1
|
Li J, Dong Z, Zhai H, Wu J, Zhao C. An Approach for Highly Enantioselective Synthesis of meta-Disubstituted [ n]Paracyclophanes. J Org Chem 2024; 89:15374-15379. [PMID: 39332022 DOI: 10.1021/acs.joc.4c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Atroposelective synthesis of meta-disubstituted [n]paracyclophanes is a difficult task in organic chemistry. We describe a facile approach for the synthesis of meta-disubstituted [n]paracyclophanes using Pd-catalyzed enantioselective C-H olefination and sequential reductive cleavage. A wide range of [n]paracyclophanes was obtained with excellent enantioselectivity. Thermodynamic analysis revealed that the rotational barrier of meta-disubstituted [n]paracyclophanes was lower than that of para-disubstituted [n]paracyclophanes. The synthesized planar-chiral [14]paracyclophane showed a bright fluorescence emission and impressive circularly polarized luminescence activity.
Collapse
Affiliation(s)
- Jia Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ziyang Dong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongxuan Zhai
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Scharnow A, Solinski AE, Rowe S, Drechsel I, Zhang H, Shaw E, Page JE, Wu H, Sieber SA, Wuest WM. In Situ Biofilm Affinity-Based Protein Profiling Identifies the Streptococcal Hydrolase GbpB as the Target of a Carolacton-Inspired Chemical Probe. J Am Chem Soc 2024; 146:23449-23456. [PMID: 39133525 PMCID: PMC11345752 DOI: 10.1021/jacs.4c06658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Natural products are important precursors for antibiotic drug design. These chemical scaffolds serve as synthetic inspiration for chemists who leverage their structures to develop novel antibacterials and chemical probes. We have previously studied carolacton, a natural product macrolactone fromSorangium cellulosum, and discovered a simplified derivative, A2, that maintained apparent biofilm inhibitory activity, although the biological target was unknown. Herein, we utilize affinity-based protein profiling (AfBPP) in situ during biofilm formation to identify the protein target using a photoexcitable cross-linking derivative of A2. From these studies, we identified glucan binding protein B (GbpB), a peptidoglycan hydrolase, as the primary target of A2. Further characterization of the interaction between A2 and GbpB, as well as PcsB, a closely related homologue from the more pathogenic S. pneumoniae, revealed binding to the catalytic CHAP (cysteine, histidine, aminopeptidase) domain. To the best of our knowledge, this is the first report of a small-molecule binder of a conserved and essential bacterial CHAP hydrolase, revealing its potential as an antibiotic target. This work also highlights A2 as a useful tool compound for streptococci and as an initial scaffold for the design of more potent CHAP binders.
Collapse
Affiliation(s)
- Amber
M. Scharnow
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Amy E. Solinski
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sebastian Rowe
- Department
of Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ines Drechsel
- Department
of Chemistry, Center for Functional Protein Assemblies, Technical University of Munich, Garching D-85747, Germany
| | - Hua Zhang
- Departments
of Pediatric Dentistry, Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham 35294, Alabama, United States
| | - Elana Shaw
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Julia E. Page
- Department
of Microbiology, Blavatnik Institute, Harvard
Medical School, Boston, Massachusetts 02115, United States
| | - Hui Wu
- Departments
of Pediatric Dentistry, Microbiology, Schools of Dentistry and Medicine, University of Alabama at Birmingham, Birmingham 35294, Alabama, United States
| | - Stephan A. Sieber
- Department
of Chemistry, Center for Functional Protein Assemblies, Technical University of Munich, Garching D-85747, Germany
| | - William M. Wuest
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Qiu Z, Huang R, Wu Y, Li X, Sun C, Ma Y. Decoding the Structural Diversity: A New Horizon in Antimicrobial Prospecting and Mechanistic Investigation. Microb Drug Resist 2024; 30:254-272. [PMID: 38648550 DOI: 10.1089/mdr.2023.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) underscores the urgent need for novel antimicrobials. One promising strategy is the exploration of structural diversity, as diverse structures can lead to diverse biological activities and mechanisms of action. This review delves into the role of structural diversity in antimicrobial discovery, highlighting its influence on factors such as target selectivity, binding affinity, pharmacokinetic properties, and the ability to overcome resistance mechanisms. We discuss various approaches for exploring structural diversity, including combinatorial chemistry, diversity-oriented synthesis, and natural product screening, and provide an overview of the common mechanisms of action of antimicrobials. We also describe techniques for investigating these mechanisms, such as genomics, proteomics, and structural biology. Despite significant progress, several challenges remain, including the synthesis of diverse compound libraries, the identification of active compounds, the elucidation of complex mechanisms of action, the emergence of AMR, and the translation of laboratory discoveries to clinical applications. However, emerging trends and technologies, such as artificial intelligence, high-throughput screening, next-generation sequencing, and open-source drug discovery, offer new avenues to overcome these challenges. Looking ahead, we envisage an exciting future for structural diversity-oriented antimicrobial discovery, with opportunities for expanding the chemical space, harnessing the power of nature, deepening our understanding of mechanisms of action, and moving toward personalized medicine and collaborative drug discovery. As we face the continued challenge of AMR, the exploration of structural diversity will be crucial in our search for new and effective antimicrobials.
Collapse
Affiliation(s)
- Ziying Qiu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Rongkun Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yuxuan Wu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xinghao Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunyu Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Li J, Dong Z, Chen Y, Yang Z, Yan X, Wang M, Li C, Zhao C. N-Heterocyclic carbene-catalyzed enantioselective synthesis of planar-chiral cyclophanes via dynamic kinetic resolution. Nat Commun 2024; 15:2338. [PMID: 38491016 PMCID: PMC10943026 DOI: 10.1038/s41467-024-46376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/23/2024] [Indexed: 03/18/2024] Open
Abstract
Planar-chiral cyclophanes have gained considerable concerns for drug discovery due to their unique conformational strain and 3D structure. However, the enantioselective synthesis of planar-chiral cyclophanes is a long-standing challenge for the synthetic community. We herein describe an N-heterocyclic carbene (NHC)-catalyzed asymmetric construction of planar-chiral cyclophanes. This transformation occurs through a dynamic kinetic resolution (DKR) process to convert racemic substrates into planar-chiral macrocycle scaffolds in good to high yields with high to excellent enantioselectivities. The ansa chain length and aromatic ring substituent size is crucial to achieve the DKR approach. Controlled experiments and DFT calculations were performed to clarify the DKR process.
Collapse
Affiliation(s)
- Jiayan Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ziyang Dong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhanhui Yang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinen Yan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Meng Wang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Changgui Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
5
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20-Membered Macrocyclic Pseudo-Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022; 61:e202114328. [PMID: 34978373 PMCID: PMC9303634 DOI: 10.1002/anie.202114328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 01/02/2023]
Abstract
Design and synthesis of pseudo-natural products (PNPs) through recombination of natural product (NP) fragments in unprecedented arrangements enables the discovery of novel biologically relevant chemical matter. With a view to wider coverage of NP-inspired chemical and biological space, we describe the combination of this principle with macrocycle formation. PNP-macrocycles were synthesized efficiently in a stereoselective one-pot procedure including the 1,3-dipolar cycloadditions of different dipolarophiles with dimeric cinchona alkaloid-derived azomethine ylides formed in situ. The 20-membered bis-cycloadducts embody 18 stereocenters and an additional fragment-sized NP-structure. After further functionalization, a collection of 163 macrocyclic PNPs was obtained. Biological investigation revealed potent inducers of the lipidation of the microtubule associated protein 1 light chain 3 (LC3) protein, which plays a prominent role in various autophagy-related processes.
Collapse
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Anastasia Knyazeva
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Raphael Gasper
- Max Planck Institute of Molecular PhysiologyCrystallography and Biophysics UnitOtto-Hahn-Strasse 1144227DortmundGermany
| | - Dale Corkery
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Julian J. Holstein
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
- Technical University DortmundFaculty of Chemistry, Inorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS)Otto-Hahn-Strasse 1144221DortmundGermany
| | - Yao‐Wen Wu
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
6
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20‐Membered Macrocyclic Pseudo‐Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Anastasia Knyazeva
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology Crystallography and Biophysics Unit Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Dale Corkery
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Julian J. Holstein
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS) Otto-Hahn-Strasse 11 44221 Dortmund Germany
| | - Yao‐Wen Wu
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
7
|
Srinivasulu V, Srikanth G, Khanfar MA, Abu-Yousef IA, Majdalawieh AF, Mazitschek R, Setty SC, Sebastian A, Al-Tel TH. Stereodivergent Complexity-to-Diversity Strategy en Route to the Synthesis of Nature-Inspired Skeleta. J Org Chem 2022; 87:1377-1397. [PMID: 35014258 DOI: 10.1021/acs.joc.1c02698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The complexity-to-diversity (CtD) strategy has become one of the most powerful tools used to transform complex natural products into diverse skeleta. However, the reactions utilized in this process are often limited by their compatibility with existing functional groups, which in turn restricts access to the desired skeletal diversity. In the course of employing a CtD strategy en route to the synthesis of natural product-inspired compounds, our group has developed several stereodivergent strategies employing indoloquinolizine natural product analogues as starting materials. These transformations led to the rapid and diastereoselective synthesis of diverse classes of natural product-like architectures, including camptothecin-inspired analogues, azecane medium-sized ring systems, arborescidine-inspired systems, etc. This manifestation required a drastic modification of the synthetic design that ultimately led to modular and diastereoselective access to a diverse collection of various classes of biologically significant natural product analogues. The reported strategies provide a unique platform that will be broadly applicable to other late-stage natural product transformation approaches.
Collapse
Affiliation(s)
- Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Gourishetty Srikanth
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Monther A Khanfar
- College of Science, Department of Chemistry, Pure and Applied Chemistry Group, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Ralph Mazitschek
- Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Subbaiah Chennam Setty
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, P.O. Box 27272, Sharjah, UAE.,College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, UAE
| |
Collapse
|
8
|
Konan KE, Abollé A, Barré E, Aka EC, Coeffard V, Felpin FX. Developing flow photo-thiol–ene functionalizations of cinchona alkaloids with an autonomous self-optimizing flow reactor. REACT CHEM ENG 2022. [DOI: 10.1039/d1re00509j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Continuous flow photo-thiol–ene reactions on cinchona alkaloids with a variety of organic thiols have been developed using enabling technologies such as a self-optimizing flow photochemical reactor.
Collapse
Affiliation(s)
- Kouakou Eric Konan
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Abollé Abollé
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Elvina Barré
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - Ehu Camille Aka
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
- Laboratoire de Thermodynamique et de Physico-Chimie du Milieu, Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d'Ivoire
| | - Vincent Coeffard
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| | - François-Xavier Felpin
- CNRS, Université de Nantes, CEISAM UMR 6230, 2 rue de la Houssinière, 44322 Nantes, France
| |
Collapse
|
9
|
Yoneda T, Kojima N, Matsumoto T, Imahori D, Ohta T, Yoshida T, Watanabe T, Matsuda H, Nakamura S. Construction of sulfur-containing compounds with anti-cancer stem cell activity using thioacrolein derived from garlic based on nature-inspired scaffolds. Org Biomol Chem 2021; 20:196-207. [PMID: 34878480 DOI: 10.1039/d1ob01992a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfur-containing compounds, such as cyclic compounds with a vinyl sulfane structure, exhibit a wide range of biological activities including anticancer activity. Therefore, the development of efficient strategies to synthesize such compounds is a remarkable achievement. We have developed a unique approach for the rapid and modular preparation of nature-inspired cyclic and acyclic sulfur-containing compounds using thioacrolein, a naturally occurring chemically unstable intermediate. We constructed thiopyranone derivatives through the regioselective sequential double Diels-Alder reaction of thioacrolein produced by allicin, a major component in garlic, and two molecules of silyl enol ether as the diene partner. The cytotoxicity toward cancer stem cells of the thiopyranones was equal to or higher than that of (Z)-ajoene (positive control) derived from garlic, and the thiopyranones had higher chemical stability than (Z)-ajoene.
Collapse
Affiliation(s)
- Taichi Yoneda
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Naoto Kojima
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Takahiro Matsumoto
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Daisuke Imahori
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Tomoe Ohta
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-Cho, Sasebo, Nagasaki 859-3298, Japan
| | - Tatsusada Yoshida
- Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch-Cho, Sasebo, Nagasaki 859-3298, Japan
| | - Tetsushi Watanabe
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Hisashi Matsuda
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| | - Seikou Nakamura
- Kyoto Pharmaceutical University, 1 Misasagi-Shichono-cho, Yamashina-ku, Kyoto 607-8412, Japan.
| |
Collapse
|
10
|
Zhu L, Zhao RH, Li Y, Liu GQ, Zhao Y. CtD strategy to construct stereochemically complex and structurally diverse compounds from griseofulvin. Chem Commun (Camb) 2021; 57:10755-10758. [PMID: 34585686 DOI: 10.1039/d1cc04007c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Complexity to Diversity (CtD) strategy, a strategy for the synthesis of stereochemically complex and structurally diverse small molecules from natural products using ring-distortion reactions, was applied in the synthesis of a 47-member compound collection from the natural product griseofulvin. A Tsuji-Trost allylation and oxa-Michael cyclization tandem reaction was used for the first time in the CtD strategy to generate complex ring fused compounds.
Collapse
Affiliation(s)
- Li Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Rui-Han Zhao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Gong-Qing Liu
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
11
|
Motika SE, Hergenrother PJ. Re-engineering natural products to engage new biological targets. Nat Prod Rep 2020; 37:1395-1403. [PMID: 33034322 PMCID: PMC7720426 DOI: 10.1039/d0np00059k] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020 Natural products have a long history in drug discovery, with their inherent biological activity often tailored by medicinal chemists to arrive at the final drug product. This process is illustrated by numerous examples, including the conversion of epothilone to ixabepilone, erythromycin to azithromycin, and lovastatin to simvastatin. However, natural products are also fruitful starting points for the creation of complex and diverse compounds, especially those that are markedly different from the parent natural product and accordingly do not retain the biological activity of the parent. The resulting products have physiochemical properties that differ considerably when compared to traditional screening collections, thus affording an opportunity to discover novel biological activity. The synthesis of new structural frameworks from natural products thus yields value-added compounds, as demonstrated in the last several years with multiple biological discoveries emerging from these collections. This Highlight details a handful of these studies, describing new compounds derived from natural products that have biological activity and cellular targets different from those evoked/engaged by the parent. Such re-engineering of natural products offers the potential for discovering compounds with interesting and unexpected biological activity.
Collapse
Affiliation(s)
- Stephen E Motika
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| | - Paul J Hergenrother
- Department of Chemistry, Institute for Genomic Biology, Cancer Center at Illinois, University of Illinois, Urbana-Champaign, USA.
| |
Collapse
|
12
|
Mortensen KT, Osberger TJ, King TA, Sore HF, Spring DR. Strategies for the Diversity-Oriented Synthesis of Macrocycles. Chem Rev 2019; 119:10288-10317. [DOI: 10.1021/acs.chemrev.9b00084] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kim T. Mortensen
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Thomas J. Osberger
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Thomas A. King
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Hannah F. Sore
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
13
|
Llabani E, Hicklin RW, Lee HY, Motika SE, Crawford LA, Weerapana E, Hergenrother PJ. Diverse compounds from pleuromutilin lead to a thioredoxin inhibitor and inducer of ferroptosis. Nat Chem 2019; 11:521-532. [PMID: 31086302 PMCID: PMC6639018 DOI: 10.1038/s41557-019-0261-6] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 03/25/2019] [Indexed: 02/08/2023]
Abstract
The chemical diversification of natural products provides a robust and general method for the creation of stereochemically rich and structurally diverse small molecules. The resulting compounds have physicochemical traits different from those in most screening collections, and as such are an excellent source for biological discovery. Herein, we subject the diterpene natural product pleuromutilin to reaction sequences focused on creating ring system diversity in few synthetic steps. This effort resulted in a collection of compounds with previously unreported ring systems, providing a novel set of structurally diverse and highly complex compounds suitable for screening in a variety of different settings. Biological evaluation identified the novel compound ferroptocide, a small molecule that rapidly and robustly induces ferroptotic death of cancer cells. Target identification efforts and CRISPR knockout studies reveal that ferroptocide is an inhibitor of thioredoxin, a key component of the antioxidant system in the cell. Ferroptocide positively modulates the immune system in a murine model of breast cancer and will be a useful tool to study the utility of pro-ferroptotic agents for treatment of cancer.
Collapse
Affiliation(s)
- Evijola Llabani
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Robert W Hicklin
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Hyang Yeon Lee
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Stephen E Motika
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Lisa A Crawford
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | | - Paul J Hergenrother
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
14
|
Silva DG, Emery FDS. Strategies towards expansion of chemical space of natural product-based compounds to enable drug discovery. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902018000001004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
15
|
Tasker SZ, Cowfer AE, Hergenrother PJ. Preparation of Structurally Diverse Compounds from the Natural Product Lycorine. Org Lett 2018; 20:5894-5898. [PMID: 30204451 PMCID: PMC6499378 DOI: 10.1021/acs.orglett.8b02562] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The synthesis of a 52-member compound collection from the natural product lycorine is reported, highlighted by divergent cross-coupling and substitution strategies and an unusual ring rearrangement induced by reaction with aryne intermediates.
Collapse
Affiliation(s)
- Sarah Z. Tasker
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Amanda E. Cowfer
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Paul J. Hergenrother
- Department of Chemistry, Roger Adams Laboratory, University of Illinois at Urbana—Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Pawar TJ, Jiang H, Vázquez MA, Villegas Gómez C, Cruz Cruz D. Aminocatalytic Privileged Diversity-Oriented Synthesis (ApDOS): An Efficient Strategy to Populate Relevant Chemical Spaces. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tushar J. Pawar
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| | - Hao Jiang
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| | - Miguel A. Vázquez
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| | - Clarisa Villegas Gómez
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| | - David Cruz Cruz
- Departamento de Química; División de Ciencias Naturales y Exactas; Universidad de Guanajuato; Noria Alta S/N 36050 Guanajuato Gto. México
| |
Collapse
|
17
|
Early Probe and Drug Discovery in Academia: A Minireview. High Throughput 2018; 7:ht7010004. [PMID: 29485615 PMCID: PMC5876530 DOI: 10.3390/ht7010004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 12/21/2022] Open
Abstract
Drug discovery encompasses processes ranging from target selection and validation to the selection of a development candidate. While comprehensive drug discovery work flows are implemented predominantly in the big pharma domain, early discovery focus in academia serves to identify probe molecules that can serve as tools to study targets or pathways. Despite differences in the ultimate goals of the private and academic sectors, the same basic principles define the best practices in early discovery research. A successful early discovery program is built on strong target definition and validation using a diverse set of biochemical and cell-based assays with functional relevance to the biological system being studied. The chemicals identified as hits undergo extensive scaffold optimization and are characterized for their target specificity and off-target effects in in vitro and in animal models. While the active compounds from screening campaigns pass through highly stringent chemical and Absorption, Distribution, Metabolism, and Excretion (ADME) filters for lead identification, the probe discovery involves limited medicinal chemistry optimization. The goal of probe discovery is identification of a compound with sub-µM activity and reasonable selectivity in the context of the target being studied. The compounds identified from probe discovery can also serve as starting scaffolds for lead optimization studies.
Collapse
|
18
|
Alihodžić S, Bukvić M, Elenkov IJ, Hutinec A, Koštrun S, Pešić D, Saxty G, Tomašković L, Žiher D. Current Trends in Macrocyclic Drug Discovery and beyond -Ro5. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:113-233. [DOI: 10.1016/bs.pmch.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|