1
|
Dejmek M, Šála M, Brazdova A, Vanekova L, Smola M, Klíma M, Břehová P, Buděšínský M, Dračínský M, Procházková E, Zavřel M, Šimák O, Páv O, Boura E, Birkuš G, Nencka R. Discovery of isonucleotidic CDNs as potent STING agonists with immunomodulatory potential. Structure 2022; 30:1146-1156.e11. [PMID: 35690061 DOI: 10.1016/j.str.2022.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/19/2022] [Accepted: 05/17/2022] [Indexed: 01/07/2023]
Abstract
Stimulator of interferon genes (STING) is an adaptor protein of the cGAS-STING signaling pathway involved in the sensing of cytosolic DNA. It functions as a receptor for cyclic dinucleotides (CDNs) and, upon their binding, mediates cytokine expression and host immunity. Besides naturally occurring CDNs, various synthetic CDNs, such as ADU-S100, have been reported to effectively activate STING and are being evaluated in clinical trials for the treatment of cancer. Here, we describe the preparation of a unique new class of STING agonists: isonucleotidic cyclic dinucleotides and the synthesis of their prodrugs. The presented CDNs stimulate STING with comparable efficiency to ADU-S100, whereas their prodrugs demonstrate activity up to four orders of magnitude better due to the improved cellular uptake. The compounds are very potent inducers of inflammatory cytokines by peripheral blood mononuclear cells (PBMCs). We also report the X-ray crystal structure of the lead inhibitor bound to the wild-type (WT) STING.
Collapse
Affiliation(s)
- Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Michal Šála
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Andrea Brazdova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Lenka Vanekova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Miroslav Smola
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Martin Klíma
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Petra Břehová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Martin Zavřel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Ondřej Šimák
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Ondřej Páv
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Gabriel Birkuš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
2
|
Chen AY, Adamek RN, Dick BL, Credille CV, Morrison CN, Cohen SM. Targeting Metalloenzymes for Therapeutic Intervention. Chem Rev 2019; 119:1323-1455. [PMID: 30192523 PMCID: PMC6405328 DOI: 10.1021/acs.chemrev.8b00201] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes are central to a wide range of essential biological activities, including nucleic acid modification, protein degradation, and many others. The role of metalloenzymes in these processes also makes them central for the progression of many diseases and, as such, makes metalloenzymes attractive targets for therapeutic intervention. Increasing awareness of the role metalloenzymes play in disease and their importance as a class of targets has amplified interest in the development of new strategies to develop inhibitors and ultimately useful drugs. In this Review, we provide a broad overview of several drug discovery efforts focused on metalloenzymes and attempt to map out the current landscape of high-value metalloenzyme targets.
Collapse
Affiliation(s)
- Allie Y Chen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Rebecca N Adamek
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Benjamin L Dick
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Cy V Credille
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Christine N Morrison
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
3
|
Dalton N, Gordon CP, Boyle TP, Vandegraaf N, Deadman J, Rhodes DI, Coates JA, Pyne SG, Keller PA, Bremner JB. The discovery of allyltyrosine based tripeptides as selective inhibitors of the HIV-1 integrase strand-transfer reaction. Org Biomol Chem 2016; 14:6010-23. [PMID: 27225230 DOI: 10.1039/c6ob00950f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
From library screening of synthetic antimicrobial peptides, an O-allyltyrosine-based tripeptide was identified to possess inhibitory activity against HIV-1 integrase (IN) exhibiting an IC50 value of 17.5 μM in a combination 3'-processing and strand transfer microtitre plate assay. The tripeptide was subjected to structure-activity relationship (SAR) studies with 28 peptides, incorporating an array of natural and non-natural amino acids. Resulting SAR analysis revealed the allyltyrosine residue was a key feature for IN inhibitory activity whilst incorporation of a lysine residue and extended hydrophilic chains bearing a terminal methyl ester was advantageous. Addition of hydrophobic aromatic moieties to the N-terminal of the scaffold afforded compounds with improved inhibitory activity. Consolidation of these functionalities lead to the development of the tripeptide 96 which specifically inhibited the IN strand-transfer reaction with an IC50 value of 2.5 μM.
Collapse
Affiliation(s)
- Neal Dalton
- School of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Toti K, Renders M, Groaz E, Herdewijn P, Van Calenbergh S. Nucleosides with Transposed Base or 4'-Hydroxymethyl Moieties and Their Corresponding Oligonucleotides. Chem Rev 2015; 115:13484-525. [PMID: 26655745 DOI: 10.1021/acs.chemrev.5b00545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review focuses on 4'-hydroxymethyl- or nucleobase-transposed nucleosides, nucleotides, and nucleoside phosphonates, their stereoisomers, and their close analogues. The biological activities of all known 4'-hydroxymethyl- or nucleobase-transposed nucleosides, nucleotides, and nucleoside phosphonates as potential antiviral or anticancer agents are compiled. The routes that have been taken for the chemical synthesis of such nucleoside derivatives are described, with special attention to the innovative strategies. The enzymatic synthesis, base-pairing properties, structure, and stability of oligonucleotides containing nucleobase- or 4'-hydroxymethyl-transposed nucleotides are discussed. The use of oligonucleotides containing nucleobase- or 4'-hydroxymethyl-transposed nucleotides as small oligonucleotide (e.g., human immunodeficiency virus integrase) inhibitors, in applications such as antisense therapy, silencing RNA (siRNA), or aptamer selections, is detailed.
Collapse
Affiliation(s)
- Kiran Toti
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Marleen Renders
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Elisabetta Groaz
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Piet Herdewijn
- Laboratory for Medicinal Chemistry, Rega Institute for Medical Research, Katholieke Universiteit Leuven , Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Ghent University , Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Serdiuk IE, Roshal AD. Single and double intramolecular proton transfers in the electronically excited state of flavone derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra13912k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
3,7-Dihydroxyflavone derivatives containing carbonyl fragments were synthesized. Results of the fluorescent spectroscopy investigations indicate that one of them undergoes Excited State Intramolecular Double Proton Transfer (ESIDPT).
Collapse
Affiliation(s)
- I. E. Serdiuk
- Department of Chemistry
- University of Gdańsk
- Gdańsk
- 80-308 Poland
- Institute of Chemistry
| | - A. D. Roshal
- Institute of Chemistry
- V. N. Karazin Kharkiv National University
- Kharkiv
- 61022 Ukraine
| |
Collapse
|
6
|
Li Y, Xuan S, Feng Y, Yan A. Targeting HIV-1 integrase with strand transfer inhibitors. Drug Discov Today 2014; 20:435-49. [PMID: 25486307 DOI: 10.1016/j.drudis.2014.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 01/03/2023]
Abstract
HIV-1 integrase (IN) is a retroviral enzyme essential for integration of genetic material into the DNA of the host cell and hence for viral replication. The absence of an equivalent enzyme in humans makes IN an interesting target for anti-HIV drug design. This review briefly overviews the structural and functional properties of HIV-1 IN. We analyze the binding modes of the established drugs, clinical candidates and a comprehensive library of leads based on innovative chemical scaffolds of HIV-1 IN strand transfer inhibitors (INSTIs). Computational clustering techniques are applied for identifying structural features relating to bioactivity. From bio- and chemo-informatics analyses, we provide novel insights into structure-activity relationships of INSTIs and elaborate new strategies for design of innovative inhibitors.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing 100029, PR China
| | - Shouyi Xuan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing 100029, PR China
| | - Yue Feng
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing 100029, PR China
| | - Aixia Yan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, P.O. Box 53, Beijing 100029, PR China.
| |
Collapse
|
7
|
Kong Y, Xuan S, Yan A. Computational models on quantitative prediction of bioactivity of HIV-1 integrase 3' processing inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2014; 25:729-746. [PMID: 25121566 DOI: 10.1080/1062936x.2014.942695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this study, four computational quantitative structure-activity relationship (QSAR) models were built to predict the bioactivity of 3' processing (3'P) inhibitors of HIV-1 integrase. Some 453 inhibitors whose bioactivity values were detected by the radiolabelling method were collected. The molecular structures were represented with MOE descriptors. In total, 21 descriptors were selected for modelling. All inhibitors were divided into a training set and a test set with two methods: (1) by a Kohonen's self-organizing map (SOM); (2) by a random selection. For every training set and test set, a multilinear regression (MLR) analysis and a support vector machine (SVM) were used to establish models, respectively. For the training/test set divided by SOM, the correlation coefficients (r) were over 0.84, and for the training/test set split randomly, the r values were over 0.86. Some molecular properties such as hydrogen bond donor capacity, atomic partial charge properties, molecular refractivity, the number of aromatic bonds and molecular surface area, volume and shape properties played important roles for inhibiting 3' processing step of HIV-1 integrase.
Collapse
Affiliation(s)
- Y Kong
- a State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering , Beijing University of Chemical Technology , Beijing , China
| | | | | |
Collapse
|
8
|
Xuan S, Wang M, Kang H, Kirchmair J, Tan L, Yan A. Support Vector Machine (SVM) Models for Predicting Inhibitors of the 3′ Processing Step of HIV-1 Integrase. Mol Inform 2013; 32:811-26. [DOI: 10.1002/minf.201300107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/26/2013] [Indexed: 01/24/2023]
|
9
|
Xuan S, Wu Y, Chen X, Liu J, Yan A. Prediction of bioactivity of HIV-1 integrase ST inhibitors by multilinear regression analysis and support vector machine. Bioorg Med Chem Lett 2013; 23:1648-55. [PMID: 23395655 DOI: 10.1016/j.bmcl.2013.01.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/05/2013] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
In this study, four computational quantitative structure-activity relationship models were built to predict the biological activity of HIV-1 integrase strand transfer (ST) inhibitors. 551 Inhibitors whose bioactivities were detected by radiolabeling method were collected. The molecules were represented with 20 selected MOE descriptors. All inhibitors were divided into a training set and a test set with two methods: (1) by a Kohonen's self-organizing map (SOM); (2) by a random selection. For every training set and test set, a multilinear regression (MLR) analysis and a support vector machine (SVM) were used to establish models, respectively. For the test set divided by SOM, the correlation coefficients (rs) were over 0.91, and for the test set split randomly, the rs were over 0.86.
Collapse
Affiliation(s)
- Shouyi Xuan
- State Key Laboratory of Chemical Resource Engineering, Department of Pharmaceutical Engineering, PO Box 53, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, Beijing 100029, PR China
| | | | | | | | | |
Collapse
|
10
|
|
11
|
Aubert Y, Chassignol M, Roig V, Mbemba G, Weiss J, Meudal H, Mouscadet JF, Asseline U. Synthesis and anti-HIV-1 integrase activity of modified dinucleotides. Eur J Med Chem 2009; 44:5029-44. [PMID: 19796851 DOI: 10.1016/j.ejmech.2009.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/30/2009] [Accepted: 09/04/2009] [Indexed: 11/18/2022]
Abstract
The synthesis of a series of thirty-eight new modified dinucleotides and dinucleotide conjugate analogues of d-(5')ApC(3') is described. The inhibitory activity of these compounds toward HIV-1 integrase was examined in enzymatic assays using the natural dinucleotide as a reference. Among the compounds, a perylene-dinucleotide conjugate has shown a two micromolar anti-integrase activity due to the presence of both the intercalator and the dinucleotide.
Collapse
Affiliation(s)
- Yves Aubert
- Centre de Biophysique Moléculaire CNRS UPR 4301, affiliated with the University of Orléans and with INSERM Rue Charles Sadron, 45071 Orléans Cedex 02, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Studies on the synthesis of neamine-dinucleosides and neamine-PNA conjugates and their interaction with RNA. Bioorg Med Chem Lett 2008; 18:5355-8. [PMID: 18829307 DOI: 10.1016/j.bmcl.2008.09.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/13/2008] [Accepted: 09/16/2008] [Indexed: 11/20/2022]
Abstract
Two types of neamine derivatives, neamine-dinucleotide conjugates 8a-g and neamine-PNA conjugates 12a-c and 14a-d, were synthesized. Compound 8a-g were synthesized by the condensation of azido-neamine with dinucleotide-5'-carboxylic acids, followed by reduction and deprotection. Compound 12a-c and 14a-d were synthesized by the similar strategy. The binding affinities of conjugates 8a-g, 12a-c, and 14a-d towards 16S RNA, 18S RNA, and TAR RNA were evaluated by SPR. It indicates that conjugates 12a-c and 14a-d interact with 16S, 18S RNA at the same level as that of neamine, 14a and 14d show about twofold binding affinities to TAR RNA compared to that of neamine. However, the neamine-dinucleotide conjugates 8a-g exhibit very weak binding affinities to 16S, 18S, and TAR RNA, computer modelling results that negative-negative electrostatic repulsion of phosphate group in compound 8a-g and RNA leads to a sharp decrease of the binding affinities compared with that of neamine, neamine-nucleoside and neamine-PNA conjugates.
Collapse
|
13
|
Abstract
HIV-1 integrase is a protein of Mr 32 000 encoded at the 3'-end of the pol gene. Integration of HIV DNA into the host cell chromosomal DNA apparently occurs by a carefully defined sequence of DNA tailoring (3'-processing (3'P)) and coupling (integration) reactions. Integration of HIV DNA into human DNA represents the biochemical completion of the invasion of the human cell (e.g., T-cell) by HIV. Unlike major successes seen in the development of clinically approved anti-HIV agents against HIV reverse transcriptase and HIV protease, there are no FDA-approved anti-HIV drugs in clinical use where the mechanism of action is inhibition of HIV integrase. This review summarises some key advances in the area of integrase inhibitors with the major focus being on new generation inhibitors. Special emphasis is placed on diketo acids with aromatic and heteroaromatic moieties, diketo acids with nucleobase scaffolds, bis-diketo acids, functionalised naphthyridines and other isosteres of diketo acids. Data pertaining to integrase inhibition and in vitro anti-HIV activity are discussed. Mention is made of drugs in clinical trials, both past (S-1360, L-870,810 and L-870,812 and present (GS-9137 and MK-0518). Other promising drugs, including those from the authors' laboratory, are referred. Resistant mutants arising from key integrase inhibitors and cross-resistance are indicated.
Collapse
Affiliation(s)
- Vasu Nair
- Department of Pharmaceutical and Biomedical Sciences, The Center for Drug Discovery, University of Georgia, Athens, GA 30602, USA.
| | | |
Collapse
|
14
|
Boros EE, Johns BA, Garvey EP, Koble CS, Miller WH. Synthesis and HIV-integrase strand transfer inhibition activity of 7-hydroxy[1,3]thiazolo[5,4-b]pyridin-5(4H)-ones. Bioorg Med Chem Lett 2006; 16:5668-72. [PMID: 16908139 DOI: 10.1016/j.bmcl.2006.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 07/26/2006] [Accepted: 08/01/2006] [Indexed: 11/16/2022]
Abstract
An efficient synthesis of methyl 7-hydroxy[1,3]thiazolo[5,4-b]pyridin-5(4H)-one-6-carboxylates (8-10 and 16) and 6-carboxamides (17-20) is described. Sub-micromolar enzyme inhibition of HIV integrase was achieved with several carboxamide analogs which were superior to their carboxylic ester congeners.
Collapse
Affiliation(s)
- Eric E Boros
- GlaxoSmithKline Research and Development, Five Moore Drive, Research Triangle Park, NC 27709, USA.
| | | | | | | | | |
Collapse
|
15
|
Chi G, Nair V. Synthetic approaches to nuclease-resistant, nonnatural dinucleotides of anti-HIV integrase interest. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2006; 24:1449-68. [PMID: 16438028 DOI: 10.1080/15257770500265703] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
New, nonnatural dinucleotide 5'-monophosphates with a surrogate isonucleoside component of L-related stereochemistry, have been synthesized. Structures of the target compounds were confirmed by multinuclear NMR spectra (1H, 13C, 31P, COSY), UV hypochromicity, FAB HRMS data and X-ray crystallography. These compounds are totally resistant to cleavage by 3'- and 5'-exonucleases. Dinucleotides of this study with a terminal L-isonucleoside component showed remarkable selectivity for inhibition of the strand transfer step of HIV-1 integrase. To the best of our knowledge, these compounds represent only the second example of this type of selectivity of inhibition of the strand transfer step.
Collapse
Affiliation(s)
- Guochen Chi
- Department of Pharmaceutical and Biomedical Sciences and The Center for Drug Discovery, University of Georgia, Athens, Georgia 30602, USA
| | | |
Collapse
|
16
|
Abstract
The integration of viral cDNA into the host genome is an essential step in the HIV-1-life cycle and is mediated by the virally encoded enzyme, integrase (IN). Inhibition of this process provides an attractive strategy for antiviral drug design. The discovery of beta-diketo acid inhibitors played a major role in validating IN as a legitimate antiretroviral drug target. Over a decade of research, a plethora of IN inhibitors have been discovered and some showed antiviral activity consistent with their effect on IN. To date, at least two compounds have been tested in human but none are close to the FDA approval. In this review, we provide a comprehensive report of all small-molecule IN inhibitors discovered during the years 2003 and 2004. Compilation of such data will prove beneficial in developing QSAR, virtual screening, pharmacophore hypothesis generation, and validation.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, USA
| | | | | |
Collapse
|