1
|
Rathod NV, Mishra S. Synthesis and Biological Evaluation of Bile Acid-Triclosan Conjugates: A Study on Antibacterial, Antibiofilm, and Molecular Docking. Bioconjug Chem 2025. [PMID: 39841879 DOI: 10.1021/acs.bioconjchem.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
This work describes the synthesis, characterization, and antibacterial properties of four bile acid-triclosan conjugates. The in vitro antibacterial activity of synthetic bile acid-triclosan conjugates was investigated against a panel of Gram-positive and Gram-negative bacteria. Conjugates 3 and 4 show high activity against Escherichia coli (ATCC25922), with IC50 values of 2.94 ± 0.7 and 1.51 ± 0.05 μM, respectively. Conjugate 4 demonstrated 9 times the activity of triclosan (6.77 μM) and 18 times the potency of kanamycin, a well-known antibiotic. Compound 3 showed higher potential activity against all evaluated strains, including Bacillus megaterium (IC50: 3.05 ± 0.02), Bacillus amyloquefaciens (IC50: 8.79 ± 0.01), Serratia marcescens (IC50: 6.77 ± 0.4), and E. coli (IC50: 1.51 ± 0.05 μM). These findings indicate that it has broad-spectrum antibacterial activity. Bile acid-triclosan conjugates prevent biofilms by up to 99% at low doses (conjugates 4; 4.16 ± 0.8 μM), compared to triclosan. Conjugate 5 was most potent against B. amyloquefaciens (IC50 = 5.23 ± 0.2 μM), while conjugate 4 was most effective against B. megaterium (IC50 = 4.16 ± 0.8 μM) in biofilm formation. These conjugates inhibit biofilm formation by limiting the extracellular polymeric substance generation. The in vitro antibacterial study revealed that bile acid-triclosan conjugates were more effective than the parent molecule triclosan at inhibiting bacterial growth and biofilm formation against both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Neha V Rathod
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382426, India
| | - Satyendra Mishra
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar 382426, India
| |
Collapse
|
2
|
Dutra MJ, Malta IS, de Almeida Lança ML, de Vasconcellos LMR, Adorno-Farias D, Jara JA, Kaminagakura E. Effects of artemisinin and cisplatin on the malignant progression of oral leukoplakia. In vitro and in vivo study. J Cancer Res Clin Oncol 2024; 150:390. [PMID: 39154308 PMCID: PMC11330948 DOI: 10.1007/s00432-024-05924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVES Chemoprevention can be a treatment for potentially malignant lesions (PMLs). We aimed to evaluate whether artemisinin (ART) and cisplatin (CSP) are associated with apoptosis and immunogenic cell death (ICD) in vitro, using oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC) cell lines, and whether these compounds prevent OL progression in vivo. METHODS Normal keratinocytes (HaCat), Dysplastic oral cells (DOK), and oral squamous cell carcinoma (SCC-180) cell lines were treated with ART, CSP, and ART + CSP to analyze cytotoxicity, genotoxicity, cell migration, and increased expression of proteins related to apoptosis and ICD. Additionally, 41 mice were induced with OL using 4NQO, treated with ART and CSP, and their tongues were histologically analyzed. RESULTS In vitro, CSP and CSP + ART showed dose-dependent cytotoxicity and reduced SCC-180 migration. No treatment was genotoxic, and none induced expression of proteins related to apoptosis and ICD; CSP considerably reduced High-mobility group box-1 (HMGB-1) protein expression in SCC-180. In vivo, there was a delay in OL progression with ART and CSP treatment; however, by the 16th week, only CSP prevented progression to OSCC. CONCLUSION Expression of proteins related to ICD and apoptosis did not increase with treatments, and CSP was shown to reduce immunogenic pathways in SCC-180, while reducing cell migration. ART did not prevent the malignant progression of OL in vivo; CSP did despite significant adverse effects.
Collapse
Affiliation(s)
- Mateus José Dutra
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Isabella Souza Malta
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Maria Leticia de Almeida Lança
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil
| | - Daniela Adorno-Farias
- Oral Medicine and Pathology Department, School of Dentistry, Universidad de Chile, Santiago, Chile
| | - José Antonio Jara
- Faculty of Dentistry, Institute for Research in Dental Sciences, Universidad de Chile, Santiago, Chile
| | - Estela Kaminagakura
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, University of São Paulo State, Avenue Engenheiro Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil.
| |
Collapse
|
3
|
Xu W, Zou X, Zha Y, Zhang J, Bian H, Shen Z. Novel Bis-Artemisinin-Phloroglucinol hybrid molecules with dual anticancer and immunomodulatory Activities: Synthesis and evaluation. Bioorg Chem 2023; 139:106705. [PMID: 37406517 DOI: 10.1016/j.bioorg.2023.106705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
Bis-(10-deoxydihydroartemisinin)-phloroglucinol (9), has been synthesized in a one-step reaction and has demonstrated strong inhibition to cancer cell proliferation and immunosuppressive activity. The structure modification of the compound reduced its cytotoxicity, and among the analogs, bis-(10-deoxydihydroartemisinin)-phloroglucinol phenyl decanoate (16) showed significant reduction of ear swelling in a mouse model for DNFB-induced delayed-type hypersensitivity without observable toxicity in a dose-dependent manner.
Collapse
Affiliation(s)
- Wei Xu
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China
| | - Yufeng Zha
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Jinghua Zhang
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China
| | - Hongzhu Bian
- Yunnan Baiyao Group Co. Ltd., 3686 Yunnan Baiyao Street, Kunming 650200, China
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Road, Shanghai 201203, China.
| |
Collapse
|
4
|
Marchesi E, Perrone D, Navacchia ML. Molecular Hybridization as a Strategy for Developing Artemisinin-Derived Anticancer Candidates. Pharmaceutics 2023; 15:2185. [PMID: 37765156 PMCID: PMC10536797 DOI: 10.3390/pharmaceutics15092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents. Hybridization resulting from a covalent combination of artemisinin with one or more active pharmacophores has emerged as a promising approach to overcome several issues. The variety of hybridization partners allows improvement in artemisinin activity by tuning the ability of conjugated artemisinin to interact with various molecule targets involved in multiple biological pathways. This review highlights the current scenario of artemisinin-derived hybrids with potential anticancer activity. The synthetic approaches to achieve the corresponding hybrids and the structure-activity relationships are discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy
| |
Collapse
|
5
|
Novel artemisinin derivative FO8643 with anti-angiogenic activity inhibits growth and migration of cancer cells via VEGFR2 signaling. Eur J Pharmacol 2022; 930:175158. [PMID: 35878807 DOI: 10.1016/j.ejphar.2022.175158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 11/03/2022]
Abstract
The vascular endothelial growth factor receptor 2 (VEGFR2) is widely recognized as a key effector in angiogenesis and cancer progression and has been considered a critical target for the development of anti-cancer drugs. Artemisinin (ARS) and its derivatives exert profound efficacy in treating not only malaria but also cancer. As a novel ARS-type compound, FO8643 caused significant suppression of the growth of a panel of cancer cells, including both solid and hematologic malignancies. In CCRF-CEM leukemia cells, FO8643 dramatically inhibited cell proliferation coupled with increased apoptosis and cell cycle arrest. Additionally, FO8643 restrained cell migration in the 2D wound healing assay as well as in a 3D spheroid model of human hepatocellular carcinoma HUH-7 cells. Importantly, SwissTargetPrediction predicted VEGFR2 as an underlying target for FO8643. Molecular docking simulation further indicated that FO8643 forms hydrogen bonds and hydrophobic interactions within the VEGFR2 kinase domain. Moreover, FO8643 directly inhibited VEGFR2 kinase activity and its downstream action including MAPK and PI3K/Akt signaling pathways in HUH-7 cells. Encouragingly, FO8643 decreased angiogenesis in the chorioallantoic membrane assay in vivo. Collectively, FO8643 is a novel ARS-type compound exerting potential VEGFR2 inhibition. FO8643 may be a viable drug candidate in cancer therapy.
Collapse
|
6
|
Advantages of combined photodynamic therapy in the treatment of oncological diseases. Biophys Rev 2022; 14:941-963. [DOI: 10.1007/s12551-022-00962-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/24/2022] [Indexed: 12/22/2022] Open
|
7
|
Zhang S, Yi C, Li WW, Luo Y, Wu YZ, Ling HB. The current scenario on anticancer activity of artemisinin metal complexes, hybrids, and dimers. Arch Pharm (Weinheim) 2022; 355:e2200086. [PMID: 35484335 DOI: 10.1002/ardp.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Cancer, the most significant cause of morbidity and mortality, has already posed a heavy burden on health care systems globally. In recent years, cancer treatment has made a significant breakthrough, but cancer cells inevitably acquire resistance, and the efficacy of the treatment is greatly reduced as the tumor progresses. To overcome the above issues, novel chemotherapeutics are needed urgently. Artemisinin and its derivatives-sesquiterpene lactone compounds possessing a unique peroxy bridge moiety-exhibit excellent safety and tolerability profiles. Mechanistically, artemisinin derivatives can promote cancer cell apoptosis, induce cell cycle arrest and autophagy, and inhibit cancer cell invasion and migration. Accordingly, artemisinin derivatives demonstrate promising anticancer efficacy both in vitro and in vivo, and even in clinical Phase I/II trials. The purpose of the present review article is to provide an emphasis on the current scenario (January 2017-January 2022) of artemisinin derivatives with potential anticancer activity, inclusive of artemisinin metal complexes, hybrids, and dimers. The structure-activity relationships and mechanisms of action are also discussed to facilitate the further rational design of more effective candidates.
Collapse
Affiliation(s)
- Shu Zhang
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Chuan Yi
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Wei-Wei Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yang Luo
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Yi-Zhe Wu
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| | - Hai-Bo Ling
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
8
|
Artemisinin and Derivatives-Based Hybrid Compounds: Promising Therapeutics for the Treatment of Cancer and Malaria. Molecules 2021; 26:molecules26247521. [PMID: 34946603 PMCID: PMC8707619 DOI: 10.3390/molecules26247521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 01/12/2023] Open
Abstract
Cancer and malaria are major health conditions around the world despite many strategies and therapeutics available for their treatment. The most used strategy for the treatment of these diseases is the administration of therapeutic drugs, which suffer from several shortcomings. Some of the pharmacological limitations associated with these drugs are multi-drug resistance, drug toxicity, poor biocompatibility and bioavailability, and poor water solubility. The currently ongoing preclinical studies have demonstrated that combination therapy is a potent approach that can overcome some of the aforementioned limitations. Artemisinin and its derivatives have been reported to exhibit potent efficacy as anticancer and antimalarial agents. This review reports hybrid compounds containing artemisinin scaffolds and their derivatives with promising therapeutic effects for the treatment of cancer and malaria.
Collapse
|
9
|
Zou X, Liu C, Li C, Fu R, Xu W, Bian H, Dong X, Zhao X, Xu Z, Zhang J, Shen Z. Study on the structure-activity relationship of dihydroartemisinin derivatives: Discovery, synthesis, and biological evaluation of dihydroartemisinin-bile acid conjugates as potential anticancer agents. Eur J Med Chem 2021; 225:113754. [PMID: 34399390 DOI: 10.1016/j.ejmech.2021.113754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 11/20/2022]
Abstract
A series of dihydroartemisinin derivatives was synthesized, and their anti-proliferation activity against cancer cells was evaluated. Structure-activity relationship studies led to the discovery of dihydroartemisinin-bile acid conjugates that exhibit broad-spectrum anti-proliferation activities. Among them, the dihydroartemisinin-ursodeoxycholic acid conjugate (49) was the most potent, with IC50 values between 0.04 and 0.96 μM when tested to determine its inhibitory properties against 15 various cancer cell lines. In vivo experiments showed that compound 49 effectively suppressed tumor growth in an A549 cell xenograft model at the dosage of 10 mg/kg body weight and in Lewis lung cancer cell transplant model at the dosage of 12 mg/kg body weight.
Collapse
Affiliation(s)
- Xiaosu Zou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Chang Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Congcong Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Rong Fu
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China
| | - Wei Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China
| | - Hongzhu Bian
- Yunnan Baiyao Group Co. Ltd, 3686 Yunnan Baiyao Street, Kunming, 650200, China
| | - Xun Dong
- Yunnan Baiyao Group Co. Ltd, 3686 Yunnan Baiyao Street, Kunming, 650200, China
| | - Xiaozhen Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China
| | - Zhenye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South WanPing Road, Shanghai, 200032, China.
| | - Jinghua Zhang
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China.
| | - Zhengwu Shen
- School of Medicine, Shanghai Jiao Tong University, 280 South Chongqing Road, Shanghai, 200025, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, 1200 CaiLun Road, Shanghai, 201203, China.
| |
Collapse
|
10
|
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y, Liu W. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy. Curr Med Chem 2021; 28:329-345. [PMID: 31965935 DOI: 10.2174/0929867327666200121124404] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemisinin is a sesquiterpene lactone compound with a special peroxide bridge that is tightly linked to the cytotoxicity involved in fighting malaria and cancer. Artemisinin and its derivatives (ARTs) are considered to be potential anticancer drugs that promote cancer cell apoptosis, induce cell cycle arrest and autophagy, inhibit cancer cell invasion and migration. Additionally, ARTs significantly increase intracellular Reactive Oxygen Species (ROS) in cancer cells, which result in ferroptosis, a new form of cell death, depending on the ferritin concentration. Ferroptosis is regarded as a cancer suppressor and as well as considered a new mechanism for cancer therapy. METHODS The anticancer activities of ARTs and reference molecules were compared by literature search and analysis. The latest research progress on ferroptosis was described, with a special focus on the molecular mechanism of artemisinin-induced ferroptosis. RESULTS Artemisinin derivatives, artemisinin-derived dimers, hybrids and artemisinin-transferrin conjugates, could significantly improve anticancer activity, and their IC50 values are lower than those of reference molecules such as doxorubicin and paclitaxel. The biological activities of linkers in dimers and hybrids are important in the drug design processes. ARTs induce ferroptosis mainly by triggering intracellular ROS production, promoting the lysosomal degradation of ferritin and regulating the System Xc-/Gpx4 axis. Interestingly, ARTs also stimulate the feedback inhibition pathway. CONCLUSION Artemisinin and its derivatives could be used in the future as cancer therapies with broader applications due to their induction of ferroptosis. Meanwhile, more attention should be paid to the development of novel artemisinin-related drugs based on the mechanism of artemisinininduced ferroptosis.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuanpeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yonghao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wanhong Liu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Lu X, Efferth T. Repurposing of artemisinin-type drugs for the treatment of acute leukemia. Semin Cancer Biol 2021; 68:291-312. [DOI: 10.1016/j.semcancer.2020.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
|
12
|
Navacchia ML, Marchesi E, Perrone D. Bile Acid Conjugates with Anticancer Activity: Most Recent Research. Molecules 2020; 26:E25. [PMID: 33374573 PMCID: PMC7793148 DOI: 10.3390/molecules26010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 01/14/2023] Open
Abstract
The advantages of a treatment modality that combines two or more therapeutic agents in cancer therapy encourages the study of hybrid functional compounds for pharmacological applications. In light of this, we reviewed recent works on hybrid molecules based on bile acids. Due to their biological properties, as well as their different chemical/biochemical reactive moieties, bile acids can be considered very interesting starting molecules for conjugation with natural or synthetic bioactive molecules.
Collapse
Affiliation(s)
- Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Piero Gobetti 101, 40129 Bologna, Italy
| | - Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Luigi Borsari 46, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Luigi Borsari 46, 44121 Ferrara, Italy;
| |
Collapse
|
13
|
Promising applications of steroid сonjugates for cancer research and treatment. Eur J Med Chem 2020; 210:113089. [PMID: 33321260 DOI: 10.1016/j.ejmech.2020.113089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/30/2022]
Abstract
The conjugation of biologically active molecules is a powerful tool for drug discovery used to target a variety of multifunctional diseases including cancer. Conjugated drugs can provide combination therapies in a single multi-functional agent and, by doing so, be more specific and powerful than conventional classic treatments. Steroids are widely used for conjugation with other biological active molecules. This review refers to investigations of steroid conjugates as potential anticancer agents carried out mostly over the past decade. It consists of five parts in which the data concerning structure and anticancer activity of steroid conjugates with DNA alkylating agents, metallocomplexes, approved drugs, some biological active molecules, some natural compounds and related synthetic analogs are described.
Collapse
|
14
|
Mancuso RI, Foglio MA, Olalla Saad ST. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother Pharmacol 2020; 87:1-22. [PMID: 33141328 DOI: 10.1007/s00280-020-04170-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022]
Abstract
Qinghaosu, known as artemisinin (ARS), has been for over two millennia, one of the most common herbs prescribed in traditional Chinese medicine (TCM). ARS was developed as an antimalarial drug and currently belongs to the established standard treatments of malaria as a combination therapy worldwide. In addition to the antimalarial bioactivity of ARS, anticancer activities have been shown both in vitro and in vivo. Like other natural products, ARS acts in a multi-specific manner also against hematological malignancies. The chemical structure of ARS is a sesquiterpene lactone, which contains an endoperoxide bridge essential for activity. The main mechanism of action of ARS and its derivatives (artesunate, dihydroartemisinin, artemether) toward leukemia, multiple myeloma, and lymphoma cells comprises oxidative stress response, inhibition of proliferation, induction of various types of cell death as apoptosis, autophagy, ferroptosis, inhibition of angiogenesis, and signal transducers, as NF-κB, MYC, amongst others. Therefore, new pharmaceutically active compounds, dimers, trimers, and hybrid molecules, could enhance the existing therapeutic alternatives in combating hematologic malignancies. Owing to the high potency and good tolerance without side effects of ARS-type drugs, combination therapies with standard chemotherapies could be applied in the future after further clinical trials in hematological malignancies.
Collapse
Affiliation(s)
- R I Mancuso
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil
| | - M A Foglio
- Faculty of Pharmaceutical Science, University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - S T Olalla Saad
- Hematology and Hemotherapy Center, University of Campinas, HEMOCENTRO UNICAMP, Campinas, São Paulo, Brazil.
| |
Collapse
|
15
|
Xu C, Zhang H, Mu L, Yang X. Artemisinins as Anticancer Drugs: Novel Therapeutic Approaches, Molecular Mechanisms, and Clinical Trials. Front Pharmacol 2020; 11:529881. [PMID: 33117153 PMCID: PMC7573816 DOI: 10.3389/fphar.2020.529881] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/16/2020] [Indexed: 12/26/2022] Open
Abstract
Artemisinin and its derivatives have shown broad-spectrum antitumor activities in vitro and in vivo. Furthermore, outcomes from a limited number of clinical trials provide encouraging evidence for their excellent antitumor activities. However, some problems such as poor solubility, toxicity and controversial mechanisms of action hamper their use as effective antitumor agents in the clinic. In order to accelerate the use of ARTs in the clinic, researchers have recently developed novel therapeutic approaches including developing novel derivatives, manufacturing novel nano-formulations, and combining ARTs with other drugs for cancer therapy. The related mechanisms of action were explored. This review describes ARTs used to induce non-apoptotic cell death containing oncosis, autophagy, and ferroptosis. Moreover, it highlights the ARTs-caused effects on cancer metabolism, immunosuppression and cancer stem cells and discusses clinical trials of ARTs used to treat cancer. The review provides additional insight into the molecular mechanism of action of ARTs and their considerable clinical potential.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
16
|
Hou Q, Lin X, Lu X, Bai C, Wei H, Luo G, Xiang H. Discovery of novel steroidal-chalcone hybrids with potent and selective activity against triple-negative breast cancer. Bioorg Med Chem 2020; 28:115763. [PMID: 32992255 DOI: 10.1016/j.bmc.2020.115763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/27/2020] [Accepted: 09/06/2020] [Indexed: 10/23/2022]
Abstract
A series of novel steroidal-chalcone derivates were designed and synthesized based on the molecular hybridization strategy and further evaluated for their growth inhibitory activity against three human cancer cell lines. The MTT results indicated that most compounds were apparently more sensitive to human breast cancer cells MDA-MB-231. Compounds 8 and 18 exerted the best cytotoxic activity against triple-negative MDA-MB-231 cells with the IC50 values of 0.42 μM and 0.52 μM respectively, which were 23-fold increase or more compared with 5-Fu. Further mechanism studies demonstrated that compound 8 could induce cells apoptosis through regulating Bcl-2/Bax proteins and activating caspase-3 signaling pathway. Moreover, compound 8 could upregulate the cellular ROS levels which accelerated the apoptosis of MDA-MB-231 cells. In addition, interestingly, cell cycle assay showed that compound 8 could arrest MDA-MB-231 cells at S phase but not commonly anticipated G2/M phase. These evidences fully confirmed that compound 8 could be a potential candidate that deserves further development as an antitumor agent against triple-negative breast cancer.
Collapse
Affiliation(s)
- Qiangqiang Hou
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xin Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Xiang Lu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chengfeng Bai
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Hanlin Wei
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China
| | - Guoshun Luo
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Hua Xiang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
17
|
Kumar MS, Yadav TT, Khair RR, Peters GJ, Yergeri MC. Combination Therapies of Artemisinin and its Derivatives as a Viable Approach for Future Cancer Treatment. Curr Pharm Des 2020; 25:3323-3338. [PMID: 31475891 DOI: 10.2174/1381612825666190902155957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Many anticancer drugs have been developed for clinical usage till now, but the major problem is the development of drug-resistance over a period of time in the treatment of cancer. Anticancer drugs produce huge adverse effects, ultimately leading to death of the patient. Researchers have been focusing on the development of novel molecules with higher efficacy and lower toxicity; the anti-malarial drug artemisinin and its derivatives have exhibited cytotoxic effects. METHODS We have done extensive literature search for artemisinin for its new role as anti-cancer agent for future treatment. Last two decades papers were referred for deep understanding to strengthen its role. RESULT Literature shows changes at 9, 10 position in the artemisinin structure produces anticancer activity. Artemisinin shows anticancer activity in leukemia, hepatocellular carcinoma, colorectal and breast cancer cell lines. Artemisinin and its derivatives have been studied as combination therapy with several synthetic compounds, RNA interfaces, recombinant proteins and antibodies etc., for synergizing the effect of these drugs. They produce an anticancer effect by causing cell cycle arrest, regulating signaling in apoptosis, angiogenesis and cytotoxicity activity on the steroid receptors. Many novel formulations of artemisinin are being developed in the form of carbon nanotubes, polymer-coated drug particles, etc., for delivering artemisinin, since it has poor water/ oil solubility and is chemically unstable. CONCLUSION We have summarize the combination therapies of artemisinin and its derivatives with other anticancer drugs and also focussed on recent developments of different drug delivery systems in the last 10 years. Various reports and clinical trials of artemisinin type drugs indicated selective cytotoxicity along with minimal toxicity thus projecting them as promising anti-cancer agents in future cancer therapies.
Collapse
Affiliation(s)
- Maushmi S Kumar
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Tanuja T Yadav
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Rohan R Khair
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, Netherlands
| | - Mayur C Yergeri
- Department of Pharmaceutical Chemistry, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle west, Mumbai-400056, India
| |
Collapse
|
18
|
Abstract
Artemisinin (ART) and its derivatives are one of the most important classes of antimalarial agents, originally derived from a Chinese medicinal plant called Artemisia annua L. Beyond their outstanding antimalarial and antischistosomal activities, ART and its derivatives also possess both in-vitro and in-vivo activities against various types of cancer. Their anticancer effects range from initiation of apoptotic cell death to inhibition of cancer proliferation, metastasis and angiogenesis, and even modulation of the cell signal transduction pathway. This review provides a comprehensive update on ART and its derivatives, their mechanisms of action, and their synergistic effects with other chemicals in targeting leukemia cells. Combined with limited evidence of drug resistance and low toxicity profile, we conclude that ART and its derivatives, including dimers, trimers, and hybrids, might be a potential therapeutic alternative to current chemotherapies in combating leukemia, although more studies are necessary before they can be applied clinically.
Collapse
|
19
|
Botta L, Filippi S, Bizzarri BM, Zippilli C, Meschini R, Pogni R, Baratto MC, Villanova L, Saladino R. Synthesis and Evaluation of Artemisinin-Based Hybrid and Dimer Derivatives as Antimelanoma Agents. ACS OMEGA 2020; 5:243-251. [PMID: 31956771 PMCID: PMC6964273 DOI: 10.1021/acsomega.9b02600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/15/2019] [Indexed: 05/05/2023]
Abstract
A library of hybrid and dimer compounds based on the natural scaffold of artemisinin was synthesized. These derivatives were obtained by coupling of artemisinin derivatives, artesunate, and dihydroartemisinin with a panel of phytochemical compounds. The novel artemisinin-based hybrids and dimers were evaluated for their anticancer activity on a cervical cancer cell line (HeLa) and on three complementary metastatic melanoma cancer cell lines (SK-MEL3, SK-MEL24, and RPMI-7951). Two hybrid compounds obtained by coupling of artesunate with eugenol and tyrosol, and one of the dimer compounds containing curcumin, emerged as the most active and cancer-selective derivatives.
Collapse
Affiliation(s)
- Lorenzo Botta
- Department
of Ecological and Biological Sciences, University
of Tuscia, via S. C. De Lellis 44, 01100, Viterbo, Italy
- E-mail: (L.B.)
| | - Silvia Filippi
- Department
of Ecological and Biological Sciences, University
of Tuscia, via S. C. De Lellis 44, 01100, Viterbo, Italy
| | - Bruno M. Bizzarri
- Department
of Ecological and Biological Sciences, University
of Tuscia, via S. C. De Lellis 44, 01100, Viterbo, Italy
| | - Claudio Zippilli
- Department
of Ecological and Biological Sciences, University
of Tuscia, via S. C. De Lellis 44, 01100, Viterbo, Italy
| | - Roberta Meschini
- Department
of Ecological and Biological Sciences, University
of Tuscia, via S. C. De Lellis 44, 01100, Viterbo, Italy
| | - Rebecca Pogni
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Camilla Baratto
- Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Luciano Villanova
- Lachifarma
s.r.l., S.S.16 Zona Industriale, 73010, Zollino, Lecce, Italy
| | - Raffaele Saladino
- Department
of Ecological and Biological Sciences, University
of Tuscia, via S. C. De Lellis 44, 01100, Viterbo, Italy
- E-mail: (R.S.)
| |
Collapse
|
20
|
Gao F, Sun Z, Kong F, Xiao J. Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 2020; 188:112044. [PMID: 31945642 DOI: 10.1016/j.ejmech.2020.112044] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
The emergence of drug-resistance and the low specificity of anticancer agents are the major challenges in the treatment of cancer and can result in many side effects, creating an urgent demand to develop novel anticancer agents. Artemisinin-derived compounds, bearing a peroxide-containing sesquiterpene lactone moiety, could form free radicals with high reactivity and possess diverse pharmaceutical properties including in vitro and in vivo anticancer activity besides their typical antimalarial activity. Hybrid molecules have the potential to improve the specificity and overcome the drug resistance, therefore hybridization of artemisinin skeleton with other anticancer pharmacophores may provide novel anticancer candidates with high specificity and great potency against drug-resistant cancers. The review outlines the recent advances of artemisinin-derived hybrids as potential anticancer agents, and the structure-activity relationships are also discussed to provide an insight for rational designs of novel hybrids with high activity.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| | - Zhou Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| |
Collapse
|
21
|
Márquez E, Mora JR, Flores-Morales V, Insuasty D, Calle L. Modeling the Antileukemia Activity of Ellipticine-Related Compounds: QSAR and Molecular Docking Study. Molecules 2019; 25:E24. [PMID: 31861689 PMCID: PMC6982814 DOI: 10.3390/molecules25010024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 01/08/2023] Open
Abstract
The antileukemia cancer activity of organic compounds analogous to ellipticine representes a critical endpoint in the understanding of this dramatic disease. A molecular modeling simulation on a dataset of 23 compounds, all of which comply with Lipinski's rules and have a structure analogous to ellipticine, was performed using the quantitative structure activity relationship (QSAR) technique, followed by a detailed docking study on three different proteins significantly involved in this disease (PDB IDs: SYK, PI3K and BTK). As a result, a model with only four descriptors (HOMO, softness, AC1RABAMBID, and TS1KFABMID) was found to be robust enough for prediction of the antileukemia activity of the compounds studied in this work, with an R2 of 0.899 and Q2 of 0.730. A favorable interaction between the compounds and their target proteins was found in all cases; in particular, compounds 9 and 22 showed high activity and binding free energy values of around -10 kcal/mol. Theses compounds were evaluated in detail based on their molecular structure, and some modifications are suggested herein to enhance their biological activity. In particular, compounds 22_1, 22_2, 9_1, and 9_2 are indicated as possible new, potent ellipticine derivatives to be synthesized and biologically tested.
Collapse
Affiliation(s)
- Edgar Márquez
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Cra 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ) & Instituto de Simulación Computacional (ISC-USF), Departamento de Ingeniería Química, Colegio Politécnico de Ciencias e Ingeniería, Diego de Robles, y vía Interoceánica, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Virginia Flores-Morales
- Laboratorio de Síntesis Asimétrica y Bioenergética (LSAyB), Ingeniería Química (UACQ), Program of Doctorate in Sciences with orientation in Molecular Medicine, Academic Unit of Human Medicine and Health Sciences, Universidad Autónoma de Zacatecas, Campus XXI Km 6 Carr. Zac-Gdl Edificio 6, 98160 Zacatecas, Mexico
| | - Daniel Insuasty
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Cra 51B, Km 5, vía Puerto Colombia, Barranquilla 081007, Colombia;
| | - Luis Calle
- Instituto de Salud Integral (ISAIN), Facultad de Medicina, Universidad Católica Santiago de Guayaquil, Guayaquil 09013493, Ecuador;
| |
Collapse
|
22
|
Zhang Y, Xu G, Zhang S, Wang D, Saravana Prabha P, Zuo Z. Antitumor Research on Artemisinin and Its Bioactive Derivatives. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:303-319. [PMID: 29633188 PMCID: PMC6102173 DOI: 10.1007/s13659-018-0162-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/27/2018] [Indexed: 05/02/2023]
Abstract
Cancer is the leading cause of human death which seriously threatens human life. The antimalarial drug artemisinin and its derivatives have been discovered with considerable anticancer properties. Simultaneously, a variety of target-selective artemisinin-related compounds with high efficiency have been discovered. Many researches indicated that artemisinin-related compounds have cytotoxic effects against a variety of cancer cells through pleiotropic effects, including inhibiting the proliferation of tumor cells, promoting apoptosis, inducing cell cycle arrest, disrupting cancer invasion and metastasis, preventing angiogenesis, mediating the tumor-related signaling pathways, and regulating tumor microenvironment. More importantly, artemisinins demonstrated minor side effects to normal cells and manifested the ability to overcome multidrug-resistance which is widely observed in cancer patients. Therefore, we concentrated on the new advances and development of artemisinin and its derivatives as potential antitumor agents in recent 5 years. It is our hope that this review could be helpful for further exploration of novel artemisinin-related antitumor agents.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqun Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Dong Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - P Saravana Prabha
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, China.
| |
Collapse
|
23
|
Çapcı Karagöz A, Reiter C, Seo EJ, Gruber L, Hahn F, Leidenberger M, Klein V, Hampel F, Friedrich O, Marschall M, Kappes B, Efferth T, Tsogoeva SB. Access to new highly potent antileukemia, antiviral and antimalarial agents via hybridization of natural products (homo)egonol, thymoquinone and artemisinin. Bioorg Med Chem 2018; 26:3610-3618. [PMID: 29887512 DOI: 10.1016/j.bmc.2018.05.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/27/2023]
Abstract
Hybridization of natural products has high potential to further improve their activities and may produce synergistic effects between linked pharmacophores. Here we report synthesis of nine new hybrids of natural products egonol, homoegonol, thymoquinone and artemisinin and evaluation of their activities against P. falciparum 3D7 parasites, human cytomegalovirus, sensitive and multidrug-resistant human leukemia cells. Most of the new hybrids exceed their parent compounds in antimalarial, antiviral and antileukemia activities and in some cases show higher in vitro efficacy than clinically used reference drugs chloroquine, ganciclovir and doxorubicin. Combined, our findings stress the high potency of these hybrids and encourages further use of the hybridization concept in applied pharmacological research.
Collapse
Affiliation(s)
- Aysun Çapcı Karagöz
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Christoph Reiter
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Ean-Jeong Seo
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Lisa Gruber
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Maria Leidenberger
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Volker Klein
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Frank Hampel
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | - Barbara Kappes
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Paul-Gordon-Straße 3, 91052 Erlangen, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany.
| |
Collapse
|