1
|
Lai CHL, Kwok APK, Wong KC. Cheminformatic Identification of Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) Inhibitors: A Comparative Study of SMILES-Based Supervised Machine Learning Models. J Pers Med 2024; 14:981. [PMID: 39338235 PMCID: PMC11433629 DOI: 10.3390/jpm14090981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Tyrosyl-DNA phosphodiesterase 1 (Tdp1) repairs damages in DNA induced by abortive topoisomerase 1 activity; however, maintenance of genetic integrity may sustain cellular division of neoplastic cells. It follows that Tdp1-targeting chemical inhibitors could synergize well with existing chemotherapy drugs to deny cancer growth; therefore, identification of Tdp1 inhibitors may advance precision medicine in oncology. OBJECTIVE Current computational research efforts focus primarily on molecular docking simulations, though datasets involving three-dimensional molecular structures are often hard to curate and computationally expensive to store and process. We propose the use of simplified molecular input line entry system (SMILES) chemical representations to train supervised machine learning (ML) models, aiming to predict potential Tdp1 inhibitors. METHODS An open-sourced consensus dataset containing the inhibitory activity of numerous chemicals against Tdp1 was obtained from Kaggle. Various ML algorithms were trained, ranging from simple algorithms to ensemble methods and deep neural networks. For algorithms requiring numerical data, SMILES were converted to chemical descriptors using RDKit, an open-sourced Python cheminformatics library. RESULTS Out of 13 optimized ML models with rigorously tuned hyperparameters, the random forest model gave the best results, yielding a receiver operating characteristics-area under curve of 0.7421, testing accuracy of 0.6815, sensitivity of 0.6444, specificity of 0.7156, precision of 0.6753, and F1 score of 0.6595. CONCLUSIONS Ensemble methods, especially the bootstrap aggregation mechanism adopted by random forest, outperformed other ML algorithms in classifying Tdp1 inhibitors from non-inhibitors using SMILES. The discovery of Tdp1 inhibitors could unlock more treatment regimens for cancer patients, allowing for therapies tailored to the patient's condition.
Collapse
Affiliation(s)
- Conan Hong-Lun Lai
- Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China
- Data Science and Policy Studies Programme, School of Governance and Policy Science, Faculty of Social Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Alex Pak Ki Kwok
- Data Science and Policy Studies Programme, School of Governance and Policy Science, Faculty of Social Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Kwong-Cheong Wong
- Data Science and Policy Studies Programme, School of Governance and Policy Science, Faculty of Social Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
2
|
Nie WZ, Shen QK, Quan ZS, Guo HY, Li YM. Bioactivities and Structure-Activity Relationships of Usnic Acid Derivatives: A Review. Mini Rev Med Chem 2024; 24:1368-1384. [PMID: 38265368 DOI: 10.2174/0113895575277085231123165546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Usnic acid has a variety of biological activities, and has been widely studied in the fields of antibacterial, immune stimulation, antiviral, antifungal, anti-inflammatory and antiparasitic. Based on this, usnic acid is used as the lead compound for structural modification. In order to enhance the biological activity and solubility of usnic acid, scholars have carried out a large number of structural modifications, and found some usnic acid derivatives to be of more potential research value. In this paper, the structural modification, biological activity and structure-activity relationship of usnic acid were reviewed to provide reference for the development of usnic acid derivatives.
Collapse
Affiliation(s)
- Wen-Zhe Nie
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China
| | - Ya-Mei Li
- Department of Pharmacy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| |
Collapse
|
3
|
Okhina AA, Kornienko TE, Rogachev AD, Luzina OA, Popova NA, Nikolin VP, Zakharenko AL, Dyrkheeva NS, Pokrovsky AG, Salakhutdinov NF, Lavrik OI. Pharmacokinetic study of Tdp1 inhibitor resulted in a significant increase in antitumor effect in the treatment of Lewis lung carcinoma in mice by its combination with topotecan. J Pharm Biomed Anal 2023; 236:115731. [PMID: 37741072 DOI: 10.1016/j.jpba.2023.115731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
We have previously shown that the Tdp1 inhibitor, enamine derivative of usnic acid, the agent OL9-116, enhances the antitumor activity of topotecan. In the present study, we developed and validated LC-MS/MS method for the quantification of OL9-116 in mouse whole blood and studied pharmacokinetics of the agent. The substance OL9-116 was shown to be stable in the whole blood in vitro. Sample preparation included two steps: mixing 10 µL of a blood sample with 10 µL of 0.2 M ZnSO4 aqueous solution, followed by protein precipitation with 100 µL of acetonitrile containing internal standard. Quantification of the compound was performed using SCIEX 6500 QTRAP mass spectrometer in MRM mode following chromatographic separation on a C8 reversed-phase column. The method was validated in terms of selectivity, linearity, accuracy, precision, recovery, and stability of the prepared sample. When the agent OL9-116 was administered intragastrically at a dose of 150 mg/kg, the maximum concentration in the blood (about 5000 ng/mL) was reached after 2-4 h followed by the distribution and elimination of the compound. A study of the antitumor activity of a combination of OL9-116 and topotecan against Lewis lung carcinoma revealed that administration of topotecan 3 h after OL9-116 resulted in the most pronounced antitumor effect compared to simultaneous or individual administration of both compounds.
Collapse
Affiliation(s)
- Alina A Okhina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent'ev ave., 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogov St., 2, Novosibirsk 630090, Russia
| | - Tatyana E Kornienko
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of Russian Academy of Sciences, Lavrent'ev ave., 8, Novosibirsk 630090, Russia
| | - Artem D Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent'ev ave., 9, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogov St., 2, Novosibirsk 630090, Russia
| | - Olga A Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent'ev ave., 9, Novosibirsk 630090, Russia
| | - Nelly A Popova
- Novosibirsk State University, Pirogov St., 2, Novosibirsk 630090, Russia; Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Lavrent'ev ave., 10, Novosibirsk 630090, Russia
| | - Valery P Nikolin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Lavrent'ev ave., 10, Novosibirsk 630090, Russia
| | - Alexandra L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of Russian Academy of Sciences, Lavrent'ev ave., 8, Novosibirsk 630090, Russia
| | - Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of Russian Academy of Sciences, Lavrent'ev ave., 8, Novosibirsk 630090, Russia
| | - Andrey G Pokrovsky
- Novosibirsk State University, Pirogov St., 2, Novosibirsk 630090, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of Russian Academy of Sciences, Lavrent'ev ave., 9, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Novosibirsk State University, Pirogov St., 2, Novosibirsk 630090, Russia; Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of Russian Academy of Sciences, Lavrent'ev ave., 8, Novosibirsk 630090, Russia.
| |
Collapse
|
4
|
Dolan JP, Ahmadipour S, Wahart AJC, Cheallaigh AN, Sari S, Eurtivong C, Lima MA, Skidmore MA, Volcho KP, Reynisson J, Field RA, Miller GJ. Virtual screening, identification and in vitro validation of small molecule GDP-mannose dehydrogenase inhibitors. RSC Chem Biol 2023; 4:865-870. [PMID: 37920392 PMCID: PMC10619135 DOI: 10.1039/d3cb00126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/26/2023] [Indexed: 11/04/2023] Open
Abstract
Upon undergoing mucoid conversion within the lungs of cystic fibrosis patients, the pathogenic bacterium Pseudomonas aeruginosa synthesises copious quantities of the virulence factor and exopolysaccharide alginate. The enzyme guanosine diphosphate mannose dehydrogenase (GMD) catalyses the rate-limiting step and irreversible formation of the alginate sugar nucleotide building block, guanosine diphosphate mannuronic acid. Since there is no corresponding enzyme in humans, strategies that could prevent its mechanism of action could open a pathway for new and selective inhibitors to disrupt bacterial alginate production. Using virtual screening, a library of 1447 compounds within the Known Drug Space parameters were evaluated against the GMD active site using the Glide, FRED and GOLD algorithms. Compound hit evaluation with recombinant GMD refined the panel of 40 potential hits to 6 compounds which reduced NADH production in a time-dependent manner; of which, an usnic acid derivative demonstrated inhibition six-fold stronger than a previously established sugar nucleotide inhibitor, with an IC50 value of 17 μM. Further analysis by covalent docking and mass spectrometry confirm a single site of GMD alkylation.
Collapse
Affiliation(s)
- Jonathan P Dolan
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| | - Sanaz Ahmadipour
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Alice J C Wahart
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| | - Aisling Ní Cheallaigh
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| | - Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry 06100 Ankara Turkey
| | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University 447 Si Ayutthaya Road Ratchathewi Bangkok 10400 Thailand
| | - Marcelo A Lima
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
- School of Life Sciences, Keele University Keele Staffordshire ST5 5BG UK
| | - Mark A Skidmore
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
- School of Life Sciences, Keele University Keele Staffordshire ST5 5BG UK
| | - Konstantin P Volcho
- N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences 630090 Novosibirsk Russia
| | - Jóhannes Reynisson
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
- Hornbeam Building, School of Pharmacy & Bioengineering, Keele University Keele Staffordshire ST5 5BG UK
| | - Robert A Field
- Department of Chemistry & Manchester Institute of Biotechnology, The University of Manchester 131 Princess Street Manchester M1 7DN UK
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical & Physical Sciences, Keele University Keele Staffordshire ST5 5BG UK
- Centre for Glycoscience, Keele University Keele Staffordshire ST5 5BG UK
| |
Collapse
|
5
|
Yang H, Qin C, Wu M, Wang FT, Wang W, Agama K, Pommier Y, Hu DX, An LK. Synthesis and Biological Activities of 11- and 12-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB and Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. ChemMedChem 2023; 18:e202200593. [PMID: 36932053 PMCID: PMC10233710 DOI: 10.1002/cmdc.202200593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/06/2023] [Indexed: 03/19/2023]
Abstract
Herein, a series of 11- or 12-substituted benzophenanthridinone derivatives was designed and synthesized for the discovery of dual topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors. Enzyme-based assays indicated that two compounds 12 and 38 showed high TOP1 inhibitory potency (+++), and four compounds 35, 37, 39 and 43 showed good TDP1 inhibition with IC50 values ranging from 10 to 18 μM. 38 could induce cellular TOP1cc formation, resulting in the highest cytotoxicity against HCT-116 cells (0.25 μM). The most potent TDP1 inhibitor 43 (10 μM) could induce cellular TDP1cc formation and enhance topotecan-induced DNA damage and showed strong synergistic cytotoxicity with topotecan in both MCF-7 and MCF-7/TDP1 cells.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Chao Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Min Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Fang-Ting Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wenjie Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - De-Xuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Zakharenko AL, Luzina OA, Chepanova AA, Dyrkheeva NS, Salakhutdinov NF, Lavrik OI. Natural Products and Their Derivatives as Inhibitors of the DNA Repair Enzyme Tyrosyl-DNA Phosphodiesterase 1. Int J Mol Sci 2023; 24:5781. [PMID: 36982848 PMCID: PMC10051138 DOI: 10.3390/ijms24065781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.
Collapse
Affiliation(s)
- Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nadezhda S. Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Filimonov AS, Yarovaya OI, Zaykovskaya AV, Rudometova NB, Shcherbakov DN, Chirkova VY, Baev DS, Borisevich SS, Luzina OA, Pyankov OV, Maksyutov RA, Salakhutdinov NF. (+)-Usnic Acid and Its Derivatives as Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses 2022; 14:2154. [PMID: 36298709 PMCID: PMC9611092 DOI: 10.3390/v14102154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2023] Open
Abstract
In order to test the antiviral activity, a series of usnic acid derivatives were synthesized, including new, previously undescribed compounds. The activity of the derivatives against three strains of SARS-CoV-2 virus was studied. To understand the mechanism of antiviral action, the inhibitory activity of the main protease of SARS-CoV-2 virus was studied using the developed model as well as the antiviral activity against the pseudoviral system with glycoprotein S of SARS-CoV-2 virus on its surface. It was shown that usnic acid exhibits activity against three strains of SARS-CoV-2 virus: Wuhan, Delta, and Omicron. Compounds 10 and 13 also showed high activity against the three strains. The performed biological studies and molecular modeling allowed us to assume that the derivatives of usnic acid bind in the N-terminal domain of the surface glycoprotein S at the binding site of the hemoglobin decay metabolite.
Collapse
Affiliation(s)
- Aleksandr S. Filimonov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nadezda B. Rudometova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Varvara Yu. Chirkova
- Department of Physical-Chemistry Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia
| | - Dmitry S. Baev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Olga A. Luzina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Rinat A. Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Lazinski LM, Royal G, Robin M, Maresca M, Haudecoeur R. Bioactive Aurones, Indanones, and Other Hemiindigoid Scaffolds: Medicinal Chemistry and Photopharmacology Perspectives. J Med Chem 2022; 65:12594-12625. [PMID: 36126323 DOI: 10.1021/acs.jmedchem.2c01150] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemiindigoids comprise a range of natural and synthetic scaffolds that share the same aromatic hydrocarbon backbone as well as promising biological and optical properties. The encouraging therapeutic potential of these scaffolds has been unraveled by many studies over the past years and uncovered representants with inspiring pharmacophoric features such as the acetylcholinesterase inhibitor donezepil and the tubulin polymerization inhibitor indanocine. In this review, we summarize the last advances in the medicinal potential of hemiindigoids, with a special attention to molecular design, structure-activity relationship, ligand-target interactions, and mechanistic explanations covering their effects. As their strong fluorogenic potential and photoswitch behavior recently started to be highlighted and explored in biology, giving rise to the development of novel fluorescent probes and photopharmacological agents, we also discuss these properties in a medicinal chemistry perspective.
Collapse
Affiliation(s)
- Leticia M Lazinski
- Université Grenoble Alpes, CNRS 5063, DPM, 38000 Grenoble, France.,Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Guy Royal
- Université Grenoble Alpes, CNRS 5250, DCM, 38000 Grenoble, France
| | - Maxime Robin
- Mediterranean Institute of Marine and Terrestrial Biodiversity and Ecology (IMBE), Aix Marseille Université, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | | |
Collapse
|
9
|
Adamantane-Monoterpenoid Conjugates Linked via Heterocyclic Linkers Enhance the Cytotoxic Effect of Topotecan. Molecules 2022; 27:molecules27113374. [PMID: 35684313 PMCID: PMC9182348 DOI: 10.3390/molecules27113374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 01/01/2023] Open
Abstract
Inhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising strategy for increasing the effectiveness of existing antitumor therapy since it can remove the DNA lesions caused by anticancer drugs, which form covalent complexes with topoisomerase 1 (TOP1). Here, new adamantane-monoterpene conjugates with a 1,2,4-triazole or 1,3,4-thiadiazole linker core were synthesized, where (+)-and (-)-campholenic and (+)-camphor derivatives were used as monoterpene fragments. The campholenic derivatives 14a-14b and 15a-b showed activity against TDP1 at a low micromolar range with IC50 ~5-6 μM, whereas camphor-containing compounds 16 and 17 were ineffective. Surprisingly, all the compounds synthesized demonstrated a clear synergy with topotecan, a TOP1 poison, regardless of their ability to inhibit TDP1. These findings imply that different pathways of enhancing topotecan toxicity other than the inhibition of TDP1 can be realized.
Collapse
|
10
|
Cirillo D, Karlsson S, Bjørsvik H. A Scalable High‐Yielding and Selective Oxidative Heck Cross‐Coupling – A Key Step for the Synthesis of
trans‐
Stilbenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Davide Cirillo
- Department of Chemistry University of Bergen Allégaten 41 5007 Bergen Norway
| | - Staffan Karlsson
- Chemical Development Pharmaceutical Sciences Biopharmaceuticals R&D AstraZeneca Pepparedsleden 1 43150 Mölndal Sweden
| | - Hans‐René Bjørsvik
- Department of Chemistry University of Bergen Allégaten 41 5007 Bergen Norway
| |
Collapse
|
11
|
New Hybrid Compounds Combining Fragments of Usnic Acid and Thioether Are Inhibitors of Human Enzymes TDP1, TDP2 and PARP1. Int J Mol Sci 2021; 22:ijms222111336. [PMID: 34768766 PMCID: PMC8583042 DOI: 10.3390/ijms222111336] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) catalyzes the cleavage of the phosphodiester bond between the tyrosine residue of topoisomerase 1 (TOP1) and the 3' phosphate of DNA in the single-strand break generated by TOP1. TDP1 promotes the cleavage of the stable DNA-TOP1 complexes with the TOP1 inhibitor topotecan, which is a clinically used anticancer drug. This article reports the synthesis and study of usnic acid thioether and sulfoxide derivatives that efficiently suppress TDP1 activity, with IC50 values in the 1.4-25.2 μM range. The structure of the heterocyclic substituent introduced into the dibenzofuran core affects the TDP1 inhibitory efficiency of the compounds. A five-membered heterocyclic fragment was shown to be most pharmacophoric among the others. Sulfoxide derivatives were less cytotoxic than their thioester analogs. We observed an uncompetitive type of inhibition for the four most effective inhibitors of TDP1. The anticancer effect of TOP1 inhibitors can be enhanced by the simultaneous inhibition of PARP1, TDP1, and TDP2. Some of the compounds inhibited not only TDP1 but also TDP2 and/or PARP1, but at significantly higher concentration ranges than TDP1. Leader compound 10a showed promising synergy on HeLa cells in conjunction with the TOP1 inhibitor topotecan.
Collapse
|
12
|
New Hybrid Compounds Combining Fragments of Usnic Acid and Monoterpenoids for Effective Tyrosyl-DNA Phosphodiesterase 1 Inhibition. Biomolecules 2021; 11:biom11070973. [PMID: 34356597 PMCID: PMC8301776 DOI: 10.3390/biom11070973] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 02/04/2023] Open
Abstract
Usnic acid (UA) is a secondary metabolite of lichens that exhibits a wide range of biological activities. Previously, we found that UA derivatives are effective inhibitors of tyrosyl-DNA phosphodiesterase 1 (TDP1). It can remove covalent complex DNA-topoisomerase 1 (TOP1) stabilized by the TOP1 inhibitor topotecan, neutralizing the effect of the drugs. TDP1 removes damage at the 3′ end of DNA caused by other anticancer agents. Thus, TDP1 is a promising therapeutic target for the development of drug combinations with topotecan, as well as other drugs for cancer treatment. Ten new UA enamino derivatives with variation in the terpene fragment and substituent of the UA backbone were synthesized and tested as TDP1 inhibitors. Four compounds, 11a-d, had IC50 values in the 0.23–0.40 μM range. Molecular modelling showed that 11a-d, with relatively short aliphatic chains, fit to the important binding domains. The intrinsic cytotoxicity of 11a-d was tested on two human cell lines. The compounds had low cytotoxicity with CC50 ≥ 60 μM for both cell lines. 11a and 11c had high inhibition efficacy and low cytotoxicity, and they enhanced topotecan’s cytotoxicity in cancerous HeLa cells but reduced it in the non-cancerous HEK293A cells. This “protective” effect from topotecan on non-cancerous cells requires further investigation.
Collapse
|
13
|
Leung E, Patel J, Hollywood JA, Zafar A, Tomek P, Barker D, Pilkington LI, van Rensburg M, Langley RJ, Helsby NA, Squire CJ, Baguley BC, Denny WA, Reynisson J, Leung IKH. Validating TDP1 as an Inhibition Target for the Development of Chemosensitizers for Camptothecin-Based Chemotherapy Drugs. Oncol Ther 2021; 9:541-556. [PMID: 34159519 PMCID: PMC8593127 DOI: 10.1007/s40487-021-00158-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/03/2021] [Indexed: 12/01/2022] Open
Abstract
Cancer chemotherapy sensitizers hold the key to maximizing the potential of standard anticancer treatments. We have a long-standing interest in developing and validating inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) as chemosensitizers for topoisomerase I poisons such as topotecan. Herein, by using thieno[2,3-b]pyridines, a class of TDP1 inhibitors, we showed that the inhibition of TDP1 can restore sensitivity to topotecan, results that are supported by TDP1 knockout cell experiments using CRISPR/Cas9. However, we also found that the restored sensitivity towards topoisomerase I inhibitors is likely regulated by multiple complementary DNA repair pathways. Our results showed that one of these pathways is likely modulated by PARP1, although it is also possible that other redundant and partially overlapping pathways may be involved in the DNA repair process. Our work thus raises the prospect of targeting multiple DNA repair pathways to increase the sensitivity to topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.
| | - Jinal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Jennifer A Hollywood
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ayesha Zafar
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - David Barker
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Michelle van Rensburg
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ries J Langley
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Nuala A Helsby
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Christopher J Squire
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.,School of Biological Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - William A Denny
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Jóhannes Reynisson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,School of Pharmacy and Bioengineering, Keele University, Staffordshire, ST5 5BG, UK.
| | - Ivanhoe K H Leung
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand. .,School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
14
|
Dyrkheeva NS, Zakharenko AL, Novoselova ES, Chepanova AA, Popova NA, Nikolin VP, Luzina OA, Salakhutdinov NF, Ryabchikova EI, Lavrik OI. Antitumor Activity of the Combination of Topotecan and Tyrosyl-DNA-Phosphodiesterase 1 Inhibitor on Model Krebs-2 Mouse Ascite Carcinoma. Mol Biol 2021. [DOI: 10.1134/s0026893321020060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Gladkova ED, Chepanova AA, Ilina ES, Zakharenko AL, Reynisson J, Luzina OA, Volcho KP, Lavrik OI, Salakhutdinov NF. Discovery of Novel Sultone Fused Berberine Derivatives as Promising Tdp1 Inhibitors. Molecules 2021; 26:molecules26071945. [PMID: 33808389 PMCID: PMC8037669 DOI: 10.3390/molecules26071945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
A new type of berberine derivatives was obtained by the reaction of berberrubine with aliphatic sulfonyl chlorides. The new polycyclic compounds have a sultone ring condensed to C and D rings of a protoberberine core. The reaction conditions were developed to facilitate the formation of sultones with high yields without by-product formation. Thus, it was shown that the order of addition of reagents affects the composition of the reaction products: when sulfochlorides are added to berberrubine, their corresponding 9-O-sulfonates are predominantly formed; when berberrubine is added to pre-generated sulfenes, sultones are the only products. The reaction was shown to proceed stereo-selectively and the cycle configuration was confirmed by 2D NMR spectroscopy. The inhibitory activity of the synthesized sultones and their 12-brominated analogs against the DNA-repair enzyme tyrosyl-DNA phosphodiesterase 1 (Tdp1), an important target for a potential antitumor therapy, was studied. All derivatives were active in the micromolar and submicromolar range, in contrast to the acyclic analogs and 9-O-sulfonates, which were inactive. The significance of the sultone cycle and bromine substituent in binding with the enzyme was confirmed using molecular modeling. The active inhibitors are mostly non-toxic to the HeLa cancer cell line, and several ligands show synergy with topotecan, a topoisomerase 1 poison in clinical use. Thus, novel berberine derivatives can be considered as candidates for adjuvant therapy against cancer.
Collapse
Affiliation(s)
- Elizaveta D. Gladkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (E.D.G.); (K.P.V.)
- Department of Natural Sciences, Novosibirsk State University, Pirogova str. 1, 630090 Novosibirsk, Russia
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (E.S.I.); (A.L.Z.); (O.I.L.)
| | - Ekaterina S. Ilina
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (E.S.I.); (A.L.Z.); (O.I.L.)
| | - Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (E.S.I.); (A.L.Z.); (O.I.L.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK;
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (E.D.G.); (K.P.V.)
- Correspondence: (O.A.L.); (N.F.S.)
| | - Konstantin P. Volcho
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (E.D.G.); (K.P.V.)
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.C.); (E.S.I.); (A.L.Z.); (O.I.L.)
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (E.D.G.); (K.P.V.)
- Correspondence: (O.A.L.); (N.F.S.)
| |
Collapse
|
16
|
Cavalloro V, Marrubini G, Stabile R, Rossi D, Linciano P, Gheza G, Assini S, Martino E, Collina S. Microwave-Assisted Extraction and HPLC-UV-CD Determination of (S)-usnic Acid in Cladonia foliacea. Molecules 2021; 26:molecules26020455. [PMID: 33467133 PMCID: PMC7830470 DOI: 10.3390/molecules26020455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
During the years, many usnic acid (UA) conjugates have been synthesized to obtain potent endowed with biological properties. Since (S)-UA is less abundant in nature than (R)-enantiomer, it is difficult to source, thus precluding a deeper investigation. Among the lichens producing UA, Cladonia foliacea is a valuable (S)-UA source. In the present work, we report on a rapid HPLC-UV/PAD-CD protocol suitable for the analysis and the identification of the main secondary metabolites present in C. foliacea extract. Best results were achieved using XBridge Phenyl column and acetonitrile and water, which were both added with formic acid as mobile phase in gradient elution. By combining analytical, spectroscopical, and chiroptical analysis, the most abundant analyte was unambiguously identified as (S)-UA. Accordingly, a versatile microwave-assisted extractive (MAE) protocol, assisted by a design of experiment (DoE), to quantitatively recover (S)-UA was set up. The best result in terms of UA extraction yield was obtained using ethanol and heating at 80 °C under microwave irradiation for 5 min. Starting from 100 g of dried C. foliacea, 420 mg of (S)-UA were achieved. Thus, our extraction method resulted in a suitable protocol to produce (S)-UA from C. foliacea for biological and pharmaceutical investigation or commercial purposes.
Collapse
Affiliation(s)
- Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (V.C.); (S.A.)
| | - Giorgio Marrubini
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.S.); (D.R.); (S.C.)
| | - Rita Stabile
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.S.); (D.R.); (S.C.)
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.S.); (D.R.); (S.C.)
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.S.); (D.R.); (S.C.)
- Correspondence: (P.L.); (E.M.)
| | - Gabriele Gheza
- Department of Biological Geological and Environmental Sciences University of Bologna, 40126 Bologna, Italy;
| | - Silvia Assini
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (V.C.); (S.A.)
| | - Emanuela Martino
- Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; (V.C.); (S.A.)
- Correspondence: (P.L.); (E.M.)
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (G.M.); (R.S.); (D.R.); (S.C.)
| |
Collapse
|
17
|
Luzina O, Filimonov A, Zakharenko A, Chepanova A, Zakharova O, Ilina E, Dyrkheeva N, Likhatskaya G, Salakhutdinov N, Lavrik O. Usnic Acid Conjugates with Monoterpenoids as Potent Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. JOURNAL OF NATURAL PRODUCTS 2020; 83:2320-2329. [PMID: 32786885 DOI: 10.1021/acs.jnatprod.9b01089] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hybrid molecules created from different pharmacophores of natural and synthetic equivalents are successfully used in pharmaceutical practice. One promising target for anticancer therapy is tyrosyl-DNA phosphodiesterase 1 (Tdp1) because it can repair DNA lesions caused by DNA-topoisomerase 1 (Top1) inhibitors, resulting in drug resistance. In this study, new hybrid compounds were synthesized by combining the pharmacophoric moiety of a set of natural compounds with inhibitory properties against Tdp1, particularly, phenolic usnic acid and a set of different monoterpenoid fragments. These fragments were connected through a hydrazinothiazole linker. The inhibitory properties of the new compounds mainly depended on the structure of the terpenoid moieties. The two most potent compounds, 9a and 9b, were synthesized from citral and citronellal, which contain acyclic fragments with IC50 values in the range of 10-16 nM. Some synthesized derivatives showed low cytotoxicity against HeLa cells and increased the effect of the Top1 inhibitor topotecan in vitro by three to seven times. These derivatives may be considered as potential agents for the development of anticancer therapies when combined with Top1 inhibitors.
Collapse
Affiliation(s)
- Olga Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Alexander Filimonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, Novosibirsk, 630090, Russian Federation
| | - Alexandra Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Arina Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Olga Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Ekaterina Ilina
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Nadezhda Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Galina Likhatskaya
- Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russian Federation
| | - Nariman Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, Novosibirsk, 630090, Russian Federation
| | - Olga Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, Novosibirsk, 630090, Russian Federation
| |
Collapse
|
18
|
Design, Synthesis, and Biological Investigation of Novel Classes of 3-Carene-Derived Potent Inhibitors of TDP1. Molecules 2020; 25:molecules25153496. [PMID: 32751997 PMCID: PMC7436013 DOI: 10.3390/molecules25153496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/02/2022] Open
Abstract
Two novel structural types of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors with hexahydroisobenzofuran 11 and 3-oxabicyclo [3.3.1]nonane 12 scaffolds were discovered. These monoterpene-derived compounds were synthesized through preliminary isomerization of (+)-3-carene to (+)-2-carene followed by reaction with heteroaromatic aldehydes. All the compounds inhibit the TDP1 enzyme at micro- and submicromolar levels, with the most potent compound having an IC50 value of 0.65 μM. TDP1 is an important DNA repair enzyme and a promising target for the development of new chemosensitizing agents. A panel of isogenic clones of the HEK293FT cell line knockout for the TDP1 gene was created using the CRISPR-Cas9 system. Cytotoxic effects of topotecan (Tpc) and non-cytotoxic compounds of the new structures were investigated separately and jointly in the TDP1 gene knockout cells. For two TDP1 inhibitors, 11h and 12k, a synergistic effect was observed with Tpc in the HEK293FT cells but was not found in TDP1 −/− cells. Thus, it is likely that the synergistic effect is caused by inhibition of TDP1. Synergy was also found for 11h in other cancer cell lines. Thus, sensitizing cancer cells using a non-cytotoxic drug can enhance the efficacy of currently used pharmaceuticals and, concomitantly, reduce toxic side effects.
Collapse
|
19
|
Bangalore PK, Vagolu SK, Bollikanda RK, Veeragoni DK, Choudante PC, Misra S, Sriram D, Sridhar B, Kantevari S. Usnic Acid Enaminone-Coupled 1,2,3-Triazoles as Antibacterial and Antitubercular Agents. JOURNAL OF NATURAL PRODUCTS 2020; 83:26-35. [PMID: 31858800 DOI: 10.1021/acs.jnatprod.9b00475] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
(+)-Usnic acid, a product of secondary metabolism in lichens, has displayed a broad range of biological properties such as antitumor, antimicrobial, antiviral, anti-inflammatory, and insecticidal activities. Interested by these pharmacological activities and to tap into its potential, we herein present the synthesis and biological evaluation of new usnic acid enaminone-conjugated 1,2,3-triazoles 10-44 as antimycobacterial agents. (+)-Usnic acid was condensed with propargyl amine to give usnic acid enaminone 8 with a terminal ethynyl moiety. It was further reacted with various azides A1-A35 under copper catalysis to give triazoles 10-44 in good yields. Among the synthesized compounds, saccharin derivative 36 proved to be the most active analogue, inhibiting Mycobacterium tuberculosis (Mtb) at an MIC value of 2.5 μM. Analogues 16 and 27, with 3,4-difluorophenacyl and 2-acylnaphthalene units, respectively, inhibited Mtb at MIC values of 5.4 and 5.3 μM, respectively. Among the tested Gram-positive and Gram-negative bacteria, the new derivatives were active on Bacillus subtilis, with compounds 18 [3-(trifluoromethyl)phenacyl] and 29 (N-acylmorpholinyl) showing inhibitory concentrations of 41 and 90.7 μM, respectively, while they were inactive on the other tested bacterial strains. Overall, the study presented here is useful for converting natural (+)-usnic acid into antitubercular and antibacterial agents via incorporation of enaminone and 1,2,3-triazole functionalities.
Collapse
Affiliation(s)
| | - Siva K Vagolu
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group , Birla Institute of Technology & Science-Pilani , Hyderabad Campus, Jawahar Nagar , Hyderabad - 500078 , Telangana , India
| | | | | | | | | | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group , Birla Institute of Technology & Science-Pilani , Hyderabad Campus, Jawahar Nagar , Hyderabad - 500078 , Telangana , India
| | | | | |
Collapse
|
20
|
Chepanova AA, Li-Zhulanov NS, Sukhikh AS, Zafar A, Reynisson J, Zakharenko AL, Zakharova OD, Korchagina DV, Volcho KP, Salakhutdinov NF, Lavrik OI. Effective Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 Based on Monoterpenoids as Potential Agents for Antitumor Therapy. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1068162019060104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Khomenko TM, Zakharenko AL, Chepanova AA, Ilina ES, Zakharova OD, Kaledin VI, Nikolin VP, Popova NA, Korchagina DV, Reynisson J, Chand R, Ayine-Tora DM, Patel J, Leung IKH, Volcho KP, Salakhutdinov NF, Lavrik OI. Promising New Inhibitors of Tyrosyl-DNA Phosphodiesterase I (Tdp 1) Combining 4-Arylcoumarin and Monoterpenoid Moieties as Components of Complex Antitumor Therapy. Int J Mol Sci 2019; 21:ijms21010126. [PMID: 31878088 PMCID: PMC6982354 DOI: 10.3390/ijms21010126] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 12/26/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is an important DNA repair enzyme in humans, and a current and promising inhibition target for the development of new chemosensitizing agents due to its ability to remove DNA damage caused by topoisomerase 1 (Top1) poisons such as topotecan and irinotecan. Herein, we report our work on the synthesis and characterization of new Tdp1 inhibitors that combine the arylcoumarin (neoflavonoid) and monoterpenoid moieties. Our results showed that they are potent Tdp1 inhibitors with IC50 values in the submicromolar range. In vivo experiments with mice revealed that compound 3ba (IC50 0.62 µM) induced a significant increase in the antitumor effect of topotecan on the Krebs-2 ascites tumor model. Our results further strengthen the argument that Tdp1 is a druggable target with the potential to be developed into a clinically-potent adjunct therapy in conjunction with Top1 poisons.
Collapse
Affiliation(s)
- Tatyana M. Khomenko
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Ekaterina S. Ilina
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Olga D. Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
| | - Vasily I. Kaledin
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
| | - Valeriy P. Nikolin
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
| | - Nelly A. Popova
- Institute of Cytology and Genetics, 10, acad. Lavrentjev Ave., 630090 Novosibirsk, Russian; (V.I.K.); (V.P.N.); (N.A.P.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Dina V. Korchagina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, UK;
| | - Raina Chand
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Daniel M. Ayine-Tora
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Jinal Patel
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Ivanhoe K. H. Leung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, 1142 Auckland, New Zealand; (R.C.); (D.M.A.-T.); (J.P.); (I.K.H.L.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
- Correspondence:
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 9 acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, 8, acad. Lavrentjev ave., 630090 Novosibirsk, Russia; (A.L.Z.); (A.A.C.); (E.S.I.); (O.D.Z.); (O.I.L.)
- Novosibirsk State University, V. Zelman Institute for Medicine and Psychology and Department of Natural Sciences, 2, Pirogova str., 630090 Novosibirsk, Russia
- Department of Physical and Chemical Biology and Biotechnology, Altai State University, 61, Lenina Ave., 656049 Barnaul, Russia
| |
Collapse
|
22
|
Brettrager EJ, van Waardenburg RC. Targeting Tyrosyl-DNA phosphodiesterase I to enhance toxicity of phosphodiester linked DNA-adducts. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:1153-1163. [PMID: 31875206 PMCID: PMC6929713 DOI: 10.20517/cdr.2019.91] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/19/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Our genomic DNA is under constant assault from endogenous and exogenous sources, which needs to be resolved to maintain cellular homeostasis. The eukaryotic DNA repair enzyme Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the hydrolysis of phosphodiester bonds that covalently link adducts to DNA-ends. Tdp1 utilizes two catalytic histidines to resolve a growing list of DNA-adducts. These DNA-adducts can be divided into two groups: small adducts, including oxidized nucleotides, RNA, and non-canonical nucleoside analogs, and large adducts, such as (drug-stabilized) topoisomerase- DNA covalent complexes or failed Schiff base reactions as occur between PARP1 and DNA. Many Tdp1 substrates are generated by chemotherapeutics linking Tdp1 to cancer drug resistance, making a compelling argument to develop small molecules that target Tdp1 as potential novel therapeutic agents. Tdp1's unique catalytic cycle, which is centered on the formation of Tdp1-DNA covalent reaction intermediate, allows for two principally different targeting strategies: (1) catalytic inhibition of Tdp1 catalysis to prevent Tdp1-mediated repair of DNA-adducts that enhances the effectivity of chemotherapeutics; and (2) poisoning of Tdp1 by stabilization of the Tdp1- DNA covalent reaction intermediate, which would increase the half-life of a potentially toxic DNA-adduct by preventing its resolution, analogous to topoisomerase targeted poisons such as topotecan or etoposide. The catalytic Tdp1 mutant that forms the molecular basis of the autosomal recessive neurodegenerative disease spinocerebellar ataxia with axonal neuropathy best illustrates this concept; however, no small molecules have been reported for this strategy. Herein, we concisely discuss the development of Tdp1 catalytic inhibitors and their results.
Collapse
Affiliation(s)
- Evan J. Brettrager
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
23
|
Mamontova EM, Zakharenko AL, Zakharova OD, Dyrkheeva NS, Volcho KP, Reynisson J, Arabshahi HJ, Salakhutdinov NF, Lavrik OI. Identification of novel inhibitors for the tyrosyl-DNA-phosphodiesterase 1 (Tdp1) mutant SCAN1 using virtual screening. Bioorg Med Chem 2019; 28:115234. [PMID: 31831297 DOI: 10.1016/j.bmc.2019.115234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
Spinocerebellar ataxia syndrome with axonal neuropathy (SCAN1) is a debilitating neurological disease that is caused by the mutation the Tyrosyl-DNA phosphodiesterase 1 (TDP1) DNA repair enzyme. The crucial His493 in TDP1's binding site is replaced with an arginine amino acid residue rendering the enzyme dysfunctional. A virtual screen was performed against the homology model of SCAN1 and seventeen compounds were identified and tested in a novel SCAN1 specific biochemical assay. Six compounds showed activity with IC50 values between 3.5 and 25.1 µM. The most active ligand 5 (3.5 µM) is a dicoumarin followed by a close structural analogue 6 at 6.0 µM. A less potent series of β-carbolines (14 and 15) was found with potency in the mid-teens. According to molecular modelling an excellent fit for the active ligands into the binding pocket is predicted. To the best of our knowledge, data on inhibitors of the mutant form of TDP1 has not been reported previously. The virtual hits were also tested for wild type TDP1 activity and all six SCAN1 inhibitors are potent for the former, e.g., ligand 5 has a measured IC50 at 99 nM. In the last decade, TDP1 is considered as a promising target for adjuvant therapy against cancer in combination with Topoisomerase 1 poisons. The active ligands are mostly non-toxic to cancer cell lines A-549, T98G and MCF-7 as well as the immortalized WI-38 human fetal lung cells. Furthermore, ligands 5 and 7, show promising synergy in conjunction with topotecan, a clinically used topoisomerase 1 anticancer drug. The active ligands 5, 7, 14 and 15 have a good balance of the physicochemical properties required for oral bioavailability making the excellent candidates for further development.
Collapse
Affiliation(s)
- E M Mamontova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation; Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| | - A L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - O D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - N S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - K P Volcho
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation; N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - J Reynisson
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand; School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Staffordshire ST5 5BG, United Kingdom
| | - H J Arabshahi
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Victoria Street West, Auckland 1142, New Zealand
| | - N F Salakhutdinov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation; N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9, Lavrentiev Ave., Novosibirsk 630090, Russian Federation
| | - O I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, 8, Lavrentiev Ave., Novosibirsk 630090, Russian Federation.
| |
Collapse
|
24
|
Kovaleva K, Oleshko O, Mamontova E, Yarovaya O, Zakharova O, Zakharenko A, Kononova A, Dyrkheeva N, Cheresiz S, Pokrovsky A, Lavrik O, Salakhutdinov N. Dehydroabietylamine Ureas and Thioureas as Tyrosyl-DNA Phosphodiesterase 1 Inhibitors That Enhance the Antitumor Effect of Temozolomide on Glioblastoma Cells. JOURNAL OF NATURAL PRODUCTS 2019; 82:2443-2450. [PMID: 31430155 DOI: 10.1021/acs.jnatprod.8b01095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A new class of tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors was found among resin acid derivatives. Several novel ureas and thioureas derived from dehydroabietylamine were synthesized and tested for TDP1 inhibition. The synthesized compounds showed IC50 values in the range of 0.1 to 3.7 μM and demonstrated low cytotoxicity against the human tumor cell lines U-937, U-87MG, MDA-MB, SK-Mel8, A-549, MCF7, T98G, and SNB19. Several compounds showed enhancement of the cytotoxic activity of the alkylating agent temozolomide, which is used as a first line therapy against glioblastoma (GBM), in the GBM cell lines U-87MG and SNB19.
Collapse
Affiliation(s)
- Kseniya Kovaleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , 630090 , Russian Federation
- Novosibirsk State University , Novosibirsk , 630090 , Russian Federation
| | - Olga Oleshko
- Novosibirsk State University , Novosibirsk , 630090 , Russian Federation
| | - Evgeniya Mamontova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , 630090 , Russian Federation
| | - Olga Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , 630090 , Russian Federation
- Novosibirsk State University , Novosibirsk , 630090 , Russian Federation
| | - Olga Zakharova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , 630090 , Russian Federation
| | - Alexandra Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , 630090 , Russian Federation
| | - Alena Kononova
- Novosibirsk State University , Novosibirsk , 630090 , Russian Federation
| | - Nadezhda Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , 630090 , Russian Federation
| | - Sergey Cheresiz
- Novosibirsk State University , Novosibirsk , 630090 , Russian Federation
- State Scientific Research Institute of Physiology and Basic Medicine , P.O. Box 237, Novosibirsk , 630117 , Russian Federation
| | - Andrey Pokrovsky
- Novosibirsk State University , Novosibirsk , 630090 , Russian Federation
| | - Olga Lavrik
- Novosibirsk State University , Novosibirsk , 630090 , Russian Federation
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , 630090 , Russian Federation
| | - Nariman Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences , Novosibirsk , 630090 , Russian Federation
- Novosibirsk State University , Novosibirsk , 630090 , Russian Federation
| |
Collapse
|
25
|
The Development of Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. Combination of Monoterpene and Adamantine Moieties via Amide or Thioamide Bridges. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132767] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eleven amide and thioamide derivatives with monoterpene and adamantine substituents were synthesised. They were tested for their activity against the tyrosyl-DNA phosphodiesterase 1 DNA (Tdp1) repair enzyme with the most potent compound 47a, having an IC50 value of 0.64 M. When tested in the A-549 lung adenocarcinoma cell line, no or very limited cytotoxic effect was observed for the ligands. However, in conjunction with topotecan, a well-established Topoisomerase 1 (Top1) poison in clinical use against cancer, derivative 46a was very cytotoxic at 5 M concentration, displaying strong synergism. This effect was only seen for 46a (IC50—3.3 M) albeit some other ligands had better IC50 values. Molecular modelling into the catalytic site of Tdp1 predicted plausible binding mode of 46a, effectively blocking access to the catalytic site.
Collapse
|
26
|
Insights into the chemistry and therapeutic potential of furanones: A versatile pharmacophore. Eur J Med Chem 2019; 171:66-92. [DOI: 10.1016/j.ejmech.2019.03.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/09/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
|
27
|
Zakharenko A, Dyrkheeva N, Lavrik O. Dual DNA topoisomerase 1 and tyrosyl-DNA phosphodiesterase 1 inhibition for improved anticancer activity. Med Res Rev 2019; 39:1427-1441. [PMID: 31004352 DOI: 10.1002/med.21587] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) is a DNA repair enzyme that catalyzes the hydrolysis of the phosphodiester bond in the DNA-topoisomerase 1 (Top1) covalent complex and repairs some other 3'-end DNA adducts. Currently, Tdp1 functions as an important target in cancer drug design owing to its ability to break down various DNA adducts induced by chemotherapeutics. Tdp1 inhibitors may sensitize tumor cells to the action of Top1 poisons, thereby potentiating their effects. This mini-review summarizes findings from studies reporting the combined inhibition of Top1 and Tdp1. Two different approaches have been considered for developing such drug precursors.
Collapse
Affiliation(s)
- Alexandra Zakharenko
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nadezhda Dyrkheeva
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Olga Lavrik
- Laboratory of Bioorganic Chemistry of Enzymes, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russian Federation
| |
Collapse
|