1
|
Xiao W, Geng R, Bi D, Luo Y, Zhang Z, Gan Q, Liu Y, Zhu J. pH/H 2O 2 Cascade-Responsive Nanoparticles of Lipid-Like Prodrugs through Dynamic-Covalent and Coordination Interactions for Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308790. [PMID: 38396276 DOI: 10.1002/smll.202308790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Traditional lipid nanoparticles (LNPs) suffer from low drug loading capacity (DLC), weak stability, and lack of responsiveness. Conventional approaches to address these issues involve the synthesis of lipid-prodrug by incorporating responsive covalent linkers. However, such approaches often result in suboptimal sensitivity for drug release and undermine therapeutic effectiveness. Herein, the study reports a fundamentally different concept for designing lipid-like prodrugs through boron-nitrogen (B-N) coordination and dynamic covalent interaction. The 5-fluorouracil-based lipid-like prodrugs, featuring a borate ester consisting of a glycerophosphoryl choline head and a boronic acid-modified 5Fu/dodecanamine complex tail, are used to prepare pH/H2O2 cascade-responsive LNPs (5Fu-LNPs). The 5Fu-LNPs exhibit enhanced DLC and stability in a neutral physiological environment due to the B-N coordination and enhanced hydrophobicity. In tumors, acidic pH triggers the dissociation of B-N coordination to release prodrugs, which further responds to low H2O2 concentrations to release drugs, showcasing a potent pH/H2O2-cascade-responsive property. Importantly, 5Fu-LNPs demonstrate greater antitumor efficiency and lower toxicity compared to the commercial 5Fu. These results highlight 5Fu-LNPs as a safer and more effective alternative to chemotherapy. This work presents a unique LNP fabrication strategy that can overcome the limitations of conventional LNPs and broaden the range of intelligent nanomaterial preparation techniques.
Collapse
Affiliation(s)
- Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Luo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zihan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Qi QR, Tian H, Yue BS, Zhai BT, Zhao F. Research Progress of SN38 Drug Delivery System in Cancer Treatment. Int J Nanomedicine 2024; 19:945-964. [PMID: 38293612 PMCID: PMC10826519 DOI: 10.2147/ijn.s435407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
The active metabolite of irinotecan (CPT-11), 7-ethyl-10-hydroxycamptothecin (SN38), is 100-1000 times more active than CPT-11 and has shown inhibitory effects on a range of cancer cells, including those from the rectal, small cell lung, breast, esophageal, uterine, and ovarian malignancies. Despite SN38's potent anticancer properties, its hydrophobicity and pH instability have caused substantial side effects and anticancer activity loss, which make it difficult to use in clinical settings. To solve the above problems, the construction of SN38-based drug delivery systems is one of the most feasible methods to improve drug solubility, enhance drug stability, increase drug targeting ability, improve drug bioavailability, enhance therapeutic efficacy and reduce adverse drug reactions. Therefore, based on the targeting mechanism of drug delivery systems, this paper reviews SN38 drug delivery systems, including polymeric micelles, liposomal nanoparticles, polymeric nanoparticles, protein nanoparticles, conjugated drug delivery systems targeted by aptamers and ligands, antibody-drug couplings, magnetic targeting, photosensitive targeting, redox-sensitive and multi-stimulus-responsive drug delivery systems, and co-loaded drug delivery systems. The focus of this review is on nanocarrier-based SN38 drug delivery systems. We hope to provide a reference for the clinical translation and application of novel SN38 medications.
Collapse
Affiliation(s)
- Qing-rui Qi
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Huan Tian
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| | - Bao-sen Yue
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| | - Bing-tao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Feng Zhao
- Xi’an Hospital of Traditional Chinese Medicine, Xi’an, 710021, People’s Republic of China
| |
Collapse
|
3
|
Wang S, Hu N, Deng B, Wang H, Qiao R, Li C. A Guanosine-Derived Antitumor Supramolecular Prodrug. Biomacromolecules 2024; 25:290-302. [PMID: 38065622 DOI: 10.1021/acs.biomac.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The prodrug strategy for its potential to enhance the pharmacokinetic and/or pharmacodynamic properties of drugs, especially chemotherapeutic agents, has been widely recognized as an important means to improve therapeutic efficiency. Irinotecan's active metabolite, 7-ethyl-10-hydroxycamptothecin (SN38), a borate derivative, was incorporated into a G-quadruplex hydrogel (GB-SN38) by the ingenious and simple approach. Drug release does not depend on carboxylesterase, thus bypassing the side effects caused by ineffective activation, but specifically responds to the ROS-overexpressed tumor microenvironment by oxidative hydrolysis of borate ester that reduces serious systemic toxicity from nonspecific biodistribution of SN38. Comprehensive spectroscopy was used to define the structural and physicochemical characteristics of the drug-loaded hydrogel. The GB-SN38 hydrogel's high level of biosafety and notable tumor-suppressive properties were proven in in vitro and in vivo tests.
Collapse
Affiliation(s)
- Shuyun Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Nanrong Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Bo Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Hongyue Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Renzhong Qiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| | - Chao Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang District, Beijing 100029, P.R. China
| |
Collapse
|
4
|
Yuan M, Chen T, Jin L, Zhang P, Xie L, Zhou S, Fan L, Wang L, Zhang C, Tang N, Guo L, Xie C, Duo Y, Li L, Shi L. A carrier-free supramolecular nano-twin-drug for overcoming irinotecan-resistance and enhancing efficacy against colorectal cancer. J Nanobiotechnology 2023; 21:393. [PMID: 37898773 PMCID: PMC10612220 DOI: 10.1186/s12951-023-02157-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
Irinotecan (Ir) is commonly employed as a first-line chemotherapeutic treatment for colorectal cancer (CRC). However, tremendous impediments remain to be addressed to surmount drug resistance and ameliorate adverse events. Poly-ADP-Ribose Polymerase (PARP) participates in the maintenance of genome stability and the repair of DNA damage, thus playing a critical role in chemotherapy resistance. In this work, we introduce a novel curative strategy that utilizes nanoparticles (NPs) prepared by dynamic supramolecular co-assembly of Ir and a PARP inhibitor (PARPi) niraparib (Nir) through π-π stacking and hydrogen bond interactions. The Ir and Nir self-assembled Nano-Twin-Drug of (Nir-Ir NPs) could enhance the therapeutic effect on CRC by synergistically inhibiting the DNA damage repair pathway and activating the tumor cell apoptosis process without obvious toxicity. In addition, the Nir-Ir NPs could effectively reverse irinotecan-resistance by inhibiting the expression of multiple resistance protein-1 (MRP-1). Overall, our study underscores the distinctive advantages and potential of Nir-Ir NPs as a complementary strategy to chemotherapy by simultaneously overcoming the Ir resistance and improving the anti-tumor efficacy against CRC.
Collapse
Affiliation(s)
- Miaomiao Yuan
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Tong Chen
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Lu Jin
- School of Pharmaceutical Sciences, Sun Yat-sen University, 510006, Guangzhou, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, 47 Youyi Road, Shenzhen, 518001, China.
| | - Luoyijun Xie
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Shuyi Zhou
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lianfeng Fan
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Li Wang
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Cai Zhang
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China
| | - Ning Tang
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - LiHao Guo
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengmei Xie
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhong Duo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ling Li
- Department of pharmacology, the Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong, Sun Yat-sen University, Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Shenzhen, China.
| | - Leilei Shi
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
5
|
Dai Y, Qian M, Li Y. Structural Modification Endows Small-Molecular SN38 Derivatives with Multifaceted Functions. Molecules 2023; 28:4931. [PMID: 37446591 DOI: 10.3390/molecules28134931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
As a camptothecin derivative, 7-ethyl-10-hydroxycamptothecin (SN38) combats cancer by inhibiting topoisomerase I. SN38 is one of the most active compounds among camptothecin derivatives. In addition, SN38 is also a theranostic reagent due to its intrinsic fluorescence. However, the poor water solubility, high systemic toxicity and limited action against drug resistance and metastasis of tumor cells of SN38 indicates that there is great space for the structural modification of SN38. From the perspective of chemical modification, this paper summarizes the progress of SN38 in improving solubility, increasing activity, reducing toxicity and possessing multifunction and analyzes the strategies of structure modification to provide a reference for drug development based on SN38.
Collapse
Affiliation(s)
- Yi Dai
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Meng Qian
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yan Li
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| |
Collapse
|
6
|
Dai Y, Zhang Y, Ye T, Chen Y. Synthesis and Antitumor Evaluation of Biotin-SN38-Valproic Acid Conjugates. Molecules 2023; 28:molecules28093936. [PMID: 37175346 PMCID: PMC10179906 DOI: 10.3390/molecules28093936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Despite the strong anticancer activity of SN38 (7-ethyl-10-hydroxy-camptothecin), the severe side effects and loss of anticancer activity caused by the lack of selectivity to cancer cells and hydrolysis of ring E prevent its clinical application. To address the issue, herein a multifunctional SN38 derivative (compound 9) containing biotin (tumor-targeting group) and valproic acid (histone deacetylase inhibitor, HDACi) was synthesized via click chemistry and evaluated using MTT assay. The in vitro cytotoxicity study showed that compound 9 exhibited superior cytotoxicity than irinotecan against human cervical cancer HeLa cells, albeit it was inferior to SN38. More significantly, compound 9 significantly reduced toxicity in mouse embryonic fibroblast NIH3T3 cells, indicating that compound 9 had the capacity to enhance tumor targeting due to its cell selectivity. Further studies demonstrated that, compared with irinotecan, compound 9 induced similar apoptosis of cancer cells. Consequently, compound 9 can not only improve its tumor-targeting ability mediated by biotin but also exert potent anticancer activity through the effect of SN38 and valproic acid, indicating that the design concept is an effective strategy for the structural modification of SN38.
Collapse
Affiliation(s)
- Yi Dai
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yang Zhang
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China
| | - Tianxiang Ye
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| | - Yue Chen
- College of Pharmaceutical Science, Anhui Xinhua University, Hefei 230088, China
| |
Collapse
|
7
|
Yang J, Jia L, He Z, Wang Y. Recent advances in SN-38 drug delivery system. Int J Pharm 2023; 637:122886. [PMID: 36966982 DOI: 10.1016/j.ijpharm.2023.122886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
DNA topoisomerase I plays a key role in lubricatingthe wheels of DNA replication or RNA transcription through breaking and reconnecting DNA single-strand. It is widely known that camptothecin and its derivatives (CPTs) have inhibitory effects on topoisomerases I, and have obtained some clinical benefits in cancer treatment. The potent cytotoxicity makes 7-ethyl-10-hydroxycamptothecin (SN-38) become a brilliant star among these derivatives. However, some undesirable physical and chemical properties of this compound, including poor solubility and stability, seriously hinder its effective delivery to tumor sites. In recent years, strategies to alleviate these defects have aroused extensive research interest. By focusing on the loading mechanism, basic nanodrug delivery systems with SN-38 loaded, like nanoparticles, liposomes and micelles, are demonstrated here. Additionally, functionalized nanodrug delivery systems of SN-38 including prodrug and active targeted nanodrug delivery systems and delivery systems designed to overcome drug resistance are also reviewed. At last, challenges for future research in formulation development and clinical translation of SN-38 drug delivery system are discussed.
Collapse
|
8
|
Wu D, Zhang W, Li Y, Zhao Z, Ji W, Liu H, Yang G. Gold nanorods-loaded chitosan-based nanomedicine platform enabling an effective tumor regression in vivo. Int J Pharm 2023; 632:122561. [PMID: 36586640 DOI: 10.1016/j.ijpharm.2022.122561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/09/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
The clinical utility of 7-ethyl-10-hydroxycamptothecin (SN-38) is hampered by its low water solubility and reduced bioactivity at neutral or alkaline conditions. The rational design of an effective drug delivery system that can significantly enhance the therapeutic index of SN-38 and achieve complete tumor regression still remains a challenge. Herein, chitosan-based hybrid nanoparticles system co-loading with chemotherapeutic drug SN-38 and gold nanorods (AuNRs) was engineered for effective combinational photothermal-chemotherapy. To increase the solubility of SN-38, soluble polymeric prodrug poly (l-glutamic acid)-SN38 (l-PGA-SN38) was firstly synthesized and then complexed with chitosan to form stable nanomedicine via a mild and facile way without using any organic solvent or surfactant. Upon introducing AuNRs into chitosan-based nanomedicine by coordination interaction between the amine group of chitosan and AuNRs, the hybrid nanoparticles exhibited distinct synergistic therapeutic effect compared with single chemotherapy or photothermal treatment in vitro and in vivo. Almost complete tumor regression was achieved after 21-day treatment of the developed hybrid nanoparticles and showed no recurrence for at least 60 days.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wangyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zejing Zhao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weili Ji
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hong Liu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
9
|
Zhong ZX, Li XZ, Liu JT, Qin N, Duan HQ, Duan XC. Disulfide Bond-Based SN38 Prodrug Nanoassemblies with High Drug Loading and Reduction-Triggered Drug Release for Pancreatic Cancer Therapy. Int J Nanomedicine 2023; 18:1281-1298. [PMID: 36945256 PMCID: PMC10024910 DOI: 10.2147/ijn.s404848] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Purpose Chemotherapy is a significant and effective therapeutic strategy that is frequently utilized in the treatment of cancer. Small molecular prodrug-based nanoassemblies (SMPDNAs) combine the benefits of both prodrugs and nanomedicine into a single nanoassembly with high drug loading, increased stability, and improved biocompatibility. Methods In this study, a disulfide bond inserted 7-ethyl-10-hydroxycamptothecin (SN38) prodrug was rationally designed and then used to prepare nanoassemblies (SNSS NAs) that were selectively activated by rich glutathione (GSH) in the tumor site. The characterization of SNSS NAs and the in vitro and in vivo evaluation of their antitumor effect on a pancreatic cancer model were performed. Results In vitro findings demonstrated that SNSS NAs exhibited GSH-induced SN38 release and cytotoxicity. SNSS NAs have demonstrated a passive targeting effect on tumor tissues, a superior antitumor effect compared to irinotecan (CPT-11), and satisfactory biocompatibility with double dosage treatment. Conclusion The SNSS NAs developed in this study provide a new method for the preparation of SN38-based nano-delivery systems with improved antitumor effect and biosafety.
Collapse
Affiliation(s)
- Zhi-Xin Zhong
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Xu-Zhao Li
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Jin-Tao Liu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Nan Qin
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| | - Hong-Quan Duan
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- Correspondence: Hong-Quan Duan; Xiao-Chuan Duan, School of Pharmacy, School of Biomedical Engineering and Technology, Tianjin Medical University, 22, Qi Xiang Tai Road, Tianjin, 300070, People’s Republic of China, Tel +86-22-83336680, Fax +86-22-83336560, Email ;
| | - Xiao-Chuan Duan
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, People’s Republic of China
| |
Collapse
|
10
|
Han S, Lim KS, Blackburn BJ, Yun J, Putnam CW, Bull DA, Won YW. The Potential of Topoisomerase Inhibitor-Based Antibody–Drug Conjugates. Pharmaceutics 2022; 14:pharmaceutics14081707. [PMID: 36015333 PMCID: PMC9413092 DOI: 10.3390/pharmaceutics14081707] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/17/2022] Open
Abstract
DNA topoisomerases are essential enzymes that stabilize DNA supercoiling and resolve entanglements. Topoisomerase inhibitors have been widely used as anti-cancer drugs for the past 20 years. Due to their selectivity as topoisomerase I (TOP1) inhibitors that trap TOP1 cleavage complexes, camptothecin and its derivatives are promising anti-cancer drugs. To increase accumulation of TOP1 inhibitors in cancer cells through the targeting of tumors, TOP1 inhibitor antibody–drug conjugates (TOP1-ADC) have been developed and marketed. Some TOP1-ADCs have shown enhanced therapeutic efficacy compared to prototypical anti-cancer ADCs, such as T-DM1. Here, we review various types of camptothecin-based TOP1 inhibitors and recent developments in TOP1-ADCs. We then propose key points for the design and construction of TOP1-ADCs. Finally, we discuss promising combinatorial strategies, including newly developed approaches to maximizing the therapeutic potential of TOP1-ADCs.
Collapse
Affiliation(s)
- Seungmin Han
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Kwang Suk Lim
- Department of Biotechnology and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
- Department of Smart Health Science and Technology, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Korea
| | - Brody J. Blackburn
- Department of Medical Pharmacology, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Jina Yun
- Division of Hematology-Oncology, Department of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Korea
| | - Charles W. Putnam
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - David A. Bull
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
| | - Young-Wook Won
- Division of Cardiothoracic Surgery, Department of Surgery, University of Arizona College of Medicine—Tucson, Tucson, AZ 85724, USA
- Correspondence:
| |
Collapse
|
11
|
Ismail M, Yang W, Li Y, Chai T, Zhang D, Du Q, Muhammad P, Hanif S, Zheng M, Shi B. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials 2022; 287:121608. [PMID: 35690021 DOI: 10.1016/j.biomaterials.2022.121608] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
The effective treatment of glioblastoma (GBM) is a great challenge because of the blood-brain barrier (BBB) and the growing resistance to single-agent therapeutics. Targeted combined co-delivery of drugs could circumvent these challenges; however, the absence of more effective combination drug delivery strategies presents a potent barrier. Here, a unique combination ApoE-functionalized liposomal nanoplatform based on artesunate-phosphatidylcholine (ARTPC) encapsulated with temozolomide (ApoE-ARTPC@TMZ) was presented that can successfully co-deliver dual therapeutic agents to TMZ-resistant U251-TR GBM in vivo. Examination in vitro showed ART-mediated inhibition of DNA repair through the Wnt/β-catenin signaling cascade, which also improved GBM sensitivity to TMZ, resulting in enhanced synergistic DNA damage and induction of apoptosis. In assessing BBB permeation, the targeted liposomes were able to effectively traverse the BBB through low-density lipoprotein family receptors (LDLRs)-mediated transcytosis and achieved deep intracranial tumor penetration. More importantly, the targeted combination liposomes resulted in a significant decrease of U251-TR glioma burden in vivo that, in concert, substantially improved the survival of mice. Additionally, by lowering the effective dosage of TMZ, the combination liposomes reduced systemic TMZ-induced toxicity, highlighting the preclinical potential of this novel integrative strategy to deliver combination therapies to brain tumors.
Collapse
Affiliation(s)
- Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Wen Yang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Yanfei Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Tianran Chai
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Dongya Zhang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Qiuli Du
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China
| | - Meng Zheng
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China.
| | - Bingyang Shi
- Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China; Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences & School of Pharmacy, Henan University, Kaifeng, Henan, 475004, China; Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
12
|
Dimeric Artesunate Glycerophosphocholine Conjugate Nano-Assemblies as Slow-Release Antimalarials to Overcome Kelch 13 Mutant Artemisinin Resistance. Antimicrob Agents Chemother 2022; 66:e0206521. [PMID: 35416709 DOI: 10.1128/aac.02065-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current best practice for the treatment of malaria relies on short half-life artemisinins that are failing against emerging Kelch 13 mutant parasite strains. Here, we introduce a liposome-like self-assembly of a dimeric artesunate glycerophosphocholine conjugate (dAPC-S) as an amphiphilic prodrug for the short-lived antimalarial drug, dihydroartemisinin (DHA), with enhanced killing of Kelch 13 mutant artemisinin-resistant parasites. Cryo-electron microscopy (cryoEM) images and the dynamic light scattering (DLS) technique show that dAPC-S typically exhibits a multilamellar liposomal structure with a size distribution similar to that of the liposomes generated using thin-film dispersion (dAPC-L). Liquid chromatography-mass spectrometry (LCMS) was used to monitor the release of DHA. Sustainable release of DHA from dAPC-S and dAPC-L assemblies increased the effective dose and thus efficacy against Kelch 13 mutant artemisinin-resistant parasites in an in vitro assay. To better understand the enhanced killing effect, we investigated processes for deactivation of both the assemblies and DHA, including the roles of serum components and trace levels of iron. Analysis of parasite proteostasis pathways revealed that dAPC assemblies exert their activity via the same mechanism as DHA. We conclude that this easily prepared multilamellar liposome-like dAPC-S with long-acting efficacy shows potential for the treatment of severe and artemisinin-resistant malaria.
Collapse
|
13
|
He W, Du Y, Li C, Wang J, Wang Y, Dogovski C, Hu R, Tao Z, Yao C, Li X. Dimeric artesunate-choline conjugate micelles coated with hyaluronic acid as a stable, safe and potent alternative anti-malarial injection of artesunate. Int J Pharm 2021; 609:121138. [PMID: 34592395 DOI: 10.1016/j.ijpharm.2021.121138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022]
Abstract
Artesunate (ARS) is the only artemisinin-based intravenous drug approved for treatment of malaria in the clinic. ARS is rapidly metabolized in vivo to short lived (∼30-45 min) but fast acting, dihydroartemisinin (DHA). The short half-life of DHA necessitates multiple dose administration to circumvent the risk of recrudescence and development of artemisinin resistance. In this work, we report a stable, safe and potent alternative artemisinin-based injectable nanocomplex consisting of dimeric artesunate-choline conjugate (dACC) micelles coated with hyaluronic acid (HA). Firstly, dACC was synthesized by one-step esterification of two artesunate molecules with 3-(dimethylamino)-1,2-propanediol followed by quaternization. After that, dACC was self-assembled into cationic nanomicelles and further coated with anionic small molecular weight HA. The HA-coated dACC nanocomplex (dACC/HA nanocomplex) has a narrow size distribution of about 30 nm. Hemolytic toxicity and cytotoxicity studies revealed a favorable bio-safety profile. Finally, in vitro and in vivo studies showed the dACC/HA nanocomplex possess superior safety and antimalarial efficacy compared to ARS. Taken together, the dACC/HA nanocomplex is a promising injectable alternative to the traditional clinically used artesunate.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chuncao Li
- Department of Microbiology and Parasitology, Anhui Provincial Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu 233030, China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Con Dogovski
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rui Hu
- Department of Microbiology and Parasitology, Anhui Provincial Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu 233030, China
| | - Zhiyong Tao
- Department of Microbiology and Parasitology, Anhui Provincial Key Laboratory of Infection and Immunology, Bengbu Medical College, Bengbu 233030, China
| | - Chen Yao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
14
|
Wu D, Li Y, Zhu L, Zhang W, Xu S, Yang Y, Yan Q, Yang G. A biocompatible superparamagnetic chitosan-based nanoplatform enabling targeted SN-38 delivery for colorectal cancer therapy. Carbohydr Polym 2021; 274:118641. [PMID: 34702462 DOI: 10.1016/j.carbpol.2021.118641] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/12/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022]
Abstract
7-Ethyl-10-hydroxycamptothecin (SN-38) as a potent anti-tumor candidate, suffers the constraints from its poor water solubility, pH-dependent lactone ring stability and the lack of efficient delivery system without losing its activity. Herein, biocompatible superparamagnetic chitosan-based nanocomplexes complexing with water-soluble polymeric prodrug poly(L-glutamic acid)-SN-38 (PGA-SN-38) was engineered for efficient delivery of SN-38. The manufacturing process of colloidal complexes was green, expeditious and facile, with one-shot addition of PGA-SN-38 into chitosan solution without using any organic solvent or surfactant. Upon introducing ultra-small-size superparamagnetic nanoparticles (~10 nm), the developed magnetic nanocomplexes exhibited significantly boosted tumor-targeted accumulation and efficient cellular internalization under a local magnetic field. Notably, the magnetic nanocomplexes achieved distinctly superior targeting and anti-tumor efficacy in the established xenograft colorectal cancer model of mice, with high tumor suppression rate up to 81%. Therefore, this superparamagnetic chitosan-based nanocomplex system could provide a promising platform for the targeted delivery of SN-38 in colorectal cancer therapy.
Collapse
Affiliation(s)
- Danjun Wu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wangyang Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shumin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinying Yan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gensheng Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
15
|
Zhang Y, Cui H, Zhang R, Zhang H, Huang W. Nanoparticulation of Prodrug into Medicines for Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101454. [PMID: 34323373 PMCID: PMC8456229 DOI: 10.1002/advs.202101454] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Indexed: 05/28/2023]
Abstract
This article provides a broad spectrum about the nanoprodrug fabrication advances co-driven by prodrug and nanotechnology development to potentiate cancer treatment. The nanoprodrug inherits the features of both prodrug concept and nanomedicine know-how, attempts to solve underexploited challenge in cancer treatment cooperatively. Prodrugs can release bioactive drugs on-demand at specific sites to reduce systemic toxicity, this is done by using the special properties of the tumor microenvironment, such as pH value, glutathione concentration, and specific overexpressed enzymes; or by using exogenous stimulation, such as light, heat, and ultrasound. The nanotechnology, manipulating the matter within nanoscale, has high relevance to certain biological conditions, and has been widely utilized in cancer therapy. Together, the marriage of prodrug strategy which shield the side effects of parent drug and nanotechnology with pinpoint delivery capability has conceived highly camouflaged Trojan horse to maneuver cancerous threats.
Collapse
Affiliation(s)
- Yuezhou Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Huaguang Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Ruiqi Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-00520, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, FI-00520, Finland
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
- Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo, 315103, China
| |
Collapse
|
16
|
He W, Du Y, Wang T, Wang J, Cheng L, Li X. Redox responsive 7-ethyl-10-hydroxycamptothecin (SN38) lysophospholipid conjugate: synthesis, assembly and anticancer evaluation. Int J Pharm 2021; 606:120856. [PMID: 34229071 DOI: 10.1016/j.ijpharm.2021.120856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/01/2021] [Accepted: 07/01/2021] [Indexed: 12/25/2022]
Abstract
7-Ethyl-10-hydroxycamptothecin (SN38), a potent camptothecin derivative specifically targeting DNA topoisomerase I cleavage complexes, has shown great potential in the treatment of solid tumors. Because of its poor solubility and chemical and metabolic stability, the clinical application of SN38 is highly limited. To address these problems, a novel redox-responsive SN38 conjugate based liposomal formulation is developed in this report. First, SN38 was conjugated with lysophospholipid by using a cleavable disulfide bond linker. After that, the conjugate (SN38-SS-PC) was assembled into liposomes by thin film method. Dynamic lightscattering(DLS) characterization indicated that SN38-SS-PC liposomes possessed a narrow size distribution (172.8 ± 10.5 nm) and negative charged zeta potential (-8.9 ± 0.3 mV). The results of storage and physiological stabilities showed that SN38-SS-PC liposomes was stable under different conditions. More importantly, a reduction responsive release of parent drug SN38 was observed in the medium containing glutathione (GSH). In addition, SN38-SS-PC liposomes had a much more rapid cellular uptake behavior against cancer cells. The enhanced anti-cancer efficacy of SN38-SS-PC liposomes was further demonstrated by in vitro cytotoxicity assay against MCF-7 and A549 cells. Under in vivo evaluation in 4 T1 xenograft tumor model, SN38-SS-PC liposomes were observed to have lower systemic toxicity and higher tumor inhibition rate of 53.3% compared with the commercialized SN38 prodrug Irinotecan (Ir). In summary, SN38-SS-PC liposomes could be a promising redox responsive delivery system of SN38 for cancer therapy.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Lei Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
17
|
Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules 2020; 25:E5672. [PMID: 33271886 PMCID: PMC7730700 DOI: 10.3390/molecules25235672] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.
Collapse
Affiliation(s)
- Bethany Almeida
- American Society for Engineering Education, Washington, DC 20036, USA;
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Katherine E. Rogers
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
- Fischell Department of Bioengineering, 2330 Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| |
Collapse
|
18
|
Ma Y, Mou Q, Yan D, Zhu X. Engineering small molecule nanodrugs to overcome barriers for cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Yuan Ma
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| | - Quanbing Mou
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
19
|
He W, Du Y, Zhou W, Wang T, Li M, Li X. Core-crosslinked nanomicelles based on crosslinkable prodrug and surfactants for reduction responsive delivery of camptothecin and improved anticancer efficacy. Eur J Pharm Sci 2020; 150:105340. [PMID: 32371069 DOI: 10.1016/j.ejps.2020.105340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 11/18/2022]
Abstract
As an important DNA topoisomerase I inhibitor in oncotherapy, camptothecin (CPT) with traditional formulation only shows a limited clinical application mainly because of its poor solubility. In this study, a novel redox responsive nanoscaled delivery system was developed to overcome the inherent defect of CPT. Firstly, a CPT prodrug (CPT-LA) and two crosslinkable surfactants (SO-LA and MPEG-LA) was synthesized, all of which contained the same lipoic acid (LA) structure. In the preparation, highly core-crosslinked structure was formed by adding a thiol crosslinker, which can induce LA ring opening polymerization and disulfide crosslinking. The resulting CPT-LA core-crosslinked nanomicelles (CPT-LA CNM) were formulated with a highly crosslinked core and a PEG hydrophilic shell. Dynamic light scattering (DLS) characterization indicated that CPT-LA CNM possessed a narrow size distribution (184.6 ± 3.6 nm) and negatively charged zeta potential (-3.5 ± 1.2 mV). The storage and physiological stabilities showed that the size distribution of CPT-LA CNM was relatively stable in both conditions which were neutral PBS at 4 °C (1 week period) and PBS containing 10% serum at 37 °C (24 h period). Moreover, the effective CPT release behavior of CPT-LA CNM was confirmed in the reducing circumstances containing dithiothreitol (DTT). Under confocal laser scanning microscopy (CLSM), CPT-LA CNM demonstrated a rapid cellular uptake behavior against cancer cells when compared to CPT suspension. Finally, the enhanced anticancer efficacy of CPT-LA CNM was also detected by in vitro cytotoxicity and cell apoptosis assay. In summary, the core-crosslinked CPT-LA CNM could be a promising CPT delivery system because of high stability, effectively controlled release as well as improved anticancer activity.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Wenya Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Man Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
20
|
Zhou T, Tang X, Zhang W, Feng J, Wu W. Preparation and in vitro and in vivo evaluations of 10-hydroxycamptothecin liposomes modified with stearyl glycyrrhetinate. Drug Deliv 2020; 26:673-679. [PMID: 31266376 PMCID: PMC6610527 DOI: 10.1080/10717544.2019.1636422] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) liposomes surface modified with stearyl glycyrrhetinate (SG) were prepared by the film dispersion method. Characterization of the liposomes, including drug release in vitro, pharmacokinetics and tissue distribution, was done. HCPT in plasma and tissues was determined by high-performance liquid chromatography (HPLC). Compared with the conventional HCPT-liposomes and commercially available hydroxycamptothecin injection (HCPT Inject), pharmacokinetic parameters indicated that SG-HCPT-liposomes had better bioavailability. Regarding tissue distribution, the concentration of HCPT loaded by SG modified liposomes in the liver was higher than other tissues and the risk to the kidney was lower than HCPT-liposomes and HCPT Inject. These results support the hypothesis that the HCPT-liposomes modified with SG show enhanced liver-targeting through the glycyrrhetinic acid (GA) receptor to be an efficient drug carrier, which may help to improve therapeutic methods for hepatic diseases in the future.
Collapse
Affiliation(s)
- Ting Zhou
- a School of Pharmacy , Guilin Medical University , Guilin , P.R. China
| | - Xin Tang
- b School of Public Health , Guilin Medical University , Guilin , P.R. China
| | - Wei Zhang
- a School of Pharmacy , Guilin Medical University , Guilin , P.R. China
| | - Jianfang Feng
- c School of Pharmacy , Guangxi University of Chinese Medicine , Nanning , P.R. China
| | - Wei Wu
- a School of Pharmacy , Guilin Medical University , Guilin , P.R. China
| |
Collapse
|
21
|
Yang J, Li K, He D, Gu J, Xu J, Xie J, Zhang M, Liu Y, Tan Q, Zhang J. Toward a better understanding of metabolic and pharmacokinetic characteristics of low-solubility, low-permeability natural medicines. Drug Metab Rev 2020; 52:19-43. [PMID: 31984816 DOI: 10.1080/03602532.2020.1714646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Today, it is very challenging to develop new active pharmaceutical ingredients. Developing good preparations of well-recognized natural medicines is certainly a practical and economic strategy. Low-solubility, low-permeability natural medicines (LLNMs) possess valuable advantages such as effectiveness, relative low cost and low toxicity, which is shown by the presence of popular products on the market. Understanding the in vivo metabolic and pharmacokinetic characteristics of LLNMs contributes to overcoming their associated problems, such as low absorption and low bioavailability. In this review, the structure-based metabolic reactions of LLNMs and related enzymatic systems, cellular and bodily pharmacological effects and metabolic influences, drug-drug interactions involved in metabolism and microenvironmental changes, and pharmacokinetics and dose-dependent/linear pharmacokinetic models are comprehensively evaluated. This review suggests that better pharmacological activity and pharmacokinetic behaviors may be achieved by modifying the metabolism through using nanotechnology and nanosystem in combination with the suitable administration route and dosage. It is noteworthy that novel nanosystems, such as triggered-release liposomes, nucleic acid polymer nanosystems and PEGylated dendrimers, in addition to prodrug and intestinal penetration enhancer, demonstrate encouraging performance. Insights into the metabolic and pharmacokinetic characteristics of LLNMs may help pharmacists to identify new LLNM formulations with high bioavailability and amazing efficacy and help physicians carry out LLNM-based precision medicine and individualized therapies.
Collapse
Affiliation(s)
- Jie Yang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Kailing Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Gu
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingyu Xu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jiaxi Xie
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Min Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Yuying Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Daping Hospital of Army Medical University, PLA, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
22
|
Juang V, Chang CH, Wang CS, Wang HE, Lo YL. pH-Responsive PEG-Shedding and Targeting Peptide-Modified Nanoparticles for Dual-Delivery of Irinotecan and microRNA to Enhance Tumor-Specific Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903296. [PMID: 31709707 DOI: 10.1002/smll.201903296] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA-200 (miR-200) has been reported to inhibit metastasis in cancer cells. Herein, pH-sensitive and peptide-modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR-200, respectively. These peptides include one cell-penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria-targeting peptide. The peptide-modified nanoparticles are further coated with a pH-sensitive PEG-lipid derivative with an imine bond. These specially-designed nanoparticles exhibit pH-responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR-200 by SLN further increases the cytotoxicity of irinotecan-loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/β-catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC-bearing mice, the in vivo results further indicate that irinotecan and miR-200 in pH-responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate β-catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH-responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.
Collapse
Affiliation(s)
- Vivian Juang
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chih-Hsien Chang
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chen-Shen Wang
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, 112, Taiwan
| | - Yu-Li Lo
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei, 112, Taiwan
- Faculty of Pharmacy, National Yang-Ming University, Taipei, 112, Taiwan
- Center for Advanced Pharmaceutics and Drug Delivery Research, National Yang-Ming University, Taipei, 112, Taiwan
| |
Collapse
|
23
|
Abstract
DNA topoisomerases are enzymes that catalyze changes in the torsional and flexural strain of DNA molecules. Earlier studies implicated these enzymes in a variety of processes in both prokaryotes and eukaryotes, including DNA replication, transcription, recombination, and chromosome segregation. Studies performed over the past 3 years have provided new insight into the roles of various topoisomerases in maintaining eukaryotic chromosome structure and facilitating the decatenation of daughter chromosomes at cell division. In addition, recent studies have demonstrated that the incorporation of ribonucleotides into DNA results in trapping of topoisomerase I (TOP1)–DNA covalent complexes during aborted ribonucleotide removal. Importantly, such trapped TOP1–DNA covalent complexes, formed either during ribonucleotide removal or as a consequence of drug action, activate several repair processes, including processes involving the recently described nuclear proteases SPARTAN and GCNA-1. A variety of new TOP1 inhibitors and formulations, including antibody–drug conjugates and PEGylated complexes, exert their anticancer effects by also trapping these TOP1–DNA covalent complexes. Here we review recent developments and identify further questions raised by these new findings.
Collapse
Affiliation(s)
- Mary-Ann Bjornsti
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294-0019, USA
| | - Scott H Kaufmann
- Departments of Oncology and Molecular Pharmacolgy & Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
24
|
Advances in delivery of Irinotecan (CPT-11) active metabolite 7-ethyl-10-hydroxycamptothecin. Int J Pharm 2019; 568:118499. [DOI: 10.1016/j.ijpharm.2019.118499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022]
|
25
|
Ding R, Li Z, Wang J, Zhu X, Zhao Z, Wang M. Design and Synthesis of Galactose-Biotin Lipid Materials for Liposomes to Promote the Hepatoma Cell–Targeting Effect. J Pharm Sci 2019; 108:3074-3081. [DOI: 10.1016/j.xphs.2019.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/17/2019] [Accepted: 04/04/2019] [Indexed: 02/05/2023]
|
26
|
Xing J, Zhang X, Wang Z, Zhang H, Chen P, Zhou G, Sun C, Gu N, Ji M. Novel lipophilic SN38 prodrug forming stable liposomes for colorectal carcinoma therapy. Int J Nanomedicine 2019; 14:5201-5213. [PMID: 31371956 PMCID: PMC6634269 DOI: 10.2147/ijn.s204965] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/27/2019] [Indexed: 01/26/2023] Open
Abstract
Background: SN38 (7-ethyl-10-hydroxy camptothecin), as a potent metabolite of irinotecan, is highly efficacious in cancer treatment. However, the clinical utility of SN38 has been greatly limited due to its undesirable properties, such as poor solubility and low stability. Materials and methods: In order to overcome these weaknesses, moeixitecan, a lipophilic SN38 prodrug containing a SN-38, a trolox, a succinic acid linker, and a hexadecanol chain, was loaded into liposomal nanoparticles by ethanol injection method. Results: Experiments showed that the moeixitecan-loaded liposomal nanoparticles (MLP) with a diameter of 105.10±1.49 nm have a satisfactory drug loading rate (90.54±0.41%), high solubility and stability, and showed sustained release of SN38. Notably, MLP exhibited better antitumor activity against human colon adenocarcinoma cells than irinotecan, a FDA-approved drug for the treatment of advanced colorectal cancer. Furthermore, xenograft model results showed that MLP outperformed irinotecan in terms of pharmacokinetics, in vivo therapeutic efficacy and safety. Finally, we used molecular dynamic simulations to explore the association between the structure of MLP and the physical and functional properties of MLP, moeixitecan molecules in MLP folded themselves inside the hydrocarbon chain of the lipid bilayer, which led an increased acyl chain order of the lipid bilayer, and therefore enhanced the lactone ring stability protecting it from hydrolysis. Conclusion: Our MLP constructing strategy by liposome engineering technology may serve a promising universal approach for the effective and safe delivery of lipophilic prodrug.
Collapse
Affiliation(s)
- Jing Xing
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.,School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, People's Republic of China
| | - Xiquan Zhang
- Nanjing Institute of Pharmaceutical Research and Development, Chia-Tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing 210023, People's Republic of China
| | - Zhe Wang
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Huanqing Zhang
- Nanjing Institute of Pharmaceutical Research and Development, Chia-Tai Tianqing Pharmaceutical Group Co. Ltd, Nanjing 210023, People's Republic of China
| | - Peng Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.,School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, People's Republic of China
| | - Gaoxin Zhou
- School of Biomedical Engineering, Shenzhen University, Shenzhen 518071, People's Republic of China
| | - Chunlong Sun
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256603, People's Republic of China
| | - Ning Gu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.,School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, People's Republic of China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China.,School of Biological Science and Medical Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Suzhou 215123, People's Republic of China
| |
Collapse
|
27
|
Bi Y, Lee RJ, Wang X, Sun Y, Wang M, Li L, Li C, Xie J, Teng L. Liposomal codelivery of an SN38 prodrug and a survivin siRNA for tumor therapy. Int J Nanomedicine 2018; 13:5811-5822. [PMID: 30323583 PMCID: PMC6177376 DOI: 10.2147/ijn.s173279] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Purpose A liposome-based siRNA–drug combination was evaluated as a potential therapeutic strategy to improve the curative effect. Methods A topoisomerase inhibitor SN38 prodrug was combined with a survivin siRNA through codelivery using transferrin (Tf)-L-SN38/P/siRNA. In this combination, SN38 was conjugated to the cell penetrating peptide TAT through a polyethylene glycol (PEG) linker to synthesize TAT-PEG-SN38. The amphiphilic TAT-PEG-SN38 was used as an ingredient of liposomes to improve the cellular uptake. Protamine was added to form an electrostatic complex with siRNA in the core of the liposomes. Tf was introduced to enable tumor cell targeting of liposomes (Tf-L-SN38/P/siRNA). Results Tf-L-SN38/P/siRNA exhibited a particle size of 148 nm and a ζ-potential of +7.8 mV. The cellular uptake and antitumor activity were dependent on Tf receptor targeting, TAT-PEG-SN38, and siRNA codelivery. Tf-L-SN38/P/siRNA was shown to be considerably more effective than liposomes carrying individual components. This combination induced potent tumor inhibition (76.8%) in HeLa cell xenograft tumor-bearing nude mice. Conclusion These data indicated that Tf-L-SN38/P/siRNA was an effective system for codelivery of SN38 and a survivin siRNA and that its therapeutic potential deserved further evaluation.
Collapse
Affiliation(s)
- Ye Bi
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China, ;
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China, ; .,Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Xinyu Wang
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China, ;
| | - Yating Sun
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China, ;
| | - Mengqiao Wang
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China, ;
| | - Lianlian Li
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China, ;
| | - Chenliang Li
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China, ;
| | - Jing Xie
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China, ;
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin, People's Republic of China, ;
| |
Collapse
|
28
|
Fang YP, Chuang CH, Wu YJ, Lin HC, Lu YC. SN38-loaded <100 nm targeted liposomes for improving poor solubility and minimizing burst release and toxicity: in vitro and in vivo study. Int J Nanomedicine 2018; 13:2789-2802. [PMID: 29785106 PMCID: PMC5955381 DOI: 10.2147/ijn.s158426] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Background SN38 (7-ethyl-10-hydroxycamptothecin) is a camptothecin derivative acts against various tumors. However, SN38 is hydrolyzed in the physiological environment (pH 7.4), and this instability interferes with its potential therapeutic effect. Our objective was to investigate SN38-loaded liposomes to overcome the poor solubility of SN38 and its biodistribution, which further diminish its toxicity. Materials and methods The sub-100 nm targeted liposomes was employed to deliver SN-38 and evaluate the characterization, release behaviors, cytotoxicity, in vivo pharmacokinetics and biochemical assay. Results The SN38-loaded targeted liposomes consisted of small (100.49 nm) spherical nanoparticles with negative charge (−37.93 mV) and high entrapment efficiency (92.47%). The release behavior of the SN38-loaded targeted liposomes was fitted with Higuchi kinetics (R2=0.9860). Free SN38 presented initial burst release. The IC50 for the SN38-loaded targeted liposomes (0.11 μM) was significantly lower than for the SN38 solution (0.37 μM) in the MCF7 cell line (P<0.01). Confocal laser scanning microscopy also confirmed highly efficient accumulation in the MCF7 cells. Pharmacokinetics demonstrated that the SN38-loaded targeted liposomes had a slightly increased half-life and mean residence time and decreased area under the concentration–time curve and maximum concentration. The results suggested that retention was achieved while the exposure of SN38 was significantly decreased. A noninvasive in vivo imaging system also showed that the targeted liposomes selectively targeted MCF7 tumors. In vivo toxicity data demonstrated that the decrease in platelets was significantly improved by SN38-loaded targeted liposomes, and diarrhea was not observed in BALB/c mice. Conclusion In summary, SN38-loaded targeted liposomes could be a good candidate for application in human breast cancer.
Collapse
Affiliation(s)
- Yi-Ping Fang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University.,Department of Medical Research, Kaohsiung Medical University Hospital
| | - Chih-Hung Chuang
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University
| | - Yi-Jhun Wu
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University
| | - Hsin-Che Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University
| | - Yun-Chi Lu
- Graduate Institute of Medicine, Collage of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
29
|
Bai R, Deng X, Wu Q, Cao X, Ye T, Wang S. Liposome-loaded thermo-sensitive hydrogel for stabilization of SN-38 via intratumoral injection: optimization, characterization, and antitumor activity. Pharm Dev Technol 2017; 23:106-115. [PMID: 29019266 DOI: 10.1080/10837450.2017.1391287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Main challenges of the clinical use of 7-ethyl-10-hydroxycamptothecin (SN-38) are its facile transition between the active lactone form (SN-38 A) and the inactive carboxylate form (SN-38I) under physiological conditions and its low solubility. The purpose of this study was to develop a thermo-sensitive hydrogel system with acidic SN-38 liposomes (SN-38-Lip-Gel) for local chemotherapy to solve these problems and to evaluate its antitumor activity and tissue distribution in tumor-bearing mice. A study of structural conversion between SN-38I and SN-38 A under various pH conditions indicated that acidic solution could inhibit the conversion. Namely, a preparation with low pH was essential to stabilize lactone form of SN-38. SN-38-Lip-Gel had an appropriate gelation time (GT) at 25/37 °C. The particle size of SN-38-Lip-Gel was similar to that of SN-38-Lip. SN-38-Lip-Gel showed a slower release than SN-38-Lip in vitro. SN-38-Lip-Gel suggested pH-dependent stability, the percentage of SN-38 A remaining decreased along with the increasing pH. In vivo studies SN-38-Lip-Gel showed better antitumor efficacy and lower systemic toxicity compared with other groups at the same drug dose. In conclusion, SN-38-Lip-Gel could improve the effective use of SN-38 by stabilizing the lactone form, extending the drug release, providing a high local drug concentration, and reducing systemic toxicity.
Collapse
Affiliation(s)
- Ruixue Bai
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Xueqing Deng
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Qiong Wu
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Xiaomian Cao
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Tiantian Ye
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| | - Shujun Wang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , PR China
| |
Collapse
|