1
|
Kurpiejewski K, Piecyk K, Lukaszewicz M, Kamel K, Chmurski K, Kmiecik S, Jankowska-Anyszka M. The Synergistic Effect of N2 and N7 Modifications on the Inhibitory Efficacy of mRNA Cap Analogues. Pharmaceuticals (Basel) 2024; 17:632. [PMID: 38794202 PMCID: PMC11123931 DOI: 10.3390/ph17050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
In the fight against cancer, researchers have turned their attention to the eukaryotic initiation factor eIF4E, a protein whose increased level is strongly correlated with the development and progression of various types of cancer. Among the numerous strategies devised to tackle eIF4E overexpression, the use of 5' end mRNA cap analogues has emerged as a promising approach. Here, we present new candidates as potent m7GMP analogues for inhibiting translation and interfacing with eIF4E. By employing an appropriate strategy, we synthesized doubly modified mono- and dinucleotide cap analogues, introducing simultaneous substituents at both the N7 and N2 positions of the guanine ring. This approach was identified as an effective and promising combination. Our findings reveal that these dual modifications increase the potency of the dinucleotide analogue, marking a significant advancement in the development of cancer therapeutics targeting the eIF4E pathway.
Collapse
Affiliation(s)
- Karol Kurpiejewski
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (K.K.); (K.P.); (K.C.)
| | - Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (K.K.); (K.P.); (K.C.)
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, 02-093 Warsaw, Poland;
| | - Karol Kamel
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Kazimierz Chmurski
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland; (K.K.); (K.P.); (K.C.)
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland;
| | | |
Collapse
|
2
|
Attia RT, Ewida MA, Khaled E, Fahmy SA, Fawzy IM. Newly Synthesized Anticancer Purine Derivatives Inhibiting p-EIF4E Using Surface-Modified Lipid Nanovesicles. ACS OMEGA 2023; 8:37864-37881. [PMID: 37867723 PMCID: PMC10586017 DOI: 10.1021/acsomega.3c02991] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/15/2023] [Indexed: 10/24/2023]
Abstract
Translation of mRNA is one of the processes adopted by cancer cells to maintain survival via phosphorylated (p)-eIF4E overexpression. Once p-eIF4E binds to the cap structure of mRNA, it advocates a nonstop translation process. In this regard, 15 new-based GMP analogs were synthesized to target eIF4E and restrain its binding to cap mRNA. The compounds were tested against three types of cancer cell lines: Caco-2, HepG-2, MCF-7, and normal kidney cells (Vero cells). Most of the compounds showed high potency against breast cancer cells (MCF-7), characterized by the highest cancer type for overexpression of p-eIF4E. Compound 4b was found to be the most active against three cell lines, colon (Caco-2), hepatic (HepG-2), and breast (MCF-7), with positive IC50 values of 31.40, 27.15, and 21.71 μM, respectively. Then, chitosan-coated niosomes loaded with compound 4b (Cs/4b-NSs) were developed (as kinetically enhanced molecules) to improve the anticancer effects further. The prepared Cs/4b-NSs showed pronounced cytotoxicity compared to the free 4b against Caco2, Hepg2, and MCF-7 with IC50 values of 16.15, 26.66, and 6.90 μM, respectively. Then, the expression of both the phosphorylated and nonphosphorylated western blot techniques was conducted on MCF-7 cells treated with the most active compounds (based on the obtained IC50 values) to determine the total protein expression of both eIF4E and p-eIF4e. Interestingly, the selected most active compounds displayed 35.8-40.7% inhibition of p-eIF4E expression when evaluated on MCF-7 compared to Ribavirin (positive control). CS/4b-NSs showed the best inhibition (40.7%). The findings of the present joint in silico molecular docking, simulation dynamic studies, and experimental investigation suggest the potential use of niosomal nanovesicles as a promising nanocarrier for the targeted delivery of the newly synthesized compound 4b to eukaryotic initiation factor 4E. These outcomes support the possible use of Cs/4b-NSs in targeted cancer therapy.
Collapse
Affiliation(s)
- Reem T. Attia
- Department
of Pharmacology and Toxicology and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Menna A. Ewida
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Eman Khaled
- Faculty
of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| | - Sherif Ashraf Fahmy
- Chemistry
Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, Cairo 11835, Egypt
| | - Iten M. Fawzy
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11835, Egypt
| |
Collapse
|
3
|
Cárdenas EL, O’Rourke RL, Menon A, Meagher J, Stuckey J, Garner AL. Design of Cell-Permeable Inhibitors of Eukaryotic Translation Initiation Factor 4E (eIF4E) for Inhibiting Aberrant Cap-Dependent Translation in Cancer. J Med Chem 2023; 66:10734-10745. [PMID: 37471629 PMCID: PMC11469893 DOI: 10.1021/acs.jmedchem.3c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is an RNA-binding protein that binds to the m7GpppX-cap at the 5' terminus of coding mRNAs to initiate cap-dependent translation. While all cells require cap-dependent translation, cancer cells become addicted to enhanced translational capacity, driving the production of oncogenic proteins involved in proliferation, evasion of apoptosis, metastasis, and angiogenesis, among other cancerous phenotypes. eIF4E is the rate-limiting translation factor, and its activation has been shown to drive cancer initiation, progression, metastasis, and drug resistance. These findings have established eIF4E as a translational oncogene and promising, albeit challenging, anti-cancer therapeutic target. Although significant effort has been put forth toward inhibiting eIF4E, the design of cell-permeable, cap-competitive inhibitors remains a challenge. Herein, we describe our work toward solving this long-standing challenge. By employing an acyclic nucleoside phosphonate prodrug strategy, we report the synthesis of cell-permeable inhibitors of eIF4E binding to capped mRNA to inhibit cap-dependent translation.
Collapse
Affiliation(s)
- Emilio L. Cárdenas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel L. O’Rourke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Meagher
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne Stuckey
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States; Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
4
|
Cárdenas EL, O’Rourke RL, Menon A, Meagher J, Stuckey J, Garner AL. Design of Cell-Permeable Inhibitors of Eukaryotic Translation Initiation Factor 4E (eIF4E) for Inhibiting Aberrant Cap-Dependent Translation in Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541912. [PMID: 37292917 PMCID: PMC10245873 DOI: 10.1101/2023.05.23.541912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is an RNA-binding protein that binds to the m 7 GpppX-cap at the 5' terminus of coding mRNAs to initiate cap-dependent translation. While all cells require cap-dependent translation, cancer cells become addicted to enhanced translational capacity, driving the production of oncogenic proteins involved in proliferation, evasion of apoptosis, metastasis, and angiogenesis among other cancerous phenotypes. eIF4E is the rate-limiting translation factor and its activation has been shown to drive cancer initiation, progression, metastasis, and drug resistance. These findings have established eIF4E as a translational oncogene and promising, albeit challenging, anti-cancer therapeutic target. Although significant effort has been put forth towards inhibiting eIF4E, the design of cell-permeable, cap-competitive inhibitors remains a challenge. Herein, we describe our work towards solving this long-standing challenge. By employing an acyclic nucleoside phosphonate prodrug strategy, we report the synthesis of cell-permeable inhibitors of eIF4E binding to capped mRNA to inhibit cap-dependent translation.
Collapse
Affiliation(s)
- Emilio L. Cárdenas
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel L. O’Rourke
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jennifer Meagher
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeanne Stuckey
- Life Science Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Amanda L. Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
5
|
Siekierska I, Lukaszewicz M, Worch R, Jankowska-Anyszka M, Piecyk K. Application of Phosphoramidate ProTide Technology for the Synthesis of 5'-mRNA Cap Analogs Modified on the Exocyclic Amine Group. ChemMedChem 2023; 18:e202200490. [PMID: 36658701 DOI: 10.1002/cmdc.202200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/18/2022] [Indexed: 01/21/2023]
Abstract
Aryloxy triester phosphoramidate methodology, commonly known as ProTide technology, is one of the most widely used prodrug approaches applied to therapeutic nucleosides. This approach has been used extensively by the pharmaceutical industry and researchers in medicinal chemistry. Herein we report our adaptation of this effective method for the synthesis of bioactive 5'-mRNA cap analogues as inhibitors for targeting cap-dependent translation. The synthesis was performed in two main stages: preparation of N2-modified guanosine analogues and their subsequent transformation into prodrugs using phenylethoxy-l-alaninyl phosphorochloridate. The prepared pro-nucleotide cap analogues were tested for their capacity in enzymatic activation, inhibitory properties in a rabbit reticulocyte lysate system, and passive membrane translocation properties.
Collapse
Affiliation(s)
- Izabela Siekierska
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093, Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Remigiusz Worch
- Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | - Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteur St., 02-093, Warsaw, Poland
| |
Collapse
|
6
|
Steinberger J, Shen L, J Kiniry S, Naineni SK, Cencic R, Amiri M, Aboushawareb SAE, Chu J, Maïga RI, Yachnin BJ, Robert F, Sonenberg N, Baranov PV, Pelletier J. Identification and characterization of hippuristanol-resistant mutants reveals eIF4A1 dependencies within mRNA 5' leader regions. Nucleic Acids Res 2020; 48:9521-9537. [PMID: 32766783 PMCID: PMC7515738 DOI: 10.1093/nar/gkaa662] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Hippuristanol (Hipp) is a natural product that selectively inhibits protein synthesis by targeting eukaryotic initiation factor (eIF) 4A, a DEAD-box RNA helicase required for ribosome recruitment to mRNA templates. Hipp binds to the carboxyl-terminal domain of eIF4A, locks it in a closed conformation, and inhibits its RNA binding. The dependencies of mRNAs for eIF4A during initiation is contingent on the degree of secondary structure within their 5′ leader region. Interest in targeting eIF4A therapeutically in cancer and viral-infected settings stems from the dependencies that certain cellular (e.g. pro-oncogenic, pro-survival) and viral mRNAs show towards eIF4A. Using a CRISPR/Cas9-based variomics screen, we identify functional EIF4A1 Hipp-resistant alleles, which in turn allowed us to link the translation-inhibitory and cytotoxic properties of Hipp to eIF4A1 target engagement. Genome-wide translational profiling in the absence or presence of Hipp were undertaken and our validation studies provided insight into the structure-activity relationships of eIF4A-dependent mRNAs. We find that mRNA 5′ leader length, overall secondary structure and cytosine content are defining features of Hipp-dependent mRNAs.
Collapse
Affiliation(s)
- Jutta Steinberger
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Leo Shen
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sai Kiran Naineni
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Regina Cencic
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | | | - Jennifer Chu
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | | | - Brahm J Yachnin
- Department of Chemistry & Chemical Biology & the Institute for Quantitative Biomedicine, Rutgers The State University of New Jersey, Piscataway 08854, NJ
| | - Francis Robert
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal H3A 1A3, Canada
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal H3G 1Y6, Canada.,Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal H3A 1A3, Canada.,Department of Oncology, McGill University, Montreal H3G 1Y6, Canada
| |
Collapse
|
7
|
Wan X, Yang T, Cuesta A, Pang X, Balius TE, Irwin JJ, Shoichet BK, Taunton J. Discovery of Lysine-Targeted eIF4E Inhibitors through Covalent Docking. J Am Chem Soc 2020; 142:4960-4964. [PMID: 32105459 DOI: 10.1021/jacs.9b10377] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) binds the m7GTP cap structure at the 5'-end of mRNAs, stimulating the translation of proteins implicated in cancer cell growth and metastasis. eIF4E is a notoriously challenging target, and most of the reported inhibitors are negatively charged guanine analogues with negligible cell permeability. To overcome these challenges, we envisioned a covalent targeting strategy. As there are no cysteines near the eIF4E cap binding site, we developed a covalent docking approach focused on lysine. Taking advantage of a "make-on-demand" virtual library, we used covalent docking to identify arylsulfonyl fluorides that target a noncatalytic lysine (Lys162) in eIF4E. Guided by cocrystal structures, we elaborated arylsulfonyl fluoride 2 to 12, which to our knowledge is the first covalent eIF4E inhibitor with cellular activity. In addition to providing a new tool for acutely inactivating eIF4E in cells, our computational approach may offer a general strategy for developing selective lysine-targeted covalent ligands.
Collapse
|
8
|
|
9
|
Kaur T, Menon A, Garner AL. Synthesis of 7-benzylguanosine cap-analogue conjugates for eIF4E targeted degradation. Eur J Med Chem 2019; 166:339-350. [PMID: 30735900 DOI: 10.1016/j.ejmech.2019.01.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is a key player in the initiation of cap-dependent translation through recognition of the m7GpppX cap at the 5' terminus of coding mRNAs. As eIF4E overexpression has been observed in a number of human diseases, most notably cancer, targeting this oncogenic translation initiation factor has emerged as a promising strategy for the development of novel anti-cancer therapeutics. Toward this end, in the present study, we have rationally designed a series of Bn7GxP-based PROTACs for the targeted degradation of eIF4E. Herein we describe our synthetic efforts, in addition to biochemical and cellular characterization of these compounds.
Collapse
Affiliation(s)
- Tanpreet Kaur
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Piecyk K, Krynska P, Kaluzna J, Jankowska-Anyszka M. Synthesis of the first double-functionalized dinucleotide mRNA cap analogue for its specific labeling. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Lama D, Pradhan MR, Brown CJ, Eapen RS, Joseph TL, Kwoh CK, Lane DP, Verma CS. Water-Bridge Mediates Recognition of mRNA Cap in eIF4E. Structure 2016; 25:188-194. [PMID: 27916520 DOI: 10.1016/j.str.2016.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/19/2016] [Accepted: 11/07/2016] [Indexed: 11/24/2022]
Abstract
Ligand binding pockets in proteins contain water molecules, which play important roles in modulating protein-ligand interactions. Available crystallographic data for the 5' mRNA cap-binding pocket of the translation initiation factor protein eIF4E shows several structurally conserved waters, which also persist in molecular dynamics simulations. These waters engage an intricate hydrogen-bond network between the cap and protein. Two crystallographic waters in the cleft of the pocket show a high degree of conservation and bridge two residues, which are part of an evolutionarily conserved scaffold. This appears to be a preformed recognition module for the cap with the two structural waters facilitating an efficient interaction. This is also recapitulated in a new crystal structure of the apo protein. These findings open new windows for the design and screening of compounds targeting eIF4E.
Collapse
Affiliation(s)
- Dilraj Lama
- Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Mohan R Pradhan
- Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Christopher J Brown
- p53 Laboratory, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648, Singapore
| | - Rohan S Eapen
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas L Joseph
- Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Chee-Keong Kwoh
- School of Computer Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - David P Lane
- p53 Laboratory, A(∗)STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648, Singapore
| | - Chandra S Verma
- Bioinformatics Institute, A(∗)STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
12
|
Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor eIF4E: Synthesis, structural and functional characterisation. Eur J Med Chem 2016; 124:200-217. [PMID: 27592390 PMCID: PMC5111791 DOI: 10.1016/j.ejmech.2016.08.047] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 08/03/2016] [Accepted: 08/21/2016] [Indexed: 12/02/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) is considered as the corner stone in the cap-dependent translation initiation machinery. Its role is to recruit mRNA to the ribosome through recognition of the 5′-terminal mRNA cap structure (m7GpppN, where G is guanosine, N is any nucleotide). eIF4E is implicated in cell transformation, tumourigenesis, and angiogenesis by facilitating translation of oncogenic mRNAs; it is thus regarded as an attractive anticancer drug target. We have used two approaches to design cap-binding inhibitors of eIF4E by modifying the N7-substituent of m7GMP and replacing the phosphate group with isosteres such as squaramides, sulfonamides, and tetrazoles, as well as by structure-based virtual screening aimed at identifying non-nucleotide cap-binding antagonists. Phosphomimetic nucleotide derivatives and highly ranking virtual hits were evaluated in a series of in vitro and cell-based assays to identify the first non-nucleotide eIF4E cap-binding inhibitor with activities in cell-based assays, N-[(5,6-dihydro-6-oxo-1,3-dioxolo[4,5-g]quinolin-7-yl)methyl]-N′-(2-methyl-propyl)-N-(phenyl-methyl)thiourea (14), including down-regulation of oncogenic proteins and suppression of RNA incorporation into polysomes. Although we did not observe cellular activity with any of our modified m7GMP phosphate isostere compounds, we obtained X-ray crystallography structures of three such compounds in complex with eIF4E, 5′-deoxy-5′-(1,2-dioxo-3-hydroxycyclobut-3-en-4-yl)amino-N7-methyl-guanosine (4a), N7-3-chlorobenzyl-5′-deoxy-5′-(1,2-dioxo-3-hydroxy-cyclobut-3-en-4-yl)amino-guanosine (4f), and N7-benzyl-5′-deoxy-5′-(trifluoromethyl-sulfamoyl)guanosine (7a). Collectively, the data we present on structure-based design of eIF4E cap-binding inhibitors should facilitate the optimisation of such compounds as potential anticancer agents.
Collapse
|
13
|
Thumma SC, Jacobson BA, Patel MR, Konicek BW, Franklin MJ, Jay-Dixon J, Sadiq A, De A, Graff JR, Kratzke RA. Antisense oligonucleotide targeting eukaryotic translation initiation factor 4E reduces growth and enhances chemosensitivity of non-small-cell lung cancer cells. Cancer Gene Ther 2015; 22:396-401. [PMID: 26227824 DOI: 10.1038/cgt.2015.34] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/30/2015] [Accepted: 07/10/2015] [Indexed: 12/12/2022]
Abstract
Elevated levels of eukaryotic translation initiation factor 4E (eIF4E) enhance translation of many malignancy-related proteins, such as vascular endothelial growth factor (VEGF), c-Myc and osteopontin. In non-small-cell lung cancer (NSCLC), levels of eIF4E are significantly increased compared with normal lung tissue. Here, we used an antisense oligonucleotide (ASO) to inhibit the expression of eIF4E in NSCLC cell lines. eIF4E levels were significantly reduced in a dose-dependent manner in NSCLC cells treated with eIF4E-specific ASO (4EASO) compared with control ASO. Treatment of NSCLC cells with the 4EASO resulted in decreased cap-dependent complex formation, decreased cell proliferation and increased sensitivity to gemcitabine. At the molecular level, repression of eIF4E with ASO resulted in decreased expression of the oncogenic proteins VEGF, c-Myc and osteopontin, whereas expression of β-actin was unaffected. Based on these findings, we conclude that eIF4E-silencing therapy alone or in conjunction with chemotherapy represents a promising approach deserving of further investigation in future NSCLC clinical trials.
Collapse
Affiliation(s)
- S C Thumma
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - B A Jacobson
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - M R Patel
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - B W Konicek
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - M J Franklin
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - J Jay-Dixon
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - A Sadiq
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - A De
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| | - J R Graff
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA
| | - R A Kratzke
- Division of Hematology, Department of Medicine, Oncology and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
14
|
Piecyk K, Darzynkiewicz ZM, Jankowska-Anyszka M, Ferenc-Mrozek A, Stepinski J, Darzynkiewicz E, Bojarska E. Effect of different N7 substitution of dinucleotide cap analogs on the hydrolytic susceptibility towards scavenger decapping enzymes (DcpS). Biochem Biophys Res Commun 2015; 464:89-93. [PMID: 26049109 DOI: 10.1016/j.bbrc.2015.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 06/01/2015] [Indexed: 11/16/2022]
Abstract
Scavenger decapping enzymes (DcpS) are involved in eukaryotic mRNA degradation process. They catalyze the cleavage of residual cap structure m(7)GpppN and/or short capped oligonucleotides resulting from exosom-mediated the 3' to 5' digestion. For the specific cap recognition and efficient degradation by DcpS, the positive charge at N7 position of guanine moiety is required. Here we examine the role the N7 substitution within the cap structure on the interactions with DcpS (human, Caenorhabditis elegans and Ascaris suum) comparing the hydrolysis rates of dinucleotide cap analogs (m(7)GpppG, et(7)GpppG, but(7)GpppG, bn(7)GpppG) and the binding affinities of hydrolysis products (m(7)GMP, et(7)GMP, but(7)GMP, bn(7)GMP). Our results show the conformational flexibility of the region within DcpS cap-binding pocket involved in the interaction with N7 substituted guanine, which enables accommodation of substrates with differently sized N7 substituents.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland
| | - Zbigniew M Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 2c Banacha St., 02-097 Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Marzena Jankowska-Anyszka
- Faculty of Chemistry, University of Warsaw, 1 Pasteura St., 02-093 Warsaw, Poland; Department of Biochemistry, Second Faculty of Medicine, Medical University of Warsaw, 101 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Aleksandra Ferenc-Mrozek
- Centre of New Technologies, University of Warsaw, 2c Banacha St., 02-097 Warsaw, Poland; College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, 93 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Centre of New Technologies, University of Warsaw, 2c Banacha St., 02-097 Warsaw, Poland; Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 93 Zwirki & Wigury St., 02-089 Warsaw, Poland
| | - Elzbieta Bojarska
- Centre of New Technologies, University of Warsaw, 2c Banacha St., 02-097 Warsaw, Poland.
| |
Collapse
|
15
|
Karaki S, Andrieu C, Ziouziou H, Rocchi P. The Eukaryotic Translation Initiation Factor 4E (eIF4E) as a Therapeutic Target for Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:1-26. [PMID: 26572974 PMCID: PMC7185574 DOI: 10.1016/bs.apcsb.2015.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells depend on cap-dependent translation more than normal tissue. This explains the emergence of proteins involved in the cap-dependent translation as targets for potential anticancer drugs. Cap-dependent translation starts when eIF4E binds to mRNA cap domain. This review will present eIF4E's structure and functions. It will also expose the use of eIF4E as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Sara Karaki
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France
| | - Claudia Andrieu
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France
| | - Hajer Ziouziou
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France
| | - Palma Rocchi
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France,Corresponding author:
| |
Collapse
|
16
|
Piecyk K, Lukaszewicz M, Darzynkiewicz E, Jankowska-Anyszka M. Triazole-containing monophosphate mRNA cap analogs as effective translation inhibitors. RNA (NEW YORK, N.Y.) 2014; 20:1539-47. [PMID: 25150228 PMCID: PMC4174436 DOI: 10.1261/rna.046193.114] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/14/2014] [Indexed: 05/19/2023]
Abstract
Synthetic analogs of the 5' end of mRNA (cap structure) are widely used in molecular studies on mechanisms of cellular processes such as translation, intracellular transport, splicing, and turnover. The best-characterized cap binding protein is translation initiation factor 4E (eIF4E). Recognition of the mRNA cap by eIF4E is a critical, rate-limiting step for efficient translation initiation and is considered a major target for anticancer therapy. Here, we report a facile methodology for the preparation of N2-triazole-containing monophosphate cap analogs and present their biological evaluation as inhibitors of protein synthesis. Five analogs possessing this unique hetero-cyclic ring spaced from the m7-guanine of the cap structure at a distance of one or three carbon atoms and/or additionally substituted by various groups containing the benzene ring were synthesized. All obtained compounds turned out to be effective translation inhibitors with IC50 similar to dinucleotide triphosphate m(7)GpppG. As these compounds possess a reduced number of phosphate groups and, thereby, a negative charge, which may support their cell penetration, this type of cap analog might be promising in terms of designing new potential therapeutic molecules. In addition, an exemplary dinucleotide from a corresponding mononucleotide containing benzyl substituted 1,2,3-triazole was prepared and examined. The superior inhibitory properties of this analog (10-fold vs. m(7)GpppG) suggest the usefulness of such compounds for the preparation of mRNA transcripts with high translational activity.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093, Warsaw, Poland
| | - Maciej Lukaszewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089, Warsaw, Poland Centre of New Technologies, University of Warsaw, 02-097, Warsaw, Poland
| | | |
Collapse
|
17
|
Resistance to EGFR-TKI can be mediated through multiple signaling pathways converging upon cap-dependent translation in EGFR-wild type NSCLC. J Thorac Oncol 2014; 8:1142-7. [PMID: 23883783 DOI: 10.1097/jto.0b013e31829ce963] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION For the majority of patients with non-small-cell lung cancer (NSCLC), response to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is suboptimal. In models of acquired resistance to EGFR-TKI, activation of Akt phosphorylation is frequently observed. Because Akt activation results in downstream initiation of cap-dependent protein translation, we hypothesized that a strategy of targeting cap-dependent translation in combination with erlotinib might enhance therapy. METHODS NSCLC cells that are wild type for EGFR were assayed for sensitivity to erlotinib. Serum-starved NSCLC cells were assayed for EGFR signaling and downstream pathway activation by immunoblot after stimulation with epidermal growth factor. EGFR signaling and signaling mediators of cap-dependent translation were assayed by immunoblot under serum-replete conditions 24 hours after treatment with erlotinib. Finally, combination treatment with erlotinib and two different cap-dependent translation inhibitors were done to assess the effect on cell viability. RESULTS EGFR signaling is coupled to activation of cap-dependent translation in EGFR wild-type cells. Erlotinib inhibits EGFR phosphorylation in EGFR-TKI resistant cells, however, results in activation of downstream signaling molecules including Akt and extracellular regulated kinase, ERK 1/2, resulting in maintenance of eukaryotic initiation factor 4F (eIF4F) activation. eIF4F cap-complex formation is maintained in erlotinib-resistant cells, but not in erlotinib-sensitive cells. Finally, using an antisense oligonucleotide against eukaryotic translation initiation factor 4E and a small-molecule inhibitor to disrupt eIF4F formation, we show that cap-dependent translation inhibition can enhance sensitivity to erlotinib. CONCLUSION The results of these studies support further clinical development of translation inhibitors for treatment of NSCLC in combination with erlotinib.
Collapse
|
18
|
Abstract
Cap analogs are chemically modified derivatives of the unique cap structure present at the 5´ end of all eukaryotic mRNAs and several non-coding RNAs. Until recently, cap analogs have served primarily as tools in the study of RNA metabolism. Continuing advances in our understanding of cap biological functions (including RNA stabilization, pre-mRNA splicing, initiation of mRNA translation, as well as cellular transport of mRNAs and snRNAs) and the consequences of the disruption of these processes - resulting in serious medical disorders - have opened new possibilities for pharmaceutical applications of these compounds. In this review, the medicinal potential of cap analogs in areas, such as cancer treatment (including eIF4E targeting and mRNA-based immunotherapy), spinal muscular atrophy treatment, antiviral therapy and the improvement of the localization of nucleus-targeting drugs, are highlighted. Advances achieved to date, challenges, plausible solutions and prospects for the future development of cap analog-based drug design are described.
Collapse
|
19
|
Li S, Jia Y, Jacobson B, McCauley J, Kratzke R, Bitterman PB, Wagner CR. Treatment of breast and lung cancer cells with a N-7 benzyl guanosine monophosphate tryptamine phosphoramidate pronucleotide (4Ei-1) results in chemosensitization to gemcitabine and induced eIF4E proteasomal degradation. Mol Pharm 2013; 10:523-31. [PMID: 23289910 DOI: 10.1021/mp300699d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The development of cancer and fibrotic diseases has been shown to be highly dependent on disregulation of cap-dependent translation. Binding protein eIF4E to N(7)-methylated guanosine capped mRNA has been found to be the rate-limiting step governing translation initiation, and therefore represents an attractive target for drug discovery. Our group has found that 7-benzyl guanosine monophosphate (7Bn-GMP) is a potent antagonist of eIF4E cap binding (K(d) = 0.8 μM). Recent X-ray crystallographic studies have revealed that the cap-dependent pocket undergoes a unique structural change in order to accommodate the benzyl group. Unfortunately, 7Bn-GMP is not cell permeable. Recently, we have prepared a tryptamine phosphoramidate prodrug of 7Bn-GMP, 4Ei-1, and shown that it is a substrate for human histidine triad nucleotide binding protein (hHINT1) and inhibits eIF4E initiated epithelial-mesenchymal transition (EMT) by Zebra fish embryo cells. To assess the intracellular uptake of 4Ei-1 and conversion to 7Bn-GMP by cancer cells, we developed a sensitive assay using LC-ESI-MS/MS for the intracellular quantitation of 4Ei-1 and 7Bn-GMP. When incubated with the breast cancer cell line MDA-231 or lung cancer cell lines H460, H383 and H2009, 4Ei-1 was found to be rapidly internalized and converted to 7Bn-GMP. Since oncogenic mRNAs are predicted to have the highest eIF4E requirement for translation, we carried out chemosensitization studies with 4Ei-1. The prodrug was found to chemosensitize both breast and lung cancer cells to nontoxic levels of gemcitabine. Further mechanistic studies revealed that the expressed levels of eIF4E were substantially reduced in cells treated with 4Ei-1 in a dose-dependent manner. The levels of eI4E could be restored by treatment with the proteasome inhibitor MG-132. Taken together, our results demonstrate that 4Ei-1 is likely to inhibit translation initiation by eIF4E cap binding by both antagonizing eIF4E cap binding and initiating eIF4E proteasomal degradation.
Collapse
Affiliation(s)
- Shui Li
- Department of Medicinal Chemistry and Department of Medicine, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | | | |
Collapse
|
20
|
Sun Q, Liu S, Sun J, Gong S, Xiao Q, Shen L. One-pot synthesis of symmetrical P1,P2-dinucleoside-5′-diphosphates from nucleoside-5′-H-phosphonates: mechanistic insights into reaction path. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.05.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Kijewska K, Jarzębińska A, Kowalska J, Jemielity J, Kępińska D, Szczytko J, Pisarek M, Wiktorska K, Stolarski J, Krysiński P, Twardowski A, Mazur M. Magnetic-nanoparticle-decorated polypyrrole microvessels: toward encapsulation of mRNA cap analogues. Biomacromolecules 2013; 14:1867-76. [PMID: 23597098 DOI: 10.1021/bm400250g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many phosphorylated nucleoside derivatives have therapeutic potential, but their application is limited by problems with membrane permeability and with intracellular delivery. Here, we prepared polypyrrole microvessel structures modified with superparamagnetic nanoparticles for use as potential carriers of nucleotides. The microvessels were prepared via the photochemical polymerization of the monomer onto the surface of aqueous ferrofluidic droplets. A complementary physicochemical analysis revealed that a fraction of the nanoparticles was embedded in the microvessel walls, while the other nanoparticles were in the core of the vessel. SQUID (superconducting quantum interference device) measurements indicated that the incorporated nanoparticles retained their superparamagnetic properties; thus, the resulting nanoparticle-modified microvessels can be directed by an external magnetic field. As a result of these features, these microvessels may be useful as drug carriers in biomedical applications. To demonstrate the encapsulation of drug molecules, two labeled mRNA cap analogues, nucleotide-derived potential anticancer agents, were used. It was shown that the cap analogues are located in the aqueous core of the microvessels and can be released to the external solution by spontaneous permeation through the polymer walls. Mass spectrometry analysis confirmed that the cap analogues were preserved during encapsulation, storage, and release. This finding provides a foundation for the future development of anticancer therapies and for the delivery of nucleotide-based therapeutics.
Collapse
Affiliation(s)
- Krystyna Kijewska
- Department of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bitterman PB, Polunovsky VA. Attacking a nexus of the oncogenic circuitry by reversing aberrant eIF4F-mediated translation. Mol Cancer Ther 2013; 11:1051-61. [PMID: 22572598 DOI: 10.1158/1535-7163.mct-11-0530] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Notwithstanding their genetic complexity, different cancers share a core group of perturbed pathways converging upon a few regulatory nodes that link the intracellular-signaling network with the basic metabolic machinery. The clear implication of this view for cancer therapy is that instead of targeting individual genetic alterations one by one, the next generation of cancer therapeutics will target critical hubs in the cancer network. One such hub is the translation-initiation complex eIF4F, which integrates several cancer-related pathways into a self-amplifying signaling system. When hyperactivated by apical oncogenic signals, the eIF4F-driven translational apparatus selectively switches the translational repertoire of a cell toward malignancy. This central integrative role of pathologically activated eIF4F has motivated the development of small-molecule inhibitors to correct its function. A genome-wide, systems-level means to objectively evaluate the pharmacologic response to therapeutics targeting eIF4F remains an unmet challenge.
Collapse
Affiliation(s)
- Peter B Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
23
|
Piecyk K, Davis RE, Jankowska-Anyszka M. Synthesis of N²-modified 7-methylguanosine 5'-monophosphates as nematode translation inhibitors. Bioorg Med Chem 2012; 20:4781-9. [PMID: 22748379 PMCID: PMC3636719 DOI: 10.1016/j.bmc.2012.05.078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/25/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
Preparative scale synthesis of 14 new N(2)-modified mononucleotide 5' mRNA cap analogues was achieved. The key step involved use of an S(N)Ar reaction with protected 2-fluoro inosine and various primary and secondary amines. The derivatives were tested in a parasitic nematode, Ascaris suum, cell-free system as translation inhibitors. The most effective compound with IC(50) ∼0.9μM was a N(2)-p-metoxybenzyl-7-methylguanosine-5'-monophosphate 35.
Collapse
Affiliation(s)
- Karolina Piecyk
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | | | | |
Collapse
|
24
|
Chen X, Kopecky DJ, Mihalic J, Jeffries S, Min X, Heath J, Deignan J, Lai S, Fu Z, Guimaraes C, Shen S, Li S, Johnstone S, Thibault S, Xu H, Cardozo M, Shen W, Walker N, Kayser F, Wang Z. Structure-guided design, synthesis, and evaluation of guanine-derived inhibitors of the eIF4E mRNA-cap interaction. J Med Chem 2012; 55:3837-51. [PMID: 22458568 DOI: 10.1021/jm300037x] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The eukaryotic initiation factor 4E (eIF4E) plays a central role in the initiation of gene translation and subsequent protein synthesis by binding the 5' terminal mRNA cap structure. We designed and synthesized a series of novel compounds that display potent binding affinity against eIF4E despite their lack of a ribose moiety, phosphate, and positive charge as present in m7-GMP. The biochemical activity of compound 33 is 95 nM for eIF4E in an SPA binding assay. More importantly, the compound has an IC(50) of 2.5 μM for inhibiting cap-dependent mRNA translation in a rabbit reticular cell extract assay (RRL-IVT). This series of potent, truncated analogues could serve as a promising new starting point toward the design of neutral eIF4E inhibitors with physicochemical properties suitable for cellular activity assessment.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Department of Chemistry Research & Discovery, Amgen Inc., 1120 Veterans Boulevard, South San Francisco, California 94080, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Jia Y, Polunovsky V, Bitterman PB, Wagner CR. Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med Res Rev 2012; 32:786-814. [PMID: 22495651 PMCID: PMC7168506 DOI: 10.1002/med.21260] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cancer cells tend to be more highly dependent on cap‐dependent translation than normal tissues. Thus, proteins involved in the initiation of cap‐dependent translation have emerged as potential anti‐cancer drug targets. Cap‐dependent translation is initiated by the binding of the factor eIF4E to the cap domain of mRNA. Detailed x‐ray crystal and NMR structures are available for eIF4E in association with cap‐analogs, as well as domains of other initiation factors. This review will summarize efforts to design potential antagonist of eIF4E that could be used as new pharmacological tools and anti‐cancer agents and. Insights drawn from these studies should aid in the design of future inhibitors of eIF4E dependent translation initiation. © 2012 Wiley Periodicals, Inc. Med Res Rev., 32, No. 4, 786‐814, 2012
Collapse
Affiliation(s)
- Yan Jia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
26
|
Visco C, Perrera C, Thieffine S, Sirtori FR, D'Alessio R, Magnaghi P. Development of biochemical assays for the identification of eIF4E-specific inhibitors. ACTA ACUST UNITED AC 2012; 17:581-92. [PMID: 22392810 DOI: 10.1177/1087057112438554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Control of mRNA translation plays a critical role in cell growth, proliferation, and differentiation and is tightly regulated by AKT and RAS oncogenic pathways. A key player in the regulation of this process is the mRNA 5' cap-binding protein, eukaryotic translation initiation factor 4E (eIF4E). eIF4E contributes to malignancy by selectively enabling the translation of a limited pool of mRNAs that generally encode key proteins involved in cell cycle progression, angiogenesis, and metastasis. Several data indicate that the inhibition of eIF4E in tumor cell lines and xenograft models impairs tumor growth and induces apoptosis; eIF4E, therefore, can be considered a valuable target for cancer therapy. Targeting the cap-binding pocket of eIF4E should represent a way to inhibit all the eIF4E cellular functions. We present here the development and validation of different biochemical assays based on fluorescence polarization and surface plasmon resonance techniques. These assays could support high-throughput screening, further refinement, and characterization of eIF4E inhibitors, as well as selectivity assessment against CBP80/CBP20, the other major cap-binding complex of eukaryotic cells, overall providing a robust roadmap for development of eIF4E-specific inhibitors.
Collapse
Affiliation(s)
- Carlo Visco
- Biotechnology Department, Nerviano Medical Sciences, Nerviano (MI), Italy
| | | | | | | | | | | |
Collapse
|
27
|
Translational control gone awry: a new mechanism of tumorigenesis and novel targets of cancer treatments. Biosci Rep 2011; 31:1-15. [PMID: 20964625 DOI: 10.1042/bsr20100077] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Translational control is one of primary regulation mechanisms of gene expression. Eukaryotic translational control mainly occurs at the initiation step, the speed-limiting step, which involves more than ten translation initiation factors [eIFs (eukaryotic initiation factors)]. Changing the level or function of these eIFs results in abnormal translation of specific mRNAs and consequently abnormal growth of cells that leads to human diseases, including cancer. Accumulating evidence from recent studies showed that the expression of many eIFs was associated with malignant transformation, cancer prognosis, as well as gene expression regulation. In the present paper, we perform a critical review of recent advances in understanding the role and mechanism of eIF action in translational control and cancer as well as the possibility of targeting eIFs for therapeutic development.
Collapse
|
28
|
Jia Y, Chiu TL, Amin EA, Polunovsky V, Bitterman PB, Wagner CR. Design, synthesis and evaluation of analogs of initiation factor 4E (eIF4E) cap-binding antagonist Bn7-GMP. Eur J Med Chem 2009; 45:1304-13. [PMID: 20060622 DOI: 10.1016/j.ejmech.2009.11.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/17/2009] [Accepted: 11/27/2009] [Indexed: 01/19/2023]
Abstract
Aberrant regulation of cap-dependent translation has been frequently observed in the development of cancer. Association of the cap-binding protein eIF4E with N(7)-methylated guanosine capped mRNA is the rate limiting step governing translation initiation; and therefore represents an attractive process for cancer drug discovery. Previously, replacement of the 7-Me group of the Me(7)-guanosine monophosphate with a benzyl group has been found to increase binding affinity to eIF4E. Recent X-ray crystallographic studies have revealed that the cap-binding pocket undergoes a unique structural change in order to accommodate the benzyl group. To explore the structure-activity relationships governing the affinity of N(7)-benzylated guanosine monophosphate (Bn(7)-GMP) for eIF4E, we virtually screened a library of 80 Bn(7)-GMP analogs utilizing CombiGlide as implemented in Schrodinger. A subset library of substituted Bn(7)-GMP analogs was synthesized and their dissociation constants (K(d)) were determined. Due to the poor correlation between docking/scoring results and experimental binding affinities, three-dimensional quantitative structure-activity relationship (3D-QSAR) calculations were performed. Two highly predictive and self-consistent CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) models were derived and optimized. These models may be useful for the future design of eIF4E cap-binding antagonists.
Collapse
Affiliation(s)
- Yan Jia
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
29
|
Kim YY, Von Weymarn L, Larsson O, Fan D, Underwood JM, Peterson MS, Hecht SS, Polunovsky VA, Bitterman PB. Eukaryotic initiation factor 4E binding protein family of proteins: sentinels at a translational control checkpoint in lung tumor defense. Cancer Res 2009; 69:8455-62. [PMID: 19843855 DOI: 10.1158/0008-5472.can-09-1923] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The usurping of translational control by sustained activation of translation initiation factors is oncogenic. Here, we show that the primary negative regulators of these oncogenic initiation factors--the 4E-BP protein family--operate as guardians of a translational control checkpoint in lung tumor defense. When challenged with the tobacco carcinogen 4-(methylnitrosamino)-I-(3-pyridyl)-1-butanone (NNK), 4ebp1(-/-)/4ebp2(-/-) mice showed increased sensitivity to tumorigenesis compared with their wild-type counterparts. The 4E-BP-deficient state per se creates pro-oncogenic, genome-wide skewing of the molecular landscape, with translational activation of genes governing angiogenesis, growth, and proliferation, and translational activation of the precise cytochrome p450 enzyme isoform (CYP2A5) that bioactivates NNK into mutagenic metabolites. Our study provides in vivo proof for a translational control checkpoint in lung tumor defense.
Collapse
Affiliation(s)
- Yong Y Kim
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ghosh B, Benyumov AO, Ghosh P, Jia Y, Avdulov S, Dahlberg PS, Peterson M, Smith K, Polunovsky VA, Bitterman PB, Wagner CR. Nontoxic chemical interdiction of the epithelial-to-mesenchymal transition by targeting cap-dependent translation. ACS Chem Biol 2009; 4:367-77. [PMID: 19351181 PMCID: PMC2796976 DOI: 10.1021/cb9000475] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Normal growth and development depends upon high fidelity regulation of cap-dependent translation initiation, a process that is usurped and redirected in cancer to mediate acquisition of malignant properties. The epithelial-to-mesenchymal transition (EMT) is a key translationally regulated step in the development of epithelial cancers and pathological tissue fibrosis. To date, no compounds targeting EMT have been developed. Here we report the synthesis of a novel class of histidine triad nucleotide binding protein (HINT)-dependent pronucleotides that interdict EMT by negatively regulating the association of eIF4E with the mRNA cap. Compound eIF4E inhibitor-1 potently inhibited cap-dependent translation in a dose-dependent manner in zebrafish embryos without causing developmental abnormalities and prevented eIF4E from triggering EMT in zebrafish ectoderm explants without toxicity. Metabolism studies with whole cell lysates demonstrated that the prodrug was rapidly converted into 7-BnGMP. Thus we have successfully developed the first nontoxic small molecule able to inhibit EMT, a key process in the development of epithelial cancer and tissue fibrosis, by targeting the interaction of eIF4E with the mRNA cap and demonstrated the tractability of zebrafish as a model organism for studying agents that modulate EMT. Our work provides strong motivation for the continued development of compounds designed to normalize cap-dependent translation as novel chemo-preventive agents and therapeutics for cancer and fibrosis.
Collapse
Affiliation(s)
- Brahma Ghosh
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexey O. Benyumov
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Phalguni Ghosh
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yan Jia
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Svetlana Avdulov
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter S. Dahlberg
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark Peterson
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Karen Smith
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Peter B. Bitterman
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
31
|
Singh NJ, Min SK, Kim DY, Kim KS. Comprehensive Energy Analysis for Various Types of π-Interaction. J Chem Theory Comput 2009; 5:515-29. [PMID: 26610219 DOI: 10.1021/ct800471b] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- N. Jiten Singh
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Seung Kyu Min
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Dong Young Kim
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kwang S. Kim
- Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| |
Collapse
|
32
|
Ghosh P, Cheng J, Chou TF, Jia Y, Avdulov S, Bitterman PB, Polunovsky VA, Wagner CR. Expression, purification and characterization of recombinant mouse translation initiation factor eIF4E as a dihydrofolate reductase (DHFR) fusion protein. Protein Expr Purif 2008; 60:132-9. [PMID: 18479935 PMCID: PMC2617730 DOI: 10.1016/j.pep.2008.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 03/14/2008] [Accepted: 03/19/2008] [Indexed: 11/23/2022]
Abstract
One of the earliest steps in translation initiation is recognition of the mRNA cap structure (m7GpppX) by the initiation factor eIF4E. Studies of interactions between purified eIF4E and its binding partners provide important information for understanding mechanisms underlying translational control in normal and cancer cells. Numerous impediments of the available methods used for eIF4E purification led us to develop a novel methodology for obtaining fractions of eIF4E free from undesired by-products. Herein we report methods for bacterial expression of eIF4E tagged with mutant dihydrofolate reductase (DHFR) followed by isolation and purification of the DHFR-eIF4E protein by using affinity and anion exchange chromatography. Fluorescence quenching experiments indicated the cap-analog, 7MeGTP, bound to DHFR-eIF4E and eIF4E with a dissociation constant (K(d)) of 6+/-5 and 10+/-3 nM, respectively. Recombinant eIF4E and DHFR-eIF4E were both shown to significantly enhance in vitro translation in dose dependent manner by 75% at 0.5 microM. Nevertheless increased concentrations of eIF4E and DHFR-eIF4E significantly inhibited translation in a dose dependent manner by a maximum at 2 microM of 60% and 90%, respectively. Thus, we have demonstrated that we have developed an expression system for fully functional recombinant eIF4E. We have also shown that the fusion protein DHFR-eIF4E is functional and thus may be useful for cell based affinity tag studies with fluorescently labeled trimethoprim analogs.
Collapse
Affiliation(s)
- Phalguni Ghosh
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jilin Cheng
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tsui-Fen Chou
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yan Jia
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Svetlana Avdulov
- Department of Pulmonary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter B. Bitterman
- Department of Pulmonary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vitaly A. Polunovsky
- Department of Pulmonary Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carston R. Wagner
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
33
|
Brown CJ, McNae I, Fischer PM, Walkinshaw MD. Crystallographic and mass spectrometric characterisation of eIF4E with N7-alkylated cap derivatives. J Mol Biol 2007; 372:7-15. [PMID: 17631896 DOI: 10.1016/j.jmb.2007.06.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 06/10/2007] [Accepted: 06/12/2007] [Indexed: 10/23/2022]
Abstract
Structural complexes of the eukaryotic translation initiation factor 4E (eIF4E) with a series of N(7)-alkylated guanosine derivative mRNA cap analogue structures have been characterised. Mass spectrometry was used to determine apparent gas-phase equilibrium dissociation constants (K(d)) values of 0.15 microM, 13.6 microM, and 55.7 microM for eIF4E with 7-methyl-GTP (m(7)GTP), GTP, and GMP, respectively. For tight and specific binding to the eIF4E mononucleotide binding site, there seems to be a clear requirement for guanosine derivatives to possess both the delocalised positive charge of the N(7)-methylated guanine system and at least one phosphate group. We show that the N(7)-benzylated monophosphates 7-benzyl-GMP (Bn(7)GMP) and 7-(p-fluorobenzyl)-GMP (FBn(7)GMP) bind eIF4E substantially more tightly than non-N(7)-alkylated guanosine derivatives (K(d) values of 7.0 microM and 2.0 microM, respectively). The eIF4E complex crystal structures with Bn(7)GMP and FBn(7)GMP show that additional favourable contacts of the benzyl groups with eIF4E contribute binding energy that compensates for loss of the beta and gamma-phosphates. The N(7)-benzyl groups pack into a hydrophobic pocket behind the two tryptophan side-chains that are involved in the cation-pi stacking interaction between the cap and the eIF4E mononucleotide binding site. This pocket is formed by an induced fit in which one of the tryptophan residues involved in cap binding flips through 180 degrees relative to structures with N(7)-methylated cap derivatives. This and other observations made here will be useful in the design of new families of eIF4E inhibitors, which may have potential therapeutic applications in cancer.
Collapse
Affiliation(s)
- Christopher J Brown
- Structural Biochemistry, The University of Edinburgh, Michael Swann Building, King's Buildings, Edinburgh, EH9 3JR, Scotland, UK
| | | | | | | |
Collapse
|