of the challenges surrounding small-molecule development and potential solutions. Many of these challenges are likely to be common to all modalities of antibacterial treatment and should be addressed directly.
Collapse
Affiliation(s)
- Megan Bergkessel
- Division
of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Barbara Forte
- Drug
Discovery Unit and Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| | - Ian H. Gilbert
- Drug
Discovery Unit and Wellcome Centre for Anti-Infectives Research, Division
of Biological Chemistry and Drug Discovery, University of Dundee, Dundee DD1 5EH, U.K.
| |
Collapse
|
18
|
MacNair CR, Tsai CN, Rutherford ST, Tan MW. Returning to Nature for the Next Generation of Antimicrobial Therapeutics. Antibiotics (Basel) 2023; 12:1267. [PMID: 37627687 PMCID: PMC10451936 DOI: 10.3390/antibiotics12081267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotics found in and inspired by nature are life-saving cures for bacterial infections and have enabled modern medicine. However, the rise in resistance necessitates the discovery and development of novel antibiotics and alternative treatment strategies to prevent the return to a pre-antibiotic era. Once again, nature can serve as a source for new therapies in the form of natural product antibiotics and microbiota-based therapies. Screening of soil bacteria, particularly actinomycetes, identified most of the antibiotics used in the clinic today, but the rediscovery of existing molecules prompted a shift away from natural product discovery. Next-generation sequencing technologies and bioinformatics advances have revealed the untapped metabolic potential harbored within the genomes of environmental microbes. In this review, we first highlight current strategies for mining this untapped chemical space, including approaches to activate silent biosynthetic gene clusters and in situ culturing methods. Next, we describe how using live microbes in microbiota-based therapies can simultaneously leverage many of the diverse antimicrobial mechanisms found in nature to treat disease and the impressive efficacy of fecal microbiome transplantation and bacterial consortia on infection. Nature-provided antibiotics are some of the most important drugs in human history, and new technologies and approaches show that nature will continue to offer valuable inspiration for the next generation of antibacterial therapeutics.
Collapse
Affiliation(s)
- Craig R. MacNair
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Caressa N. Tsai
- School of Law, University of California, Berkeley, Berkeley, CA 94704, USA;
| | - Steven T. Rutherford
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, CA 94080, USA;
| |
Collapse
|
19
|
Gandhi K, Dhiman S, Arora R, Ramirez DM, Ramirez D, Arthur G, Schweizer F. Exploring Antibiotic-Potentiating Effects of Tobramycin-Deferiprone Conjugates in Pseudomonas aeruginosa. Antibiotics (Basel) 2023; 12:1261. [PMID: 37627681 PMCID: PMC10451322 DOI: 10.3390/antibiotics12081261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Metal ions, including Fe3+, affect the target site binding of some antibiotics and control the porin- and siderophore-mediated uptake of antibiotics. Amphiphilic tobramycins are an emerging class of antibiotic potentiators capable of synergizing with multiple classes of antibiotics against Gram-negative bacteria, including Pseudomonas aeruginosa. To study how the antibiotic-potentiating effect of amphiphilic tobramycins is affected by the presence of intermolecular iron chelators, we conjugated the FDA-approved iron chelator deferiprone (DEF) to tobramycin (TOB). Three TOB-DEF conjugates differing in the length of the carbon tether were prepared and tested for antibacterial activity and synergistic relationships with a panel of antibiotics against clinical isolates of P. aeruginosa. While all TOB-DEF conjugates were inactive against P. aeruginosa, the TOB-DEF conjugates strongly synergized with outer-membrane-impermeable antibiotics, such as novobiocin and rifampicin. Among the three TOB-DEF conjugates, 1c containing a C12 tether showed a remarkable and selective potentiating effect to improve the susceptibility of multidrug-resistant P. aeruginosa isolates to tetracyclines when compared with other antibiotics. However, the antibacterial activity and antibiotic-potentiating effect of the optimized conjugate was not enhanced under iron-depleted conditions, indicating that the function of the antibiotic potentiator is not affected by the Fe3+ concentration.
Collapse
Affiliation(s)
- Karan Gandhi
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Shiv Dhiman
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Rajat Arora
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Danzel Marie Ramirez
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Danyel Ramirez
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
| | - Gilbert Arthur
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Frank Schweizer
- Department of Chemistry, Faculty of Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (K.G.); (S.D.); (R.A.); (D.M.R.); (D.R.)
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3R 0J9, Canada
| |
Collapse
|
20
|
Peukert C, Vetter AC, Fuchs HLS, Harmrolfs K, Karge B, Stadler M, Brönstrup M. Siderophore conjugation with cleavable linkers boosts the potency of RNA polymerase inhibitors against multidrug-resistant E. coli. Chem Sci 2023; 14:5490-5502. [PMID: 37234900 PMCID: PMC10208051 DOI: 10.1039/d2sc06850h] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The growing antibiotic resistance, foremost in Gram-negative bacteria, requires novel therapeutic approaches. We aimed to enhance the potency of well-established antibiotics targeting the RNA polymerase (RNAP) by utilizing the microbial iron transport machinery to improve drug translocation across their cell membrane. As covalent modifications resulted in moderate-low antibiotic activity, cleavable linkers were designed that permit a release of the antibiotic payload inside the bacteria and unperturbed target binding. A panel of ten cleavable siderophore-ciprofloxacin conjugates with systematic variation at the chelator and the linker moiety was used to identify the quinone trimethyl lock in conjugates 8 and 12 as the superior linker system, displaying minimal inhibitory concentrations (MICs) of ≤1 μM. Then, rifamycins, sorangicin A and corallopyronin A, representatives of three structurally and mechanistically different natural product RNAP inhibitor classes, were conjugated via the quinone linker to hexadentate hydroxamate and catecholate siderophores in 15-19 synthetic steps. MIC assays revealed an up to 32-fold increase in antibiotic activity against multidrug-resistant E. coli for conjugates such as 24 or 29 compared to free rifamycin. Experiments with knockout mutants in the transport system showed that translocation and antibiotic effects were conferred by several outer membrane receptors, whose coupling to the TonB protein was essential for activity. A functional release mechanism was demonstrated analytically by enzyme assays in vitro, and a combination of subcellular fractionation and quantitative mass spectrometry proved cellular uptake of the conjugate, release of the antibiotic, and its increased accumulation in the cytosol of bacteria. The study demonstrates how the potency of existing antibiotics against resistant Gram-negative pathogens can be boosted by adding functions for active transport and intracellular release.
Collapse
Affiliation(s)
- Carsten Peukert
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Anna C Vetter
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Hazel L S Fuchs
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Kirsten Harmrolfs
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Bianka Karge
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig, Inhoffenstraße 7 38124 Braunschweig Germany
- Institute of Microbiology, Technische Universität Braunschweig Spielmannstraße 7 38106 Braunschweig Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research Inhoffenstraße 7 38124 Braunschweig Germany
- German Center for Infection Research (DZIF) Site Hannover-Braunschweig, Inhoffenstraße 7 38124 Braunschweig Germany
- Institute for Organic Chemistry (IOC), Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Germany
| |
Collapse
|
21
|
Makafe GG, Cole L, Roberts A, Muncil S, Patwardhan A, Bernacki D, Chojnacki M, Weinrick B, Sheinerman F. A novel chemogenomic discovery platform identifies bioactive hits with rapid bactericidal activity against Mycobacteroides Abscessus. Tuberculosis (Edinb) 2023; 139:102317. [PMID: 36736037 DOI: 10.1016/j.tube.2023.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Mycobacteroides abscessus (M. ab) infections are innately resistant to most currently available antibiotics and present a growing, poorly addressed medical need. The existing treatment regimens are lengthy and produce inadequate outcomes for many patients. Importantly, most clinically used drugs and drug candidates against M. ab are either bacteriostatic, or only weakly bactericidal. New strategies exploring a broader chemical space are urgently needed, as innovative agents in development are scarce and hit rates in large unbiased screens against the mycobacterium have been discouragingly low. Here we present a computational chemogenomics-driven approach to discovery of novel antibacterials that effectively reveals drug-like compounds active against M. ab, paired with small sets of predicted molecular targets for the compounds. Several of the bioactive hits identified exhibited rapid bactericidal, including sterilizing, activity against the mycobacterium, indicating that there are currently unexploited chemically tractable molecular mechanisms for rapid sterilization of M. ab. Interestingly, starvation, which typically induces drug tolerance, sensitized M. ab to some of the compounds, resulting in potencies similar to those of drugs in clinical use. The presented drug discovery platform has potential to identify highly differentiated prototype anti-infective molecules and thereby contribute to development of regimens for shorter treatment and improved outcomes for non-tuberculous mycobacterial infections.
Collapse
Affiliation(s)
| | - Laura Cole
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA
| | - Alan Roberts
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA
| | - Shania Muncil
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA
| | | | - Derek Bernacki
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA
| | | | - Brian Weinrick
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA.
| | - Felix Sheinerman
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY, 12983, USA.
| |
Collapse
|
22
|
Macegoniuk K, Tabor W, Mazzei L, Cianci M, Giurg M, Olech K, Burda-Grabowska M, Kaleta R, Grabowiecka A, Mucha A, Ciurli S, Berlicki Ł. Optimized Ebselen-Based Inhibitors of Bacterial Ureases with Nontypical Mode of Action. J Med Chem 2023; 66:2054-2063. [PMID: 36661843 PMCID: PMC9923736 DOI: 10.1021/acs.jmedchem.2c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Screening of 25 analogs of Ebselen, diversified at the N-aromatic residue, led to the identification of the most potent inhibitors of Sporosarcina pasteurii urease reported to date. The presence of a dihalogenated phenyl ring caused exceptional activity of these 1,2-benzisoselenazol-3(2H)-ones, with Ki value in a low picomolar range (<20 pM). The affinity was attributed to the increased π-π and π-cation interactions of the dihalogenated phenyl ring with αHis323 and αArg339 during the initial step of binding. Complementary biological studies with selected compounds on the inhibition of ureolysis in whole Proteus mirabilis cells showed a very good potency (IC50 < 25 nM in phosphate-buffered saline (PBS) buffer and IC90 < 50 nM in a urine model) for monosubstituted N-phenyl derivatives. The crystal structure of S. pasteurii urease inhibited by one of the most active analogs revealed the recurrent selenation of the Cys322 thiolate, yielding an unprecedented Cys322-S-Se-Se chemical moiety.
Collapse
Affiliation(s)
- Katarzyna Macegoniuk
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Luca Mazzei
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Michele Cianci
- Department
of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, 60131 Ancona, Italy
| | - Mirosław Giurg
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Kamila Olech
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Małgorzata Burda-Grabowska
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Rafał Kaleta
- Department
of Organic and Medicinal Chemistry, Wrocław
University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stefano Ciurli
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology
(FaBiT), University of Bologna, Viale Giuseppe Fanin 40, 40138 Bologna, Italy
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Wrocław University
of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland,. Phone: +48 71 320
3344. Fax: +48 71 320 2427
| |
Collapse
|
23
|
Abstract
As the global burden of antibiotic resistance continues to grow, creative approaches to antibiotic discovery are needed to accelerate the development of novel medicines. A rapidly progressing computational revolution-artificial intelligence-offers an optimistic path forward due to its ability to alleviate bottlenecks in the antibiotic discovery pipeline. In this review, we discuss how advancements in artificial intelligence are reinvigorating the adoption of past antibiotic discovery models-namely natural product exploration and small molecule screening. We then explore the application of contemporary machine learning approaches to emerging areas of antibiotic discovery, including antibacterial systems biology, drug combination development, antimicrobial peptide discovery, and mechanism of action prediction. Lastly, we propose a call to action for open access of high-quality screening datasets and interdisciplinary collaboration to accelerate the rate at which machine learning models can be trained and new antibiotic drugs can be developed.
Collapse
Affiliation(s)
- Telmah Lluka
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Goetz JA, Kuehfuss NM, Botschner AJ, Zhu S, Thompson LK, Cox G. Exploring functional interplay amongst Escherichia coli efflux pumps. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36318669 DOI: 10.1099/mic.0.001261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial efflux pumps exhibit functional interplay that can translate to additive or multiplicative effects on resistance to antimicrobial compounds. In diderm bacteria, two different efflux pump structural types - single-component inner membrane efflux pumps and cell envelope-spanning multicomponent systems - cooperatively export antimicrobials with cytoplasmic targets from the cell. Harnessing our recently developed efflux platform, which is built upon an extensively efflux-deficient strain of Escherichia coli, here we explore interplay amongst a panel of diverse E. coli efflux pumps. Specifically, we assessed the effect of simultaneously expressing two efflux pump-encoding genes on drug resistance, including single-component inner membrane efflux pumps (MdfA, MdtK and EmrE), tripartite complexes (AcrAB, AcrAD, MdtEF and AcrEF), and the acquired TetA(C) tetracycline resistance pump. Overall, the expression of two efflux pump-encoding genes from the same structural type did not enhance resistance levels regardless of the antimicrobial compound or efflux pump under investigation. In contrast, a combination of the tripartite efflux systems with single-component pumps sharing common substrates provided multiplicative increases to antimicrobial resistance levels. In some instances, resistance was increased beyond the product of resistance provided by the two pumps individually. In summary, the developed efflux platform enables the isolation of efflux pump function, facilitating the identification of interactions between efflux pumps.
Collapse
Affiliation(s)
- James A Goetz
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Noah M Kuehfuss
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Alexander J Botschner
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Shawna Zhu
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
25
|
Klobucar K, Jardine E, Farha MA, MacKinnon MR, Fragis M, Nkonge B, Bhando T, Borrillo L, Tsai CN, Johnson JW, Coombes BK, Magolan J, Brown ED. Genetic and Chemical Screening Reveals Targets and Compounds to Potentiate Gram-Positive Antibiotics against Gram-Negative Bacteria. ACS Infect Dis 2022; 8:2187-2197. [PMID: 36098580 DOI: 10.1021/acsinfecdis.2c00357] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Gram-negative bacteria are intrinsically resistant to a plethora of antibiotics that effectively inhibit the growth of Gram-positive bacteria. The intrinsic resistance of Gram-negative bacteria to classes of antibiotics, including rifamycins, aminocoumarins, macrolides, glycopeptides, and oxazolidinones, has largely been attributed to their lack of accumulation within cells due to poor permeability across the outer membrane, susceptibility to efflux pumps, or a combination of these factors. Due to the difficulty in discovering antibiotics that can bypass these barriers, finding targets and compounds that increase the activity of these ineffective antibiotics against Gram-negative bacteria has the potential to expand the antibiotic spectrum. In this study, we investigated the genetic determinants for resistance to rifampicin, novobiocin, erythromycin, vancomycin, and linezolid to determine potential targets of antibiotic-potentiating compounds. We subsequently performed a high-throughput screen of ∼50,000 diverse, synthetic compounds to uncover molecules that potentiate the activity of at least one of the five Gram-positive-targeting antibiotics. This led to the discovery of two membrane active compounds capable of potentiating linezolid and an inhibitor of lipid A biosynthesis capable of potentiating rifampicin and vancomycin. Furthermore, we characterized the ability of known inhibitors of lipid A biosynthesis to potentiate the activity of rifampicin against Gram-negative pathogens.
Collapse
Affiliation(s)
- Kristina Klobucar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Emily Jardine
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Maya A Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Marc R MacKinnon
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Meghan Fragis
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brenda Nkonge
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Timsy Bhando
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Louis Borrillo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jarrod W Johnson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian K Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Jakob Magolan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
26
|
Awad M, Barnes TJ, Thomas N, Joyce P, Prestidge CA. Gallium Protoporphyrin Liquid Crystalline Lipid Nanoparticles: A Third-Generation Photosensitizer against Pseudomonas aeruginosa Biofilms. Pharmaceutics 2022; 14:pharmaceutics14102124. [PMID: 36297559 PMCID: PMC9610264 DOI: 10.3390/pharmaceutics14102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
The looming antimicrobial resistance pandemic has encouraged the investigation of antimicrobial photodynamic therapy (aPDT) as a promising technology to combat recalcitrant bacterial infections caused by antibiotic resistant strains. Here, we report on the optimization and effective application of gallium protoporphyrin liquid crystalline lipid nanoparticles (GaPP-LCNP) as a photosensitizer for aPDT against the Gram-negative bacteria P. aeruginosa in both planktonic and biofilm modes of growth. LCNP significantly enhanced the performance of GaPP as photosensitizer by two-fold, which was correlated with higher antibacterial activity, reducing the viability of planktonic P. aeruginosa by 7 log10 using 0.8 µM GaPP-LCNP and a light dose of 17 J.cm−2. Importantly, GaPP-LCNP also reduced the viability of biofilms by 6 log10 at relatively low light dose of 34.2 J.cm−2 using only 3 µM GaPP-LCNP. The high antibiofilm activity of GaPP-LCNP at low GaPP-LCNP dose indicated the high efficiency and safety profile of GaPP-LCNP as a promising platform for photodynamic inactivation of recalcitrant infections.
Collapse
Affiliation(s)
- Muhammed Awad
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia
| | - Timothy J. Barnes
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Clive A. Prestidge
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
- Correspondence:
| |
Collapse
|
27
|
Miller RD, Iinishi A, Modaresi SM, Yoo BK, Curtis TD, Lariviere PJ, Liang L, Son S, Nicolau S, Bargabos R, Morrissette M, Gates MF, Pitt N, Jakob RP, Rath P, Maier T, Malyutin AG, Kaiser JT, Niles S, Karavas B, Ghiglieri M, Bowman SEJ, Rees DC, Hiller S, Lewis K. Computational identification of a systemic antibiotic for gram-negative bacteria. Nat Microbiol 2022; 7:1661-1672. [PMID: 36163500 PMCID: PMC10155127 DOI: 10.1038/s41564-022-01227-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/05/2022] [Indexed: 12/14/2022]
Abstract
Discovery of antibiotics acting against Gram-negative species is uniquely challenging due to their restrictive penetration barrier. BamA, which inserts proteins into the outer membrane, is an attractive target due to its surface location. Darobactins produced by Photorhabdus, a nematode gut microbiome symbiont, target BamA. We reasoned that a computational search for genes only distantly related to the darobactin operon may lead to novel compounds. Following this clue, we identified dynobactin A, a novel peptide antibiotic from Photorhabdus australis containing two unlinked rings. Dynobactin is structurally unrelated to darobactins, but also targets BamA. Based on a BamA-dynobactin co-crystal structure and a BAM-complex-dynobactin cryo-EM structure, we show that dynobactin binds to the BamA lateral gate, uniquely protruding into its β-barrel lumen. Dynobactin showed efficacy in a mouse systemic Escherichia coli infection. This study demonstrates the utility of computational approaches to antibiotic discovery and suggests that dynobactin is a promising lead for drug development.
Collapse
Affiliation(s)
- Ryan D Miller
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Akira Iinishi
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | | | - Byung-Kuk Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thomas D Curtis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Patrick J Lariviere
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Libang Liang
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Sangkeun Son
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Samantha Nicolau
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Rachel Bargabos
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Madeleine Morrissette
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Michael F Gates
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Norman Pitt
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | | | | | - Timm Maier
- Biozentrum, University of Basel, Basel, Switzerland
| | - Andrey G Malyutin
- Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Jens T Kaiser
- Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Samantha Niles
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Blake Karavas
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Meghan Ghiglieri
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Sarah E J Bowman
- National Crystallization Center, Hauptman-Woodward Medical Research Institute, Buffalo, NY, USA
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | | | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
28
|
Al Nahas K, Fletcher M, Hammond K, Nehls C, Cama J, Ryadnov MG, Keyser UF. Measuring Thousands of Single-Vesicle Leakage Events Reveals the Mode of Action of Antimicrobial Peptides. Anal Chem 2022; 94:9530-9539. [PMID: 35760038 PMCID: PMC9280716 DOI: 10.1021/acs.analchem.1c03564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Host defense or antimicrobial
peptides hold promise for providing
new pipelines of effective antimicrobial agents. Their activity quantified
against model phospholipid membranes is fundamental to a detailed
understanding of their structure–activity relationships. However,
classical characterization assays often lack the ability to achieve
this insight. Leveraging a highly parallelized microfluidic platform
for trapping and studying thousands of giant unilamellar vesicles,
we conducted quantitative long-term microscopy studies to monitor
the membrane-disruptive activity of archetypal antimicrobial peptides
with a high spatiotemporal resolution. We described the modes of action
of these peptides via measurements of the disruption of the vesicle
population under the conditions of continuous peptide dosing using
a range of concentrations and related the observed modes to the molecular
activity mechanisms of these peptides. The study offers an effective
approach for characterizing membrane-targeting antimicrobial agents
in a standardized manner and for assigning specific modes of action
to the corresponding antimicrobial mechanisms.
Collapse
Affiliation(s)
- Kareem Al Nahas
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.,London Centre for Nanotechnology, University College London, London WC1H 0AH, U.K
| | - Christian Nehls
- Research Center Borstel, Leibniz Lung Center, Parkallee 10, Borstel 23845, Germany
| | - Jehangir Cama
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.,Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, U.K.,College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Exeter EX4 4QF, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K.,Department of Physics, King's College London, Strand Lane, London WC2R 2LS, U.K
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|
29
|
Tuveri GM, Ceccarelli M, Pira A, Bodrenko IV. The Optimal Permeation of Cyclic Boronates to Cross the Outer Membrane via the Porin Pathway. Antibiotics (Basel) 2022; 11:antibiotics11070840. [PMID: 35884094 PMCID: PMC9311757 DOI: 10.3390/antibiotics11070840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
We investigated the diffusion of three cyclic boronates formulated as beta-lactamase inhibitors through the porin OmpF to evaluate their potential to cross OM via the porin pathway. The three nonbeta-lactam molecules diffuse through the porin eyelet region with the same mechanism observed for beta-lactam molecules and diazobicyclooctan derivatives, with the electric dipole moment aligned with the transversal electric field. In particular, the BOH group can interact with both the basic ladder and the acidic loop L3, which is characteristic of the size-constricted region of this class of porins. On one hand, we confirm that the transport of small molecules through enterobacter porins has a common general mechanism; on the other, the class of cyclic boronate molecules does not seem to have particular difficulties in diffusing through enterobacter porins, thus representing a good scaffold for new anti-infectives targeting Gram-negative bacteria research.
Collapse
Affiliation(s)
- Gian Marco Tuveri
- Molecular Bionics, Institute for Bioengineering of Catalonia, Carrer de Baldiri Reixac, 10, 12, 08028 Barcelona, Spain;
| | - Matteo Ceccarelli
- Dipartimento di Fisica, University of Cagliari, Cittadella Universitaria, Monserrato, 09042-IT Cagliari, Italy;
- Centro Nazionale di Ricerca/Istituto Officina dei Materiali (CNR/IOM), Sezione di Cagliari, c/o Dipartimento di Fisica, Cittadella Universitaria, Monserrato, 09042-IT Cagliari, Italy
| | - Alessandro Pira
- Dipartimento di Scienze Chimiche e Geologiche, University of Cagliari, Cittadella Universitaria, Monserrato, 09042-IT Cagliari, Italy;
| | - Igor V. Bodrenko
- Centro Nazionale di Ricerca/Istituto Officina dei Materiali (CNR/IOM), Sezione di Cagliari, c/o Dipartimento di Fisica, Cittadella Universitaria, Monserrato, 09042-IT Cagliari, Italy
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Campus Ring 1, 28759-DE Bremen, Germany
- Correspondence:
| |
Collapse
|
30
|
Łapińska U, Voliotis M, Lee KK, Campey A, Stone MRL, Tuck B, Phetsang W, Zhang B, Tsaneva-Atanasova K, Blaskovich MAT, Pagliara S. Fast bacterial growth reduces antibiotic accumulation and efficacy. eLife 2022; 11:e74062. [PMID: 35670099 PMCID: PMC9173744 DOI: 10.7554/elife.74062] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 05/08/2022] [Indexed: 12/11/2022] Open
Abstract
Phenotypic variations between individual microbial cells play a key role in the resistance of microbial pathogens to pharmacotherapies. Nevertheless, little is known about cell individuality in antibiotic accumulation. Here, we hypothesise that phenotypic diversification can be driven by fundamental cell-to-cell differences in drug transport rates. To test this hypothesis, we employed microfluidics-based single-cell microscopy, libraries of fluorescent antibiotic probes and mathematical modelling. This approach allowed us to rapidly identify phenotypic variants that avoid antibiotic accumulation within populations of Escherichia coli, Pseudomonas aeruginosa, Burkholderia cenocepacia, and Staphylococcus aureus. Crucially, we found that fast growing phenotypic variants avoid macrolide accumulation and survive treatment without genetic mutations. These findings are in contrast with the current consensus that cellular dormancy and slow metabolism underlie bacterial survival to antibiotics. Our results also show that fast growing variants display significantly higher expression of ribosomal promoters before drug treatment compared to slow growing variants. Drug-free active ribosomes facilitate essential cellular processes in these fast-growing variants, including efflux that can reduce macrolide accumulation. We used this new knowledge to eradicate variants that displayed low antibiotic accumulation through the chemical manipulation of their outer membrane inspiring new avenues to overcome current antibiotic treatment failures.
Collapse
Affiliation(s)
- Urszula Łapińska
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Margaritis Voliotis
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
| | - Ka Kiu Lee
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Adrian Campey
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- Department of Chemistry and Chemical Biology, Rutgers, the State University of New JerseyPiscatawayUnited States
| | - Brandon Tuck
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Department of Mathematics, University of ExeterExeterUnited Kingdom
- EPSRC Hub for Quantitative Modelling in Healthcare, University of ExeterExeterUnited Kingdom
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of SciencesSofiaBulgaria
| | - Mark AT Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - Stefano Pagliara
- Living Systems Institute, University of ExeterExeterUnited Kingdom
- Biosciences, University of ExeterExeterUnited Kingdom
| |
Collapse
|
31
|
Ooi JMF, Fairhall JM, Spangler B, Chong DJW, Feng BY, Gamble AB, Hook S. Development of a bioorthogonal fluorescence-based assay for assessing drug uptake and delivery in bacteria. RSC Adv 2022; 12:15631-15642. [PMID: 35685699 PMCID: PMC9126673 DOI: 10.1039/d2ra02272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Bioorthogonal chemistry can facilitate the development of fluorescent probes that can be used to sensitively and specifically detect the presence of biological targets. In this study, such an assay was developed to evaluate the uptake and delivery of antimicrobials into Escherichia coli, building on and extending previous work which utilised more resource intensive LCMS detection. The bacteria were genetically engineered to express streptavidin in the periplasmic or cytoplasmic compartments, which was used to localise a bioorthogonal probe (BCN-biotin). Azido-compounds which are delivered to these compartments react with the localised BCN-biotin–streptavidin in a concentration-dependent manner via a strain-promoted alkyne–azide cycloaddition. The amount of azido-compound taken up by bacteria was determined by quantifying unreacted BCN-biotin–streptavidin via an inverse electron demand Diels–Alder reaction between remaining BCN-biotin and a tetrazine-containing fluorescent dye. Following optimisation and validation, the assay was used to assess uptake of liposome-formulated azide-functionalised luciferin and cefoxitin. The results demonstrated that formulation into cationic liposomes improved the uptake of azide-functionalised compounds into the periplasm of E. coli, providing insight on the uptake mechanism of liposomes in the bacteria. This newly developed bioorthogonal fluorescence plate-reader based assay provides a bioactivity-independent, medium-to-high throughput tool for screening compound uptake/delivery. Bioorthogonal alkyne–azide and alkyne–tetrazine chemistries were used to assess drug uptake in bacteria. Azido-drug reacts with streptavidin bound alkyne-biotin within bacteria, the remaining unreacted alkyne is then quantified with a tetrazine-dye.![]()
Collapse
Affiliation(s)
| | | | - Benjamin Spangler
- Novartis Institutes for BioMedical Research (NIBR) in Emeryville California USA
| | | | - Brian Y Feng
- Novartis Institutes for BioMedical Research (NIBR) in Emeryville California USA
| | - Allan B Gamble
- School of Pharmacy, University of Otago Dunedin New Zealand
| | - Sarah Hook
- School of Pharmacy, University of Otago Dunedin New Zealand
| |
Collapse
|
32
|
Hogan AM, Cardona ST. Gradients in gene essentiality reshape antibacterial research. FEMS Microbiol Rev 2022; 46:fuac005. [PMID: 35104846 PMCID: PMC9075587 DOI: 10.1093/femsre/fuac005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 02/03/2023] Open
Abstract
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, 45 Chancellor's Circle, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543 - 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada
| |
Collapse
|
33
|
Mohamed H, Marusich E, Afanasev Y, Leonov S. Bacterial Outer Membrane Permeability Increase Underlies the Bactericidal Effect of Fatty Acids From Hermetia illucens (Black Soldier Fly) Larvae Fat Against Hypermucoviscous Isolates of Klebsiella pneumoniae. Front Microbiol 2022; 13:844811. [PMID: 35602017 PMCID: PMC9121012 DOI: 10.3389/fmicb.2022.844811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/08/2022] [Indexed: 11/25/2022] Open
Abstract
Behind expensive treatments, Klebsiella pneumoniae infections account for extended hospitalization’s high mortality rates. This study aimed to evaluate the activity and mechanism of the antimicrobial action of a fatty acid-containing extract (AWME3) isolated from Hermetia illucens (HI) larvae fat against K. pneumoniae subsp. pneumoniae standard NDM-1 carbapenemase-producing ATCC BAA-2473 strain, along with a wild-type hypermucoviscous clinical isolate, strain K. pneumoniae subsp. pneumoniae KPi1627, and an environmental isolate, strain K. pneumoniae subsp. pneumoniae KPM9. We classified these strains as extensive multidrug-resistant (XDR) or multiple antibiotic-resistant (MDR) demonstrated by a susceptibility assay against 14 antibiotics belonging to ten classes of antibiotics. Antibacterial properties of fatty acids extracted from the HI larvae fat were evaluated using disk diffusion method, microdilution, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), half of the inhibitory concentration (MIC50), and bactericidal assays. In addition, the cytotoxocity of AWME3 was tested on human HEK293 cells, and AWME3 lipid profile was determined by gas chromatography-mass spectrometry (GC-MS) analysis. For the first time, we demonstrated that the inhibition zone diameter (IZD) of fatty acid-containing extract (AWME3) of the HI larvae fat tested at 20 mg/ml was 16.52 ± 0.74 and 14.23 ± 0.35 mm against colistin-resistant KPi1627 and KPM9, respectively. It was 19.72 ± 0.51 mm against the colistin-susceptible K. pneumoniae ATCC BAA-2473 strain. The MIC and MBC were 250 μg/ml for all the tested bacteria strains, indicating the bactericidal effect of AWME3. The MIC50 values were 155.6 ± 0.009 and 160.1 ± 0.008 μg/ml against the KPi1627 and KPM9 isolates, respectively, and 149.5 ± 0.013 μg/ml against the ATCC BAA-2473 strain in the micro-dilution assay. For the first time, we demonstrated that AWME3 dose-dependently increased bacterial cell membrane permeability as determined by the relative electric conductivity (REC) of the K. pneumoniae ATCC BAA-2473 suspension, and that none of the strains did not build up resistance to extended AWME3 treatment using the antibiotic resistance assay. Cytotoxicity assay showed that AWME3 is safe for human HEK293 cells at IC50 266.1 μg/ml, while bactericidal for all the strains of bacteria at the same concentration. Free fatty acids (FFAs) and their derivatives were the significant substances among 33 compounds identified by the GC-MS analysis of AWME3. Cis-oleic and palmitoleic acids represent the most abundant unsaturated FAs (UFAs), while palmitic, lauric, stearic, and myristic acids were the most abundant saturated FAs (SFAs) of the AWME3 content. Bactericidal resistant-free AWM3 mechanism of action provides a rationale interpretations and the utility of HI larvae fat to develop natural biocidal resistance-free formulations that might be promising therapeutic against Gram-negative MDR bacteria causing nosocomial infections.
Collapse
Affiliation(s)
- Heakal Mohamed
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Elena Marusich
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- *Correspondence: Elena Marusich,
| | - Yuriy Afanasev
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey Leonov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
- Sergey Leonov,
| |
Collapse
|
34
|
Kokot M, Anderluh M, Hrast M, Minovski N. The Structural Features of Novel Bacterial Topoisomerase Inhibitors That Define Their Activity on Topoisomerase IV. J Med Chem 2022; 65:6431-6440. [PMID: 35503563 PMCID: PMC9109137 DOI: 10.1021/acs.jmedchem.2c00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The continued emergence
of bacterial resistance has created an
urgent need for new and effective antibacterial agents. Bacterial
type II topoisomerases, such as DNA gyrase and topoisomerase IV (topoIV),
are well-validated targets for antibacterial chemotherapy. The novel
bacterial topoisomerase inhibitors (NBTIs) represent one of the new
promising classes of antibacterial agents. They can inhibit both of
these bacterial targets; however, their potencies differ on the targets
among species, making topoIV probably a primary target of NBTIs in
Gram-negative bacteria. Therefore, it is important to gain an insight
into the NBTIs key structural features that govern the topoIV inhibition.
However, in Gram-positive bacteria, topoIV is also a significant target
for achieving dual-targeting, which in turn contributes to avoiding
bacterial resistance caused by single-target mutations. In this perspective,
we address the structure–activity relationship guidelines for
NBTIs that target the topoIV enzyme in Gram-positive and Gram-negative
bacteria.
Collapse
Affiliation(s)
- Maja Kokot
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Martina Hrast
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Nikola Minovski
- Theory Department, Laboratory for Cheminformatics, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
35
|
Gurvic D, Leach AG, Zachariae U. Data-Driven Derivation of Molecular Substructures That Enhance Drug Activity in Gram-Negative Bacteria. J Med Chem 2022; 65:6088-6099. [PMID: 35427114 PMCID: PMC9059115 DOI: 10.1021/acs.jmedchem.1c01984] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/28/2022]
Abstract
The complex cell envelope of Gram-negative bacteria creates a formidable barrier to antibiotic influx. Reduced drug uptake impedes drug development and contributes to a wide range of drug-resistant bacterial infections, including those caused by extremely resistant species prioritized by the World Health Organization. To develop new and efficient treatments, a better understanding of the molecular features governing Gram-negative permeability is essential. Here, we present a data-driven approach, using matched molecular pair analysis and machine learning on minimal inhibitory concentration data from Gram-positive and Gram-negative bacteria to uncover chemical features that influence Gram-negative bioactivity. We find recurring chemical moieties, of a wider range than previously known, that consistently improve activity and suggest that this insight can be used to optimize compounds for increased Gram-negative uptake. Our findings may help to expand the chemical space of broad-spectrum antibiotics and aid the search for new antibiotic compound classes.
Collapse
Affiliation(s)
- Dominik Gurvic
- Computational
Biology, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| | - Andrew G. Leach
- Division
of Pharmacy and Optometry, University of
Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Medchemica
Limited, Mereside, Alderley
Park, Macclesfield, SK10
4TG, United Kingdom
| | - Ulrich Zachariae
- Computational
Biology, School of Life Sciences, University
of Dundee, Dow Street, Dundee DD1
5EH, United Kingdom
| |
Collapse
|
36
|
Schweizer L, Ramirez D, Schweizer F. Effects of Lysine N-ζ-Methylation in Ultrashort Tetrabasic Lipopeptides (UTBLPs) on the Potentiation of Rifampicin, Novobiocin, and Niclosamide in Gram-Negative Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11030335. [PMID: 35326798 PMCID: PMC8963254 DOI: 10.3390/antibiotics11030335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/13/2022] Open
Abstract
Outer membrane (OM) drug impermeability typically associated with a molecular weight above 600 Da and high hydrophobicity prevents accumulation of many antibiotics in Gram-negative bacteria (GNB). Previous studies have shown that ultrashort tetrabasic lipopeptides (UTBLPs) containing multiple lysine residues potentiate Gram-positive bacteria (GPB)-selective antibiotics in GNB by enhancing OM permeability. However, there is no available information on how N-substitution at the ζ-position of lysine in UTBLPs affects antibiotic potentiation in GNB. To study these effects, we prepared a series of branched and linear UTBLPs that differ in the degree of N-ζ-methylation and studied their potentiating effects with GPB-selective antibiotics including rifampicin, novobiocin, niclosamide, and chloramphenicol against wild-type and multidrug-resistant GNB isolates. Our results show that increasing N-ζ-methylation reduces or abolishes the potentiating effects of UTBLPs with rifampicin, novobiocin, and niclosamide against GNB. No trend was observed with chloramphenicol that is largely affected by efflux. We were unable to observe a correlation between the strength of the antibiotic potentiating effect to the increase in fluorescence in the 1-N-phenylnaphthylamine (NPN) OM permeability assay suggesting that other factors besides OM permeability of NPN play a role in antibiotic potentiation. In conclusion, our study has elucidated crucial structure–activity relationships for the optimization of polybasic antibiotic potentiators in GNB.
Collapse
Affiliation(s)
- Linus Schweizer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Danyel Ramirez
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - Frank Schweizer
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence:
| |
Collapse
|
37
|
Abstract
Bacterial resistance to antibiotics threatens our progress in healthcare, modern medicine, food production and ultimately life expectancy. Antibiotic resistance is a global concern, which spreads rapidly across borders and continents due to rapid travel of people, animals and goods. Derivatives of metabolically stable pyrazole nucleus are known for their wide range of pharmacological properties, including antibacterial activities. This review highlights recent reports of pyrazole derivatives targeting different bacterial strains focusing on the drug-resistant variants. Pyrazole derivatives target different metabolic pathways of both Gram-positive and Gram-negative bacteria.
Collapse
|
38
|
Perveen S, Sharma R. Screening approaches and therapeutic targets: The two driving wheels of tuberculosis drug discovery. Biochem Pharmacol 2022; 197:114906. [PMID: 34990594 DOI: 10.1016/j.bcp.2021.114906] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) is an infectious disease, infecting a quarter of world's population. Drug resistant TB further exacerbates the grim scenario of the drying TB drug discovery pipeline. The limited arsenal to fight TB presses the need for thorough efforts for identifying promising hits to combat the disease. The review highlights the efforts in the field of tuberculosis drug discovery, with an emphasis on massive drug screening campaigns for identifying novel hits against Mtb in both industry and academia. As an intracellular pathogen, mycobacteria reside in a complicated intracellular environment with multiple factors at play. Here, we outline various strategies employed in an effort to mimic the intracellular milieu for bringing the screening models closer to the actual settings. The review also focuses on the novel targets and pathways that could aid in target-based drug discovery in TB. The recent high throughput screening efforts resulting in the identification of potent hits against Mtb has been summarized in this article. There is a pressing need for effective screening strategies and approaches employing innovative tools and recent technologies; including nanotechnology, gene-editing tools such as CRISPR-cas system, host-directed bacterial killing and high content screening to augment the TB drug discovery pipeline with safer and shorter drug regimens.
Collapse
Affiliation(s)
- Summaya Perveen
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
39
|
Bagre A, Patel PR, Naqvi S, Jain K. Emerging concerns of infectious diseases and drug delivery challenges. NANOTHERANOSTICS FOR TREATMENT AND DIAGNOSIS OF INFECTIOUS DISEASES 2022. [PMCID: PMC9212246 DOI: 10.1016/b978-0-323-91201-3.00013-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Emerging infectious diseases are the infections that could be newly appeared or have existed demographic area with rapidly increasing in some geographic range. Among various types of emerging infectious diseases like Ebola, chikungunya, tuberculosis, SARS, MERS, avian flu, swine flu, Zika, and so on, very recently we have witnessed the emergence of recently recognized coronavirus infection as Covid-19 pandemic caused by SARS-CoV-2, which rapidly spread around the world. Various emerging factors precipitating disease emergence include environmental, demographic, or ecological that increase the contact of people with unfamiliar microbial agents or their host or promote dissemination. Here in this chapter, we reviewed the various emerging considerations of infectious diseases including factors responsible for emerging and re-emerging infectious diseases as well as drug delivery challenges to treat infectious diseases and various strategies to deal with these challenges including nanotheranostics. Nanotheranostics are showing potential toward real-time understanding, diagnosis, and monitoring the response of the chemotherapy during treatment with reduced nontarget toxicity and enhanced safety level in the recent research studies.
Collapse
|
40
|
Zaknoon F, Meir O, Mor A. Mechanistic Studies of Antibiotic Adjuvants Reducing Kidney's Bacterial Loads upon Systemic Monotherapy. Pharmaceutics 2021; 13:pharmaceutics13111947. [PMID: 34834362 PMCID: PMC8621570 DOI: 10.3390/pharmaceutics13111947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/01/2022] Open
Abstract
We describe the design and attributes of a linear pentapeptide-like derivative (C14(ω5)OOc10O) screened for its ability to elicit bactericidal competences of plasma constituents against Gram-negative bacteria (GNB). In simpler culture media, the lipopeptide revealed high aptitudes to sensitize resilient GNB to hydrophobic and/or efflux-substrate antibiotics, whereas in their absence, C14(ω5)OOc10O only briefly delayed bacterial proliferation. Instead, at low micromolar concentrations, the lipopeptide has rapidly lowered bacterial proton and ATP levels, although significantly less than upon treatment with its bactericidal analog. Mechanistic studies support a two-step scenario providing a plausible explanation for the lipopeptide’s biological outcomes against GNB: initially, C14(ω5)OOc10O permeabilizes the outer membrane similarly to polymyxin B, albeit in a manner not necessitating as much LPS-binding affinity. Subsequently, C14(ω5)OOc10O would interact with the inner membrane gently yet intensively enough to restrain membrane-protein functions such as drug efflux and/or ATP generation, while averting the harsher inner membrane perturbations that mediate the fatal outcome associated with bactericidal peers. Preliminary in vivo studies where skin wound infections were introduced in mice, revealed a significant efficacy in affecting bacterial viability upon topical treatment with creams containing C14(ω5)OOc10O, whereas synergistic combination therapies were able to secure the pathogen’s eradication. Further, capitalizing on the finding that C14(ω5)OOc10O plasma-potentiating concentrations were attainable in mice blood at sub-maximal tolerated doses, we used a urinary tract infection model to acquire evidence for the lipopeptide’s systemic capacity to reduce the kidney’s bacterial loads. Collectively, the data establish the role of C14(ω5)OOc10O as a compelling antibacterial potentiator and suggest its drug-like potential.
Collapse
|
41
|
Dyett BP, Yu H, Sarkar S, Strachan JB, Drummond CJ, Conn CE. Uptake Dynamics of Cubosome Nanocarriers at Bacterial Surfaces and the Routes for Cargo Internalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53530-53540. [PMID: 34726885 DOI: 10.1021/acsami.1c09909] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antibiotic-resistant bacteria pose a significant threat to humanity. Gram-negative strains have demonstrated resistance to last resort antibiotics, partially due to their outer membrane, which hinders transport of antimicrobials into the bacterium. Nanocarrier (NC)-mediated drug delivery is one proposed strategy for combating this emerging issue. Here, the uptake of self-assembled lipid nanocarriers of cubic symmetry (cubosomes) into bacteria revealed fundamental differences in the uptake mechanism between Gram-positive and Gram-negative bacteria. For Gram-positive bacteria, the NCs adhere to the outer peptidoglycan layers and slowly internalize to the bacterium. For Gram-negative bacteria, the NCs interact in two stages, fusion with the outer lipid membrane and then diffusion through the inner wall. The self-assembled nature of the cubosomes imparts a unique ability to transfer payloads via membrane fusion. Remarkably, the fusion uptake mechanism allowed rapid NC internalization by the Gram-negative bacteria, overcoming the outer membrane responsible for their heightened resilience. Here this is demonstrated by the marked reduction in the minimal inhibition concentration required for antibiotics against a pathogenic strain of Gram-negative bacteria, Escherichia coli. These results provide mechanistic insight for the development of lipid NCs as a new tool to combat bacteria.
Collapse
Affiliation(s)
- Brendan P Dyett
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Haitao Yu
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sampa Sarkar
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Jamie B Strachan
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Charlotte E Conn
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
42
|
Alegun O, Pandeya A, Cui J, Ojo I, Wei Y. Donnan Potential across the Outer Membrane of Gram-Negative Bacteria and Its Effect on the Permeability of Antibiotics. Antibiotics (Basel) 2021; 10:701. [PMID: 34208097 PMCID: PMC8230823 DOI: 10.3390/antibiotics10060701] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The cell envelope structure of Gram-negative bacteria is unique, composed of two lipid bilayer membranes and an aqueous periplasmic space sandwiched in between. The outer membrane constitutes an extra barrier to limit the exchange of molecules between the cells and the exterior environment. Donnan potential is a membrane potential across the outer membrane, resulted from the selective permeability of the membrane, which plays a pivotal role in the permeability of many antibiotics. In this review, we discussed factors that affect the intensity of the Donnan potential, including the osmotic strength and pH of the external media, the osmoregulated periplasmic glucans trapped in the periplasmic space, and the displacement of cell surface charges. The focus of our discussion is the impact of Donnan potential on the cellular permeability of selected antibiotics including fluoroquinolones, tetracyclines, β-lactams, and trimethoprim.
Collapse
Affiliation(s)
| | | | | | | | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (O.A.); (A.P.); (J.C.); (I.O.)
| |
Collapse
|
43
|
The Influence of Permeability through Bacterial Porins in Whole-Cell Compound Accumulation. Antibiotics (Basel) 2021; 10:antibiotics10060635. [PMID: 34073313 PMCID: PMC8226570 DOI: 10.3390/antibiotics10060635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 01/09/2023] Open
Abstract
The lack of new drugs for Gram-negative pathogens is a global threat to modern medicine. The complexity of their cell envelope, with an additional outer membrane, hinders internal accumulation and thus, the access of molecules to their targets. Our limited understanding of the molecular basis for compound influx and efflux from these pathogens is a major bottleneck for the discovery of effective antibacterial compounds. Here we analyse the correlation between the whole-cell compound accumulation of ~200 molecules and their predicted porin permeability coefficient (influx), using a recently developed scoring function. We found a strong linear relationship (74%) between the two, confirming porins key in compound uptake in Gram-negative bacteria. The analysis of this unique dataset aids to better understand the molecular descriptors behind whole-cell accumulation and molecular uptake in Gram-negative bacteria.
Collapse
|
44
|
Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Chem Rev 2021; 121:5193-5239. [PMID: 33724814 PMCID: PMC8687107 DOI: 10.1021/acs.chemrev.0c01005] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Iron is an indispensable metabolic cofactor in both pro- and eukaryotes, which engenders a natural competition for the metal between bacterial pathogens and their human or animal hosts. Bacteria secrete siderophores that extract Fe3+ from tissues, fluids, cells, and proteins; the ligand gated porins of the Gram-negative bacterial outer membrane actively acquire the resulting ferric siderophores, as well as other iron-containing molecules like heme. Conversely, eukaryotic hosts combat bacterial iron scavenging by sequestering Fe3+ in binding proteins and ferritin. The variety of iron uptake systems in Gram-negative bacterial pathogens illustrates a range of chemical and biochemical mechanisms that facilitate microbial pathogenesis. This document attempts to summarize and understand these processes, to guide discovery of immunological or chemical interventions that may thwart infectious disease.
Collapse
Affiliation(s)
- Phillip E Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Salete M C Newton
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - David A Six
- Venatorx Pharmaceuticals, Inc., 30 Spring Mill Drive, Malvern, Pennsylvania 19355, United States
| | - Ashish Kumar
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Taihao Yang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Brittany L Nairn
- Department of Biological Sciences, Bethel University, 3900 Bethel Drive, St. Paul, Minnesota 55112, United States
| | - Colton Munger
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Somnath Chakravorty
- Jacobs School of Medicine and Biomedical Sciences, SUNY Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
45
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
46
|
Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics. Adv Drug Deliv Rev 2021; 172:339-360. [PMID: 33705882 DOI: 10.1016/j.addr.2021.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
To win the battle against resistant, pathogenic bacteria, novel classes of anti-infectives and targets are urgently needed. Bacterial uptake, distribution, metabolic and efflux pathways of antibiotics in Gram-negative bacteria determine what we here refer to as bacterial bioavailability. Understanding these mechanisms from a chemical perspective is essential for anti-infective activity and hence, drug discovery as well as drug delivery. A systematic and critical discussion of in bacterio, in vitro and in silico assays reveals that a sufficiently accurate holistic approach is still missing. We expect new findings based on Gram-negative bacterial bioavailability to guide future anti-infective research.
Collapse
|
47
|
Hörömpöli D, Ciglia C, Glüsenkamp KH, Haustedt LO, Falkenstein-Paul H, Bendas G, Berscheid A, Brötz-Oesterhelt H. The Antibiotic Negamycin Crosses the Bacterial Cytoplasmic Membrane by Multiple Routes. Antimicrob Agents Chemother 2021; 65:e00986-20. [PMID: 33468467 PMCID: PMC8097410 DOI: 10.1128/aac.00986-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 01/12/2021] [Indexed: 11/26/2022] Open
Abstract
Negamycin is a natural pseudodipeptide antibiotic with promising activity against Gram-negative and Gram-positive bacteria, including Enterobacteriaceae, Pseudomonas aeruginosa, and Staphylococcus aureus, and good efficacy in infection models. It binds to ribosomes with a novel binding mode, stimulating miscoding and inhibiting ribosome translocation. We were particularly interested in studying how the small, positively charged natural product reaches its cytoplasmic target in Escherichia coli Negamycin crosses the cytoplasmic membrane by multiple routes depending on environmental conditions. In a peptide-free medium, negamycin uses endogenous peptide transporters for active translocation, preferentially the dipeptide permease Dpp. However, in the absence of functional Dpp or in the presence of outcompeting nutrient peptides, negamycin can still enter the cytoplasm. We observed a contribution of the DppA homologs SapA and OppA, as well as of the proton-dependent oligopeptide transporter DtpD. Calcium strongly improves the activity of negamycin against both Gram-negative and Gram-positive bacteria, especially at concentrations around 2.5 mM, reflecting human blood levels. Calcium forms a complex with negamycin and facilitates its interaction with negatively charged phospholipids in bacterial membranes. Moreover, decreased activity at acidic pH and under anaerobic conditions points to a role of the membrane potential in negamycin uptake. Accordingly, improved activity at alkaline pH could be linked to increased uptake of [3H]negamycin. The diversity of options for membrane translocation is reflected by low resistance rates. The example of negamycin demonstrates that membrane passage of antibiotics can be multifaceted and that for cytoplasmic anti-Gram-negative drugs, understanding of permeation and target interaction are equally important.
Collapse
Affiliation(s)
- Daniel Hörömpöli
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
- German Center of Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
| | - Catherine Ciglia
- Institute of Pharmaceutical Biology, University of Duesseldorf, Duesseldorf, Germany
| | | | | | - Hildegard Falkenstein-Paul
- Pharmaceutical Institute, Department of Pharmaceutical & Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, Department of Pharmaceutical & Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Anne Berscheid
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
- German Center of Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
- Institute of Pharmaceutical Biology, University of Duesseldorf, Duesseldorf, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tuebingen, Tuebingen, Germany
- German Center of Infection Research (DZIF), Partner Site Tuebingen, Tuebingen, Germany
- Institute of Pharmaceutical Biology, University of Duesseldorf, Duesseldorf, Germany
- Cluster of Excellence 2124: Controlling Microbes to Fight Infection, Tuebingen, Germany
| |
Collapse
|
48
|
Abstract
Antibiotic-resistant bacteria rapidly spread in clinical and natural environments and challenge our modern lifestyle. A major component of defense against antibiotics in Gram-negative bacteria is a drug permeation barrier created by active efflux across the outer membrane. We identified molecular determinants defining the propensity of small peptidomimetic molecules to avoid and inhibit efflux pumps in Pseudomonas aeruginosa, a human pathogen notorious for its antibiotic resistance. Combining experimental and computational protocols, we mapped the fate of the compounds from structure-activity relationships through their dynamic behavior in solution, permeation across both the inner and outer membranes, and interaction with MexB, the major efflux transporter of P. aeruginosa We identified predictors of efflux avoidance and inhibition and demonstrated their power by using a library of traditional antibiotics and compound series and by generating new inhibitors of MexB. The identified predictors will enable the discovery and optimization of antibacterial agents suitable for treatment of P. aeruginosa infections.IMPORTANCE Efflux pump avoidance and inhibition are desired properties for the optimization of antibacterial activities against Gram-negative bacteria. However, molecular and physicochemical interactions defining the interface between compounds and efflux pumps remain poorly understood. We identified properties that correlate with efflux avoidance and inhibition, are predictive of similar features in structurally diverse compounds, and allow researchers to distinguish between efflux substrates, inhibitors, and avoiders in P. aeruginosa The developed predictive models are based on the descriptors representative of different clusters comprising a physically intuitive combination of properties. Molecular shape (represented by acylindricity), amphiphilicity (anisotropic polarizability), aromaticity (number of aromatic rings), and the partition coefficient (LogD) are physicochemical predictors of efflux inhibitors, whereas interactions with Pro668 and Leu674 residues of MexB distinguish between inhibitors/substrates and efflux avoiders. The predictive models and efflux rules are applicable to compounds with unrelated chemical scaffolds and pave the way for development of compounds with the desired efflux interface properties.
Collapse
|
49
|
Zhao S, Adamiak JW, Bonifay V, Mehla J, Zgurskaya HI, Tan DS. Defining new chemical space for drug penetration into Gram-negative bacteria. Nat Chem Biol 2020; 16:1293-1302. [PMID: 33199906 PMCID: PMC7897441 DOI: 10.1038/s41589-020-00674-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
We live in the era of antibiotic resistance, and this problem will progressively worsen if no new solutions emerge. In particular, Gram-negative pathogens present both biological and chemical challenges that hinder the discovery of new antibacterial drugs. First, these bacteria are protected from a variety of structurally diverse drugs by a low-permeability barrier composed of two membranes with distinct permeability properties, in addition to active drug efflux, making this cell envelope impermeable to most compounds. Second, chemical libraries currently used in drug discovery contain few compounds that can penetrate Gram-negative bacteria. As a result of these challenges, intensive screening campaigns have led to few successes, highlighting the need for new approaches to identify regions of chemical space that are specifically relevant to antibacterial drug discovery. Herein we provide an overview of emerging insights into this problem and outline a general approach to addressing it using prospective analysis of chemical libraries for the ability of compounds to accumulate in Gram-negative bacteria. The overall goal is to develop robust cheminformatic tools to predict Gram-negative permeation and efflux, which can then be used to guide medicinal chemistry campaigns and the design of antibacterial discovery libraries.
Collapse
Affiliation(s)
- Shibin Zhao
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justyna W Adamiak
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Vincent Bonifay
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, USA.
| | - Derek S Tan
- Chemical Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Tri-Institutional Research Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
50
|
Winterhalter M. Antibiotic uptake through porins located in the outer membrane of Gram-negative bacteria. Expert Opin Drug Deliv 2020; 18:449-457. [PMID: 33161750 DOI: 10.1080/17425247.2021.1847080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Making selective inhibitors of novel Gram-negative targets is not a substantial challenge - getting them into Gram-negative bacteria to reach their lethal target is the bottleneck. Poor permeability of the antibiotic requires high concentration causing off target activity. The lack of simple experimental techniques to measure antibiotic uptake as well as the local concentration at the target site creates a particular bottleneck in understanding and in improving the antibiotic activity.Areas covered: Here we recall current approaches to quantify the uptake. For a few antibiotics with known evidence for channel-limited permeation, the flux across a single OmpF or OmpC channel has been measured. For a typical concentration gradient of 1 µM of antibiotics the uptake varies between one up to few hundred molecules per second and per channel.Expert opinion: The current research effort is on quantifying the flux for a larger list of compounds on a cellular (mass spectra, fluorescence) or at single channel level (electrophysiology). A larger dataset of single channel permeabilities under various condition will be a powerful tool for understanding and improving the activity of antibiotics.
Collapse
|