1
|
Ravichandiran P, Martyna A, Kochanowicz E, Maroli N, Kubiński K, Masłyk M, Boguszewska-Czubara A, Ramesh T. In Vitro and In Vivo Biological Evaluation of Novel 1,4-Naphthoquinone Derivatives as Potential Anticancer Agents. ChemMedChem 2024; 19:e202400495. [PMID: 39136593 DOI: 10.1002/cmdc.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/13/2024] [Indexed: 10/16/2024]
Abstract
A novel library of naphthoquinone derivatives (3-5 aa) was synthesized and evaluated for their anticancer properties. Specifically, compounds 5 i, 5 l, 5 o, 5 q, 5 r, 5 s, 5 t, and 5 v demonstrated superior cytotoxic activity against the cancer cell lines that were studied. All the studied compounds exhibited a higher selectivity index (SI) and a favourable safety profile than the standard drug doxorubicin. Notably, compound 5 v displayed a greater cytotoxic effect on MCF-7 cells (IC50=1.2 μM, and 0.9 μM at 24 h and 48 h, respectively) compared to the standard drug doxorubicin (IC50=2.4 μM, and 2.1 μM at 24 h and 48 h, respectively). To further investigate the mechanism of cytotoxic effect, additional anticancer studies were conducted with 5 v in MCF-7 cells. The studies are including morphological changes, AO/EB (acridine orange/ethidium bromide) double staining, apoptosis analysis, cell colony assay, SDS-PAGE and Western blotting, cell cycle analysis, and detecting reactive oxygen species (ROS) assay. The findings showed that 5 v triggered cytotoxic effects in MCF-7 cells through the initiation of cell cycle arrest at the G1/S phase and necrosis. In vivo ecotoxicity studies indicated that 5 v had lower toxicity towards zebrafish larvae (LC50=50.15 μM) and had an insignificant impact on cardiac functions. In vivo xenotransplantation of MCF-7 cells in zebrafish larvae demonstrated a significant reduction in tumour volume in the xenograft. Approximately 95 % of the zebrafish larvae with 5 v xenografts survived after 10 days of the treatment. Finally, a computational modelling study was conducted on four protein receptors, namely ER, EFGR, BRCA1, and VEFGR2. The findings highlight the importance of the aminonaphthoquinone moiety, amide linkage, and propyl thio moiety in enhancing the anticancer properties. 5 v exhibited superior drug-likeness features and docking scores (-9.1, -7.1, -8.9, and -10.9 kcal/mol) compared to doxorubicin (-7.2, -6.1, -6.9, and -7.3 kcal/mol) against ER, EFGR, BRCA1, and VEGFR2 receptors, respectively. Therefore, the notable antitumor effects of naphthoquinone derivatives (3-5 aa) suggest that these molecular frameworks may play a role in the development of promising anticancer agents for cancer treatment.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Present Address: Analytical, HP Green R & D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, Karnataka, 562114, India
| | - Aleksandra Martyna
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Elżbieta Kochanowicz
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Nikhil Maroli
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Maciej Masłyk
- Department of Molecular Biology, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, ul. Konstantynów 1i, 20-708, Lublin, Poland
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Ul. Chodźki 4 A, 20-093, Lublin, Poland
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
2
|
Zhou B, Chen D, Zhang T, Song C, Zhang X, Lin L, Huang J, Peng X, Liu Y, Wu G, Li J, Chen W. Recent advancements in the discovery of small-molecule non-nucleoside inhibitors targeting SARS-CoV-2 RdRp. Biomed Pharmacother 2024; 171:116180. [PMID: 38266622 DOI: 10.1016/j.biopha.2024.116180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 plays a pivotal role in the life cycle of the novel coronavirus and stands as a significant and promising target for anti-SARS-CoV-2 drugs. Non-nucleoside inhibitors (NNIs), as a category of compounds directed against SARS-CoV-2 RdRp, exhibit a unique and highly effective mechanism, effectively overcoming various factors contributing to drug resistance against nucleoside inhibitors (NIs). This review investigates various NNIs, including both natural and synthetic inhibitors, that closely interacting with the SARS-CoV-2 RdRp with valid evidences from in vitro and in silico studies.
Collapse
Affiliation(s)
- Bangdi Zhou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Dianming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Tingyan Zhang
- School of Nusing, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenggui Song
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Xianwu Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Leying Lin
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, PR China
| | - Jiuzhong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Xiaopeng Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Yuanchang Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Gaorong Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Jingyuan Li
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China; School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
3
|
Bakheit AH, Saquib Q, Ahmed S, Ansari SM, Al-Salem AM, Al-Khedhairy AA. Covalent Inhibitors from Saudi Medicinal Plants Target RNA-Dependent RNA Polymerase (RdRp) of SARS-CoV-2. Viruses 2023; 15:2175. [PMID: 38005857 PMCID: PMC10675690 DOI: 10.3390/v15112175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
COVID-19, a disease caused by SARS-CoV-2, has caused a huge loss of human life, and the number of deaths is still continuing. Despite the lack of repurposed drugs and vaccines, the search for potential small molecules to inhibit SARS-CoV-2 is in demand. Hence, we relied on the drug-like characters of ten phytochemicals (compounds 1-10) that were previously isolated and purified by our research team from Saudi medicinal plants. We computationally evaluated the inhibition of RNA-dependent RNA polymerase (RdRp) by compounds 1-10. Non-covalent (reversible) docking of compounds 1-10 with RdRp led to the formation of a hydrogen bond with template primer nucleotides (A and U) and key amino acid residues (ASP623, LYS545, ARG555, ASN691, SER682, and ARG553) in its active pocket. Covalent (irreversible) docking revealed that compounds 7, 8, and 9 exhibited their irreversible nature of binding with CYS813, a crucial amino acid in the palm domain of RdRP. Molecular dynamic (MD) simulation analysis by RMSD, RMSF, and Rg parameters affirmed that RdRP complexes with compounds 7, 8, and 9 were stable and showed less deviation. Our data provide novel information on compounds 7, 8, and 9 that demonstrated their non-nucleoside and irreversible interaction capabilities to inhibit RdRp and shed new scaffolds as antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Quaiser Saquib
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (A.A.A.-K.)
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Sabiha M. Ansari
- Botany & Microbiology Department, College of Sciences, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abdullah M. Al-Salem
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (A.A.A.-K.)
| | - Abdulaziz A. Al-Khedhairy
- Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.M.A.-S.); (A.A.A.-K.)
| |
Collapse
|
4
|
Vishwanath D, Shete-Aich A, Honnegowda MB, Anand MP, Chidambaram SB, Sapkal G, Basappa B, Yadav PD. Discovery of Hybrid Thiouracil-Coumarin Conjugates as Potential Novel Anti-SARS-CoV-2 Agents Targeting the Virus's Polymerase "RdRp" as a Confirmed Interacting Biomolecule. ACS OMEGA 2023; 8:27056-27066. [PMID: 37546653 PMCID: PMC10398856 DOI: 10.1021/acsomega.3c02079] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023]
Abstract
The coronavirus (COVID-19) pandemic, along with its various strains, has emerged as a global health crisis that has severely affected humankind and posed a great challenge to the public health system of affected countries. The replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mainly depends on RNA-dependent RNA polymerase (RdRp), a key enzyme that is involved in RNA synthesis. In this regard, we designed, synthesized, and characterized hybrid thiouracil and coumarin conjugates (HTCAs) by ether linkage, which were found to have anti-SARS-CoV-2 properties. Our in vitro real-time quantitative reverse transcription PCR (RT-qPCR) results confirmed that compounds such as 5d, 5e, 5f, and 5i inhibited the replication of SARS-CoV-2 with EC50 values of 14.3 ± 0.14, 6.59 ± 0.28, 86.3 ± 1.45, and 124 ± 2.38 μM, respectively. Also, compound 5d displayed significant antiviral activity against human coronavirus 229E (HCoV-229E). In addition, some of the HTCAs reduced the replication of SARS-CoV-2 variants such as D614G and B.617.2. In parallel, HTCAs in uninfected Vero CCL-81 cells indicated that no cytotoxicity was noticed. Furthermore, we compared the in silico interaction of lead compounds 5d and 5e toward the cocrystal structure of Suramin and RdRp polymerase with Remdesvir triphosphate, which showed that compounds 5d, 5e, and Remdesvir triphosphate (RTP) share a common catalytical site of RdRp but not Suramin. Additionally, the in silico ADMET properties predicted for the lead HTCAs and RTP showed that the maximum therapeutic doses recommended for compounds 5d and 5e were comparable to those of RTP. Concurrently, the pharmacokinetics of 5d was characterized in male Wistar Albino rats by administering a single oral gavage at a dose of 10 mg/kg, which gave a Cmax value of 0.22 μg/mL and a terminal elimination half-life period of 73.30 h. In conclusion, we established a new chemical entity that acts as a SARS-CoV-2 viral inhibitor with minimal or no toxicity to host cells in the rodent model, encouraging us to proceed with preclinical studies.
Collapse
Affiliation(s)
- Divakar Vishwanath
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Anita Shete-Aich
- Indian
Council of Medical Research- National Institute of Virology (ICMR-NIV), Pune, Maharashtra411021, India
| | | | - Mahesh Padukudru Anand
- Department
of Respiratory Medicine, JSS Medical College, and Hospital, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Saravana Babu Chidambaram
- Department
of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Gajanan Sapkal
- Indian
Council of Medical Research- National Institute of Virology (ICMR-NIV), Pune, Maharashtra411021, India
| | - Basappa Basappa
- Laboratory
of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Pragya D. Yadav
- Indian
Council of Medical Research- National Institute of Virology (ICMR-NIV), Pune, Maharashtra411021, India
| |
Collapse
|
5
|
Mohamed AR, Mostafa A, El Hassab MA, Hedeab GM, Mahmoud SH, George RF, Georgey HH, Abdel Gawad NM, El-Ashrey MK. Insights into targeting SARS-CoV-2: design, synthesis, in silico studies and antiviral evaluation of new dimethylxanthine derivatives. RSC Med Chem 2023; 14:899-920. [PMID: 37252103 PMCID: PMC10211320 DOI: 10.1039/d3md00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/15/2023] [Indexed: 05/31/2023] Open
Abstract
Aiming to achieve efficient activity against severe acute respiratory syndrome coronavirus (SARS-CoV-2), the expansion of the structure- and ligand-based drug design approaches was adopted, which has been recently reported by our research group. Purine ring is a corner stone in the development of SARS-CoV-2 main protease (Mpro) inhibitors. The privileged purine scaffold was elaborated to achieve additional affinity based on hybridization and fragment-based approaches. Thus, the characteristic pharmacophoric features that are required for the inhibition of Mpro and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 were utilized along with the crystal structure information of both targets. The designed pathways involved rationalized hybridization with large sulfonamide moieties and a carboxamide fragment for the synthesis of ten new dimethylxanthine derivatives. The synthesis was performed under diverse conditions to afford N-alkylated xanthine derivatives, and cyclization afforded tricyclic compounds. Molecular modeling simulations were used to confirm and gain insights into the binding interactions at both targets' active sites. The merit of designed compounds and the in silico studies resulted in the selection of three compounds that were evaluated in vitro to estimate their antiviral activity against SARS-CoV-2 (compounds 5, 9a and 19 with IC50 values of 38.39, 8.86 and 16.01 μM, respectively). Furthermore, oral toxicity of the selected antiviral candidates was predicted, in addition to cytotoxicity investigations. Compound 9a showed IC50 values of 8.06 and 3.22 μM against Mpro and RdRp of SARS-CoV-2, respectively, in addition to promising molecular dynamics stability in both target active sites. The current findings encourage further specificity evaluations of the promising compounds for confirming their specific protein targeting.
Collapse
Affiliation(s)
- Abdalla R Mohamed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University Badr City Cairo 11829 Egypt
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre Giza 12622 Egypt
| | - Mahmoud A El Hassab
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University Ras-Sedr South Sinai Egypt
| | - Gomaa M Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University Kingdom of Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University Egypt
| | - Sara H Mahmoud
- Center of Scientific Excellence for Influenza Viruses, National Research Centre Giza 12622 Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University 11786 Cairo Egypt
| | - Nagwa M Abdel Gawad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Mohamed K El-Ashrey
- Medicinal Chemistry Department, Faculty of Pharmacy, King Salman International University Ras-Sedr South Sinai Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| |
Collapse
|
6
|
Avelar M, Pedraza-González L, Sinicropi A, Flores-Morales V. Triterpene Derivatives as Potential Inhibitors of the RBD Spike Protein from SARS-CoV-2: An In Silico Approach. Molecules 2023; 28:molecules28052333. [PMID: 36903578 PMCID: PMC10005606 DOI: 10.3390/molecules28052333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The appearance of a new coronavirus, SARS-CoV-2, in 2019 kicked off an international public health emergency. Although rapid progress in vaccination has reduced the number of deaths, the development of alternative treatments to overcome the disease is still necessary. It is known that the infection begins with the interaction of the spike glycoprotein (at the virus surface) and the angiotensin-converting enzyme 2 cell receptor (ACE2). Therefore, a straightforward solution for promoting virus inhibition seems to be the search for molecules capable of abolishing such attachment. In this work, we tested 18 triterpene derivatives as potential inhibitors of SARS-CoV-2 against the receptor-binding domain (RBD) of the spike protein by means of molecular docking and molecular dynamics simulations, modeling the RBD S1 subunit from the X-ray structure of the RBD-ACE2 complex (PDB ID: 6M0J). Molecular docking revealed that at least three triterpene derivatives of each type (i.e., oleanolic, moronic and ursolic) present similar interaction energies as the reference molecule, i.e., glycyrrhizic acid. Molecular dynamics suggest that two compounds from oleanolic and ursolic acid, OA5 and UA2, can induce conformational changes capable of disrupting the RBD-ACE2 interaction. Finally, physicochemical and pharmacokinetic properties simulations revealed favorable biological activity as antivirals.
Collapse
Affiliation(s)
- Mayra Avelar
- Laboratorio de Síntesis Asimétrica y Bio-Quimioinformática (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Campus XXI Km 6 Carr. Zac-Gdl, Zacatecas 98160, Mexico
- Correspondence: (M.A.); (V.F.-M.)
| | - Laura Pedraza-González
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Adalgisa Sinicropi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
- Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- CSGI, Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Sesto Fiorentino, Italy
| | - Virginia Flores-Morales
- Laboratorio de Síntesis Asimétrica y Bio-Quimioinformática (LSAyB), Ingeniería Química (UACQ), Universidad Autónoma de Zacatecas, Campus XXI Km 6 Carr. Zac-Gdl, Zacatecas 98160, Mexico
- Correspondence: (M.A.); (V.F.-M.)
| |
Collapse
|