1
|
Semikolenova OA, Golyshev VM, Kim BH, Venyaminova AG, Novopashina DS. New Two-Component Pyrene Probes Based on Oligo(2'-O-Methylribonucleotides) for microRNA Detection. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Ayyavoo K, Velusamy P. Pyrene based materials as fluorescent probes in chemical and biological fields. NEW J CHEM 2021. [DOI: 10.1039/d1nj00158b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecules that experience a change in their fluorescence emission due to the effect of fluorescence enhancement upon binding events, like chemical reactions or a change in their immediate environment, are regarded as fluorescent probes.
Collapse
Affiliation(s)
- Kannan Ayyavoo
- Department of Chemistry
- Bharathiar University
- Coimbatore – 641046
- India
| | - Praveena Velusamy
- Department of Chemistry
- Bharathiar University
- Coimbatore – 641046
- India
| |
Collapse
|
3
|
Naya M, Sato C. Pyrene Excimer-Based Fluorescent Labeling of Cysteines Brought into Close Proximity by Protein Dynamics: ASEM-Induced Thiol-Ene Click Reaction for High Spatial Resolution CLEM. Int J Mol Sci 2020; 21:E7550. [PMID: 33066147 PMCID: PMC7589919 DOI: 10.3390/ijms21207550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy (FM) has revealed vital molecular mechanisms of life. Mainly, molecules labeled by fluorescent probes are imaged. However, the diversity of labeling probes and their functions remain limited. We synthesized a pyrene-based fluorescent probe targeting SH groups, which are important for protein folding and oxidative stress sensing in cells. The labeling achieved employs thiol-ene click reactions between the probes and SH groups and is triggered by irradiation by UV light or an electron beam. When two tagged pyrene groups were close enough to be excited as a dimer (excimer), they showed red-shifted fluorescence; theoretically, the proximity of two SH residues within ~30 Å can thus be monitored. Moreover, correlative light/electron microscopy (CLEM) was achieved using our atmospheric scanning electron microscope (ASEM); radicals formed in liquid by the electron beam caused the thiol-ene click reactions, and excimer fluorescence of the labeled proteins in cells and tissues was visualized by FM. Since the fluorescent labeling is induced by a narrow electron beam, high spatial resolution labeling is expected. The method can be widely applied to biological fields, for example, to study protein dynamics with or without cysteine mutagenesis, and to beam-induced micro-fabrication and the precise post-modification of materials.
Collapse
Affiliation(s)
- Masami Naya
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan;
| | - Chikara Sato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan;
- Master’s and Doctoral Programs in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| |
Collapse
|
4
|
Dinda S, Sultana T, Sultana S, Patra SC, Mitra AK, Roy S, Pramanik K, Ganguly S. Ruthenocycles of benzothiazolyl and pyridyl hydrazones with ancillary PAHs: synthesis, structure, electrochemistry and antimicrobial activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj01447h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The antimicrobial activity of ruthenocycles of pyridyl and benzothiazolyl hydrazones has been investigated. The study established that such activity is comparatively higher for the complex containing benzothiazolyl hydrazone.
Collapse
Affiliation(s)
- Soumitra Dinda
- Department of Chemistry
- St. Xavier's College (Autonomous)
- Kolkata – 700016
- India
| | - Tamanna Sultana
- Department of Microbiology
- St. Xavier's College (Autonomous)
- Kolkata – 700016
- India
| | - Suhana Sultana
- Department of Microbiology
- St. Xavier's College (Autonomous)
- Kolkata – 700016
- India
| | | | - Arup Kumar Mitra
- Department of Microbiology
- St. Xavier's College (Autonomous)
- Kolkata – 700016
- India
| | - Subhadip Roy
- Department of Chemistry
- The ICFAI University Tripura
- India
| | | | - Sanjib Ganguly
- Department of Chemistry
- St. Xavier's College (Autonomous)
- Kolkata – 700016
- India
| |
Collapse
|
5
|
Benni I, Trabuco MC, Di Stasio E, Arcovito A, Boffi A, Malatesta F, Bonamore A, De Panfilis S, de Turris V, Baiocco P. Excimer based fluorescent pyrene-ferritin conjugate for protein oligomerization studies and imaging in living cells. RSC Adv 2018; 8:12815-12822. [PMID: 35541244 PMCID: PMC9079363 DOI: 10.1039/c8ra00210j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/23/2018] [Indexed: 11/21/2022] Open
Abstract
Ferritin self-assembly has been widely exploited for the synthesis of a variety of nanoparticles for drug-delivery and diagnostic applications. However, despite the crucial role of ferritin self-assembly mechanism for probes encapsulation, little is known about the principles behind the oligomerization mechanism. In the present work, the novel "humanized" chimeric Archaeal ferritin HumAfFt, displaying the transferrin receptor-1 (TfR1) recognition motif typical of human H homopolymer and the unique salt-triggered oligomerization properties of Archaeoglobus fulgidus ferritin (AfFt), was site-selectively labeled with N-(1-pyrenyl)maleimide on a topologically selected cysteine residue inside the protein cavity, next to the dimer interface. Pyrene characteristic fluorescence features were exploited to investigate the transition from a dimeric to a cage-like 24-meric state and to visualize the protein in vitro by two photon fluorescence microscopy. Indeed, pyrene fluorescence changes upon ferritin self-assembly allowed to establish, for the first time, the kinetic and thermodynamic details of the archaeal ferritins oligomerization mechanism. In particular, the magnesium induced oligomerization proved to be faster than the monovalent cation-triggered process, highly cooperative, complete at low MgCl2 concentrations, and reversed by treatment with EDTA. Moreover, pyrene intense excimer fluorescence was successfully visualized in vitro by two photon fluorescence microscopy as pyrene-labeled HumAfFt was actively uptaken into HeLa cells by human transferrin receptor TfR1 recognition, thus representing a unique nano-device building block for two photon fluorescence cell imaging.
Collapse
Affiliation(s)
- Irene Benni
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Matilde Cardoso Trabuco
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
- Molirom srl via Ravenna 8 00161 Rome Italy
| | - Enrico Di Stasio
- Institute of Biochemistry and Clinical Biochemistry, Catholic University Largo Francesco Vito, 1 00168 Rome Italy
| | - Alessandro Arcovito
- Institute of Biochemistry and Clinical Biochemistry, Catholic University Largo Francesco Vito, 1 00168 Rome Italy
| | - Alberto Boffi
- Institute of Molecular Biology and Pathology, National Research Council P.le A. Moro 7 00185 Rome Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia V.le Regina Elena 291 00161 Rome Italy
| | - Francesco Malatesta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Alessandra Bonamore
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Simone De Panfilis
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia V.le Regina Elena 291 00161 Rome Italy
| | - Valeria de Turris
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia V.le Regina Elena 291 00161 Rome Italy
| | - Paola Baiocco
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia V.le Regina Elena 291 00161 Rome Italy
| |
Collapse
|
6
|
Krasheninina OA, Novopashina DS, Apartsin EK, Venyaminova AG. Recent Advances in Nucleic Acid Targeting Probes and Supramolecular Constructs Based on Pyrene-Modified Oligonucleotides. Molecules 2017; 22:E2108. [PMID: 29189716 PMCID: PMC6150046 DOI: 10.3390/molecules22122108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/17/2022] Open
Abstract
In this review, we summarize the recent advances in the use of pyrene-modified oligonucleotides as a platform for functional nucleic acid-based constructs. Pyrene is of special interest for the development of nucleic acid-based tools due to its unique fluorescent properties (sensitivity of fluorescence to the microenvironment, ability to form excimers and exciplexes, long fluorescence lifetime, high quantum yield), ability to intercalate into the nucleic acid duplex, to act as a π-π-stacking (including anchoring) moiety, and others. These properties of pyrene have been used to construct novel sensitive fluorescent probes for the sequence-specific detection of nucleic acids and the discrimination of single nucleotide polymorphisms (SNPs), aptamer-based biosensors, agents for binding of double-stranded DNAs, and building blocks for supramolecular complexes. Special attention is paid to the influence of the design of pyrene-modified oligonucleotides on their properties, i.e., the structure-function relationships. The perspectives for the applications of pyrene-modified oligonucleotides in biomolecular studies, diagnostics, and nanotechnology are discussed.
Collapse
Affiliation(s)
- Olga A Krasheninina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Darya S Novopashina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Evgeny K Apartsin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| | - Alya G Venyaminova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Acad. Lavrentiev Ave. 8, Novosibirsk 630090, Russia.
| |
Collapse
|
7
|
Matwijczuk A, Górecki A, Makowski M, Pustuła K, Skrzypek A, Waś J, Niewiadomy A, Gagoś M. Spectroscopic and Theoretical Studies of Fluorescence Effects in 2-Methylamino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole Induced by Molecular Aggregation. J Fluoresc 2017; 28:65-77. [PMID: 28889356 PMCID: PMC5799588 DOI: 10.1007/s10895-017-2175-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/30/2017] [Indexed: 01/12/2023]
Abstract
The article presents the results of fluorescence analyses of 2-methylamino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole (MDFT) in an aqueous environment. MDFT dissolved in aqueous solutions with a pH value in the range from 1 to 4.5 yielded an interesting effect of two clearly separated fluorescence emissions. In turn, a single fluorescence was observed in MDFT dissolved in water solutions with a pH value from 4.5 to 12. As it was suggested in the previous investigations of other 1,3,4-thiadiazole compounds, these effects may be associated with conformational changes in the structure of the analysed molecule accompanied by aggregation effects. Crystallographic data showed that the effect of the two separated fluorescence emissions occurred in a conformation with the –OH group in the resorcyl ring bound on the side of the sulphur atom from the 1,3,4-thiadiazole ring. The hypothesis of aggregation as the mechanism involved in the change in the spectral properties at low pH is supported by the results of (Time-Dependent) Density Functional Theory calculations. The possibility of rapid analysis of conformational changes with the fluorescence spectroscopy technique may be rather important outcome obtained from the spectroscopic studies presented in this article. Additionally, the presented results seem to be highly important as they can be easily observed in solutions and biologically important samples.
Collapse
Affiliation(s)
- Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Marcin Makowski
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Katarzyna Pustuła
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Alicja Skrzypek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Joanna Waś
- Departament of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Andrzej Niewiadomy
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland.,Institute of Industrial Organic Chemistry, Annopol 6, 03-236, Warsaw, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
8
|
Astakhova K, Golovin AV, Prokhorenko IA, Ustinov AV, Stepanova IA, Zatsepin TS, Korshun VA. Design of 2′-phenylethynylpyrene excimer forming DNA/RNA probes for homogeneous SNP detection: The attachment manner matters. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|