1
|
Kumar S, Mitra R, Ayyannan SR. Design, synthesis and evaluation of benzothiazole-derived phenyl thioacetamides as dual inhibitors of monoamine oxidases and cholinesterases. Mol Divers 2024:10.1007/s11030-024-11031-3. [PMID: 39520616 DOI: 10.1007/s11030-024-11031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
A series of rationally designed benzothiazole-derived thioacetamides was synthesized and investigated for monoamine oxidases (MAO-A and MAO-B) and cholinesterases (AChE and BChE) inhibition properties. The tested compounds 18-31 inhibited MAO-A and MAO-B in the micromolar to nanomolar range and AChE in the submicromolar range. Compound 28 was identified as the most potent MAO-A inhibitor with an IC50 = 0.030 ± 0.008 µM, whereas compound 30 showed the highest potency towards MAO-B and AChE with IC50 values of 0.015 ± 0.007 µM and 0.114 ± 0.003 µM, respectively. Further, compound 30 inhibited BChE at an IC50 value of 4.125 ± 0.143 µM. Among all screened molecules, compound 30 emerged as the lead dual MAO-B and AChE inhibitor that blocked these enzymes in a competitive-reversible and mixed-reversible mode, respectively. Selected compounds have displayed iron-chelation and antioxidant properties. Further, computational assessment of ligand binding affinity and pharmacokinetic parameters of all new compounds and molecular dynamic simulation of compound 30 with MAO-B and AChE were carried out to understand ligand efficiency, pharmacokinetic, and virtual molecular interaction profile, respectively. The in silico ADMET prediction studies revealed a few undesired pharmacokinetic attributes of our compounds. The attempted virtual lead-based library synthesis and subsequent biological investigation produced a new benzothiazole-bearing dual MAO-B and AChE inhibitor as a prospective MTDL candidate for treating neurological disorders.
Collapse
Affiliation(s)
- Sandeep Kumar
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Rangan Mitra
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Senthil Raja Ayyannan
- Pharmaceutical Chemistry Research Laboratory II, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
2
|
Shankar G, Praveen Kumar C, Yadav M, Ghosh A, Panda SR, Banerjee A, Tiwari A, Rai S, Kumar S, Garg P, Naidu VGM, Kulkarni O, Modi G. Discovery of novel substituted (Z)-N'-hydroxy-3-(3-phenylureido)benzimidamide derivatives as multifunctional molecules targeting pathological hallmarks of Alzheimer's disease. Eur J Med Chem 2024; 280:116959. [PMID: 39461036 DOI: 10.1016/j.ejmech.2024.116959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder marked by significant loss of central cholinergic neurons. This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death at the later stages of the disease. The approved drugs for AD are limited to providing symptomatic relief for an initial period due to the multifaceted etiology of the disease. Several studies have demonstrated that rivastigmine (RIV) is a selectively potent inhibitor of butyrylcholinesterase and devoid of antioxidant, Aβ, and tau protein aggregation inhibition and anti-inflammatory properties. Therefore, to address these issues associated with RIV, novel rivastigmine-based molecules were rationally designed, synthesized, and evaluated in various in-vitro and in-vivo AD models. In in-vitro acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition studies revealed that 3q & 6e as promising leads (AChE, IC50 1.72 ± 0.15, 0.91 ± 0.016 μM, BChE, IC50 6.69 ± 0.28 μM, 1.19 ± 0.026 μM, for 3q & 6e, respectively). The computational studies (molecular docking and dynamics) further corroborated the in-vitro studies. Further, 3q and 6e were found to be potent antioxidants in the DPPH assay (IC50 16.15 ± 1.05 & 15.17 ± 0.07 μM, for 3q & 6e, respectively). Interestingly, 3q, and 6e could effectively inhibit self-induced full-length tau and Aβ1-42 aggregation. Treatment with 3q & 6e inhibited microglial activation by attenuating ROS release and mitochondrial damage. Further, 3q & 6e also suppressed NLRP3 inflammasome and NF-κB expression levels in microglial cells and halted the release of pro-inflammatory cytokines in human microglial cells. Finally, 3q & 6e were found to be efficacious in reversing the scopolamine-induced memory impairment in the Morris water maze test. The expression of various neuroprotection markers, such as BDNF and TRKB, was significantly overexpressed compared to the disease control group.
Collapse
Affiliation(s)
- Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - C Praveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Meenu Yadav
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Aritra Banerjee
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - Ankit Tiwari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India; Department of Health, Education and Technology, Lulea University of Technology, Lulea, Sweden
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, 160062, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, 781101, India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawaharnagar Shamirpet Mandal, 500078, Hyderabad, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) Varanasi, U.P., 221005, India.
| |
Collapse
|
3
|
Singh YP, Prasad S, Kumar H. A Comprehensive Analysis on Galantamine Based Hybrids for the Management of Alzheimer's Disease. Chem Biol Drug Des 2024; 104:e70004. [PMID: 39494477 DOI: 10.1111/cbdd.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) is a progressive chronic age-related neurodegenerative brain disorder characterized by the loss of memory and other cognitive functions. The exact etiology of AD is still under investigation, however several factors such as low level of neurotransmitter acetylcholine (ACh), aggregation of amyloid beta (Aβ) in the form of Aβ plaques, hyperphosphorylation of tau protein into neurofibrillary tangles (NFTs), oxidative stress, and metal ion imbalance are the major hallmarks of this disease. Of the multiple hypotheses for AD, the amyloid-β (Aβ) and cholinergic hypothesis are the main targeting hypotheses for AD. Some researchers hypothesized that the primary event associated with the cholinergic neurotransmitter (acetylcholine) is memory loss and cognitive impairment. Due to the disease's complicated pathogenesis, long-term therapy with a single target candidate is futile. As a result, multitargeted and multifunctional therapies have emerged. Various research teams are concentrating on addressing multiple disease factors through hybridization techniques. Consequently, this hybridization approach has been applied to all core scaffolds, including galantamine. In this article, we tried to provide a thorough overview of the most recent developments on galantamine, a prospective AChE inhibitor, and its hybrid analogs as possible therapeutic agents for treating AD. Furthermore, we also provided the design, synthesis, and SAR analysis of the galantamine-based compounds used in the last decades for the management of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Himachal Pradesh Technical University, Hamirpur, Himachal Pradesh, India
| | - Sonima Prasad
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Harish Kumar
- Himachal Pradesh Technical University, Hamirpur, Himachal Pradesh, India
- Government College of Pharmacy, Shimla, Himachal Pradesh, India
| |
Collapse
|
4
|
Singh YP, Kumar H. Recent Advances in Medicinal Chemistry of Memantine Against Alzheimer's Disease. Chem Biol Drug Des 2024; 104:e14638. [PMID: 39370170 DOI: 10.1111/cbdd.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease (AD) is a chronic progressive, age-related neurodegenerative brain disorder characterized by the irreversible decline of memory and other cognitive functions. It is one of the major health threat of the 21st century, which affects around 60% of the population over the age of 60 years. The problem of this disease is even more major because the existing pharmacotherapies only provide symptomatic relief without addressing the basic factors of the disease. It is characterized by the extracellular deposition of amyloid β (Aβ) to form senile plaques, and the intracellular hyperphosphorylation of tau to form neurofibrillary tangles (NFTs). Due to the complex pathophysiology of this disease, various hypotheses have been proposed, including the cholinergic, Aβ, tau, oxidative stress, and the metal-ion hypothesis. Among these, the cholinergic and Aβ hypotheses are the primary targets for addressing AD. Therefore, continuous advances have been made in developing potential cholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists to delay disease progression and restore cholinergic neurotransmission. In this review article, we tried to comprehensively summarize the recent advancement in NMDA receptor antagonist (memantine) and their hybrid analogs as potential disease-modifying agents for the treatment of AD. Furthermore, we also depicted the design, rationale, and SAR analysis of the memantine-based hybrids used in the last decade for the treatment of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
- Himachal Pradesh Technical University, Hamirpur, India
| | - Harish Kumar
- Himachal Pradesh Technical University, Hamirpur, India
- Government College of Pharmacy, Shimla, India
| |
Collapse
|
5
|
Singh G, Kumar S, Panda SR, Kumar P, Rai S, Verma H, Singh YP, Kumar S, Srikrishna S, Naidu VGM, Modi G. Design, Synthesis, and Biological Evaluation of Ferulic Acid-Piperazine Derivatives Targeting Pathological Hallmarks of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:2756-2778. [PMID: 39076038 DOI: 10.1021/acschemneuro.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia and is characterized by low levels of acetyl and butyrylcholine, increased oxidative stress, inflammation, accumulation of metals, and aggregations of Aβ and tau proteins. Current treatments for AD provide only symptomatic relief without impacting the pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multitarget molecules for AD, through extensive medicinal chemistry efforts, we have developed 13a, harboring the key functional groups to provide not only symptomatic relief but also targeting oxidative stress, able to chelate iron, inhibiting NLRP3, and Aβ1-42 aggregation in various AD models. 13a exhibited promising anticholinesterase activity against AChE (IC50 = 0.59 ± 0.19 μM) and BChE (IC50 = 5.02 ± 0.14 μM) with excellent antioxidant properties in DPPH assay (IC50 = 5.88 ± 0.21 μM) over ferulic acid (56.49 ± 0.62 μM). The molecular docking and dynamic simulations further corroborated the enzyme inhibition studies and confirmed the stability of these complexes. Importantly, in the PAMPA-BBB assay, 13a turned out to be a promising molecule that can efficiently cross the blood-brain barrier. Notably, 13a also exhibited iron-chelating properties. Furthermore, 13a effectively inhibited self- and metal-induced Aβ1-42 aggregation. It is worth mentioning that 13a demonstrated no symptom of cytotoxicity up to 30 μM concentration in PC-12 cells. Additionally, 13a inhibited the NLRP3 inflammasome and mitigated mitochondrial-induced reactive oxygen species and mitochondrial membrane potential damage triggered by LPS and ATP in HMC-3 cells. 13a could effectively reduce mitochondrial and cellular reactive oxygen species (ROS) in the Drosophila model of AD. Finally, 13a was found to be efficacious in reversing memory impairment in a scopolamine-induced AD mouse model in the in vivo studies. In ex vivo assessments, 13a notably modulates the levels of superoxide, catalase, and malondialdehyde along with AChE and BChE. These findings revealed that 13a holds promise as a potential candidate for further development in AD management.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Prabhat Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sanskriti Rai
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Himanshu Verma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| | - Saroj Kumar
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Saripella Srikrishna
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Rm # 123, Varanasi 221005, India
| |
Collapse
|
6
|
Kumar J, Shankar G, Kumar S, Thomas J, Singh N, Srikrishna S, Satija J, Krishnamurthy S, Modi G, Mishra SK. Extraction, isolation, synthesis, and biological evaluation of novel piperic acid derivatives for the treatment of Alzheimer's disease. Mol Divers 2024; 28:1439-1458. [PMID: 37351693 DOI: 10.1007/s11030-023-10667-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
In this paper, we developed a series of piperic acid (PA) analogs with the aim of overcoming the limitations associated with the natural products for the management of Alzheimer's disease (AD). A comprehensive SAR study was performed to enhance cholinesterase inhibition of PA. The acetylcholinesterase inhibition and its kinetic data suggested 6j as the lead molecule (AChE IC50 = 2.13 ± 0.015 µM, BChE = 28.19 ± 0.20%), in comparison to PA (AChE = 7.14 ± 0.98%) which was further selected for various biological studies in AD models. 6j, exhibited interaction with the peripheral anionic site of AChE, BBB permeability (Pe = 7.98), and antioxidant property (% radical scavenging activity = 35.41 ± 1.09, 2.43 ± 1.65, for 6j and PA at 20 M μ , respectively). The result from the metal chelation study suggests that 6j did not effectively chelate iron. The molecular modeling studies suggested that 6j could effectively interact with Ser293, Phe295, Arg296, and Tyr34 of AChE. In the cell-based cytotoxicity studies, 6j exhibited cytocompatibility at the different tested concentrations. The acute toxicity data on mice suggested that compound 6j had no renal and hepatotoxicity at 500 mg/kg. Moreover, 6j could effectively reverse scopolamine-induced amnesia by improving spatial and cognitive memory in mice. The above results strongly suggest that compound 6j may act as a novel multi-targeted lead for AD therapy.
Collapse
Affiliation(s)
- Jitendra Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Jobin Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Neha Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Saripella Srikrishna
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sairam Krishnamurthy
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
7
|
Singh G, Shankar G, Panda SR, Kumar S, Rai S, Verma H, Kumar P, Nayak PK, Naidu VGM, Srikrishna S, Kumar S, Modi G. Design, Synthesis, and Biological Evaluation of Ferulic Acid Template-Based Novel Multifunctional Ligands Targeting NLRP3 Inflammasome for the Management of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:1388-1414. [PMID: 38525886 DOI: 10.1021/acschemneuro.3c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aβ and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on EJMC-4e were caried out to improve its multifunctional properties. The rigorous medicinal efforts led to the development of 12o, which displayed a 15-fold enhancement in antioxidant properties and a 2-fold increase in the activity against AChE and BChE over EJMC-4e. Molecular docking and dynamics studies revealed the binding sites and stability of the complex of 12o with AChE and BChE. The PAMPA-BBB assay clearly demonstrated that 12o can easily cross the blood-brain barrier. Interestingly, 12o also expresses promising metal chelation activity, while EJMC-4e was found to be devoid of this property. Further, 12o inhibited metal-induced or self Aβ1-42 aggregation. Observing the neuroprotection ability of 12o against H2O2-induced oxidative stress in the PC-12 cell line is noteworthy. Furthermore, 12o also inhibited NLRP3 inflammasome activation and attenuated mitochondrial-induced ROS and MMP damage caused by LPS and ATP in HMC-3 cells. In addition, 12o is able to effectively reduce mitochondrial and cellular oxidative stress in the AD Drosophila model. Finally, 12o could reverse memory impairment in the scopolamine-induced AD mice model, as evident through in vivo and ex vivo studies. These findings suggest that this compound may act as a promising candidate for further improvement in the management of AD.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Samir Ranjan Panda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Sunil Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Himanshu Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Prabhat Kumar
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam 781032, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Sciences, Banaras Hindu University, Varanasi 201005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
8
|
Wang N, Jia W, Wang J, Yang Z, Liu Y, Huang D, Mei X, Xiong X, Shi J, Tang Y, Chen G, Di D, Hou Y, Liu Y. Design, synthesis, and biological evaluation of novel donepezil-tacrine hybrids as multi-functional agents with low neurotoxicity against Alzheimer's disease. Bioorg Chem 2024; 143:107010. [PMID: 38056387 DOI: 10.1016/j.bioorg.2023.107010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and deficits in cognitive domains. Low choline levels, oxidative stress, and neuroinflammation are the primary mechanisms implicated in AD progression. Simultaneous inhibition of acetylcholinesterase (AChE) and reactive oxygen species (ROS) production by a single molecule may provide a new breath of hope for AD treatment. Here, we describe donepezil-tacrine hybrids as inhibitors of AChE and ROS. Four series of derivatives with a β-amino alcohol linker were designed and synthesized. In this study, the target compounds were evaluated for their ability to inhibit AChE and butyrylcholinesterase (BuChE) in vitro, using tacrine (hAChE, IC50 = 305.78 nM; hBuChE, IC50 = 56.72 nM) and donepezil (hAChE, IC50 = 89.32 nM; hBuChE, IC50 = 9137.16 nM) as positive controls. Compound B19 exhibited an excellent and balanced inhibitory potency against AChE (IC50 = 30.68 nM) and BuChE (IC50 = 124.57 nM). The cytotoxicity assays demonstrated that the PC12 cell viability rates of compound B19 (84.37 %) were close to that of tacrine (87.73 %) and donepezil (79.71 %). Potential therapeutic effects in AD were evaluated using the neuroprotective effect of compounds against H2O2-induced toxicity, and compound B19 (68.77 %) exhibited substantially neuroprotective activity at the concentration of 25 μM, compared with the model group (30.34 %). Furthermore, compound B19 protected PC12 cells from H2O2-induced apoptosis and ROS production. These properties of compound B19 suggested that it was a multi-functional agent with AChE inhibition, anti-oxidative, anti-inflammatory activities, and low toxicity and that it deserves further investigation as a promising agent for AD treatment.
Collapse
Affiliation(s)
- Ningwei Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Wenlong Jia
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Junqin Wang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Zejun Yang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yaoyang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Dehua Huang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Xiaohan Mei
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Xinxin Xiong
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Jing Shi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yadong Tang
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Guang Chen
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Donghua Di
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China
| | - Yunlei Hou
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| | - Yajing Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China; School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, PR China.
| |
Collapse
|
9
|
Singh YP, Kumar N, Chauhan BS, Garg P. Carbamate as a potential anti-Alzheimer's pharmacophore: A review. Drug Dev Res 2023; 84:1624-1651. [PMID: 37694498 DOI: 10.1002/ddr.22113] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/20/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Alzheimer's disease (AD) is a progressive age-related neurodegenerative brain disorder, which leads to loss of memory and other cognitive dysfunction. The underlying mechanisms of AD pathogenesis are very complex and still not fully explored. Cholinergic neuronal loss, accumulation of amyloid plaque, metal ions dyshomeostasis, tau hyperphosphorylation, oxidative stress, neuroinflammation, and mitochondrial dysfunction are major hallmarks of AD. The current treatment options for AD are acetylcholinesterase inhibitors (donepezil, rivastigmine, and galantamine) and NMDA receptor antagonists (memantine). These FDA-approved drugs mainly provide symptomatic relief without addressing the pathological aspects of disease progression. So, there is an urgent need for novel drug development that not only addresses the basic mechanisms of the disease but also shows the neuroprotective property. Various research groups across the globe are working on the development of multifunctional agents for AD amelioration using different core scaffolds for their design, and carbamate is among them. Rivastigmine was the first carbamate drug investigated for AD management. The carbamate fragment, a core scaffold of rivastigmine, act as a potential inhibitor of acetylcholinesterase. In this review, we summarize the last 10 years of research conducted on the modification of carbamate with different substituents which primarily target ChE inhibition, reduce oxidative stress, and modulate Aβ aggregation.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | | | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| |
Collapse
|
10
|
Singh YP, Kumar H. Berberine derivatives as inhibitors of acetylcholinesterase: A systematic review. Chem Biol Drug Des 2023; 102:1592-1603. [PMID: 37665093 DOI: 10.1111/cbdd.14337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is a chronic age-related neurodegenerative brain disorder characterized by the impairment of memory accompanied by worsening of thinking ability of an individual. The exact pathophysiology of AD is not fully understood. However low level of the neurotransmitter named acetylcholine (ACh), aggregation of Aβ peptide into toxic Aβ plaque, hyperphosphorylation of tau, bio-metal imbalance, and oxidative stress are the main hallmarks of this disease. Due to the complex pathophysiology of AD, no specific treatment is available in the market, and treatment is only limited to the symptomatic relief. So, there is an urgent need for the development of new drug candidate, which can have disease-modifying effect and improve learning and memory in AD patient. Therefore, berberine-based multifunction compounds with potential cholinesterase inhibitory properties were reviewed in this article. Structure-activity relationship (SAR) and biological activity provide highlights on the new derivatives used for the management of AD.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Harish Kumar
- Government College of Pharmacy, Shimla, Himachal Pradesh, India
| |
Collapse
|
11
|
Singh YP, Kumar H. Tryptamine: A privileged scaffold for the management of Alzheimer's disease. Drug Dev Res 2023; 84:1578-1594. [PMID: 37675624 DOI: 10.1002/ddr.22111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/04/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is a chronic and irreversible neurodegenerative disease associated with aging. It is characterized by the progressive loss of memory and other cognitive functions. Although the exact etiology of AD is not well explored, several factors, such as the deposition of amyloid-β (Aβ) plaques, hyperphosphorylation of tau protein, presence of low levels of acetylcholine, and generation of oxidative stress, are key mediators in the progression of AD. Currently, the clinical treatment options for AD are limited and are based on cholinesterase (ChE) inhibitors (e.g., donepezil, rivastigmine, and galantamine), N-methyl- d-aspartic acid receptor antagonists (e.g., memantine), and the recently approved Aβ modulator (e.g., aducanumab). Tryptamine (2-(1H-indol-3-yl)ethan-1-amine) is a small molecule that contains an indole nucleus and an ethylamine side chain. It is also the active metabolite of tryptophan. It possesses a wide range of biological activities related to neurodegenerative disorders, such as ChE inhibition, Aβ aggregation inhibition, antioxidant effects, monoamine-oxidase inhibition, and neuroprotection. Several tryptamine-based hybrid analogs are currently being investigated as multifunctional agents for the development of novel hybrids for AD treatment. Thus, this review article aims to provide in-depth insights into the research progress and strategies for designing multifunctional agents used in Alzheimer's therapy.
Collapse
Affiliation(s)
- Yash P Singh
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Harish Kumar
- Government College of Pharmacy, Shimla, Himachal Pradesh, India
- Department of Technical Education Vocational and Industrial Training, Sunder Nagar, Himachal Pradesh, India
| |
Collapse
|
12
|
Narayanan AC, Venkatesh R, Singh S, Singh G, Modi G, Singh S, Kandasamy J. Synthesis of phenylethanoid glycosides from acrylic esters of glucose and aryldiazonium salts via palladium-catalyzed cross-coupling reactions and evaluation of their anti-Alzheimer activity. Carbohydr Res 2023; 532:108920. [PMID: 37586143 DOI: 10.1016/j.carres.2023.108920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Cinnamic acid-containing sugar compounds such as phenylethanoid glycosides are widely present in nature and display various biological activities. In this work, the synthesis of trans-cinnamic acid containing phenylethanoid glycosides was achieved via palladium-catalyzed cross-coupling reactions between glycosyl acrylic esters and aryldiazonium salts. A wide range of functionalized aryldiazonium salts were successfully coupled with 6-O- and 4-O-acrylic esters of glucose under optimized conditions. The reactions proceeded at room temperature in the absence of additives and base. The desired products were obtained in good to excellent yields. Selected compounds from the library were screened for anti-Alzheimer activity, while compound 16 displayed significant inhibitory activities against butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) enzymes.
Collapse
Affiliation(s)
- Aswathi C Narayanan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Rapelly Venkatesh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Shweta Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Jeyakumar Kandasamy
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India; Department of Chemistry, Pondicherry University, Pondicherry, 605014, India.
| |
Collapse
|
13
|
Singh G, Thomas J, Wadhawa S, Kashyap A, Rahaman SA, Borkotoky S, Datta A, Singh GK, Mishra I, Rai G, Satija J, Dubey VK, Modi G. Repurposing the in-house generated Alzheimer's disease targeting molecules through computational and preliminary in-vitro studies for the management of SARS-coronavirus-2. Mol Divers 2023:10.1007/s11030-023-10717-4. [PMID: 37749454 DOI: 10.1007/s11030-023-10717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
Covid-19 was declared a world pandemic. Recent studies demonstrated that Covid-19 impairs CNS activity by crossing the blood-brain barrier and ensuing cognitive impairment. In this study, we have utilized Covid-19 main protease (Mpro) as a biological target to repurpose our previously reported multifunctional compounds targeting Alzheimer's disease. Molecular docking, spatial orientation, molecular dynamics simulation, MM-GBSA energy calculation, and DFT studies were carried out with these molecules. Among all the compounds, F27, F44, and F56 exhibited higher binding energy (- 8.03, - 8.65, and - 8.68 kcal/mol, respectively) over the co-crystal ligand O6K (- 7.00 kcal/mol). In MD simulation, compounds F27, F44, and F56 could make a stable complex with Mpro target throughout the simulation. The compounds were synthesized following reported methods and subjected for cytotoxicity, and assessment of their capability to cross the blood-brain barrier in PAMPA assay, and antioxidant property evaluation through DPPH assay. The compounds F27, F44, and F56 exhibited cytocompatibility with the SiHA cell line and also displayed significant antioxidant properties with IC50 = 45.80 ± 0.27 μM, 44.42 ± 0.30 μM, and 42.74 ± 0.23 μM respectively. In the PAMPA assays, the permeability coefficient (Pe) value of F27, F44, and F56 lies in the acceptable range (Pe > 4). The results of the computational and preliminary in-vitro studies strongly corroborate the potential of F27, F44, and F56 as a lead for further optimization in treating the CNS complications associated with Covid-19.
Collapse
Affiliation(s)
- Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Jobin Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sahil Wadhawa
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Anurag Kashyap
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Syed Ajijur Rahaman
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Subhomoi Borkotoky
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
- Department of Biotechnology, Faculty of Biosciences, Invertis University, Bareilly, 243123, India
| | - Agnisha Datta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, Bihar, 824236, India
| | | | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jitendra Satija
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
14
|
Design, Synthesis, and biological evaluation of pyrazolo-benzothiazole derivatives as a potential therapeutic agent for the treatment of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02953-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Singh YP, Kumar N, Priya K, Chauhan BS, Shankar G, Kumar S, Singh GK, Srikrishna S, Garg P, Singh G, Rai G, Modi G. Exploration of Neuroprotective Properties of a Naturally Inspired Multifunctional Molecule (F24) against Oxidative Stress and Amyloid β Induced Neurotoxicity in Alzheimer's Disease Models. ACS Chem Neurosci 2022; 13:27-42. [PMID: 34931800 DOI: 10.1021/acschemneuro.1c00443] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The pathological hallmarks of Alzheimer's disease (AD) are manifested as an increase in the level of oxidative stress and aggregation of the amyloid-β protein. In vitro, in vivo, and in silico experiments were designed and carried out with multifunctional cholinergic inhibitor, F24 (EJMC-7a) to explore its neuroprotective effects in AD models. The neuroprotection ability of F24 was tested in SH-SY5Y cells, a widely used neuronal cell line. The pretreatment and subsequent co-treatment of SH-SY5Y cells with different doses of F24 was effective in rescuing the cells from H2O2 induced neurotoxicity. F24 treated cells were found to be effective in the reduction of cellular reactive oxygen species, DNA damage, and Aβ1-42 induced neurotoxicity, which validated its neuroprotective effectiveness. F24 exhibited efficacy in an in vivo Drosophila model by rescuing eye phenotypes from degeneration caused by Aβ toxicity. Further, computational studies were carried out to monitor the interaction between F24 and Aβ1-42 aggregates. The computational studies corroborated our in vitro and in vivo studies suggesting Aβ1-42 aggregation modulation ability of F24. The brain entry ability of F24 was studied in the parallel artificial membrane permeability assay. Finally, F24 was tested at doses of 1 and 2.5 mg/kg in the Morris water maze AD model. The neuroprotective properties shown by F24 strongly suggest that multifunctional features of this molecule provide symptomatic relief and act as a disease-modifying agent in the treatment of AD. The results from our experiments strongly indicated that natural template-based F24 could serve as a lead molecule for further investigation to explore multifunctional therapeutic agents for AD management.
Collapse
Affiliation(s)
- Yash Pal Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Navneet Kumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Khushbu Priya
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Brijesh Singh Chauhan
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gauri Shankar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar, Gaya, 824236 Bihar, India
| | - Saripella Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prabha Garg
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160062 Punjab, India
| | - Gourav Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Geeta Rai
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Gyan Modi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|